- 无标题文档
查看论文信息

论文中文题名:

 深部矿井水平方螺旋形埋管充填体换热器性能研究    

姓名:

 詹睿    

学号:

 20203226038    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 可再生能源利用与能量转化技术    

第一导师姓名:

 张波    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Study on the Heat Transfer Performance of Horizontally Spiral Buried Pipe Filling Body Heat Exchanger in Deep Mines    

论文中文关键词:

 埋管充填体换热器 ; 方螺旋形埋管 ; 耦合热泵系统 ; 传热-渗流耦合模型    

论文外文关键词:

 Backfill heat exchangers ; Square-spiral-type buried tubes ; Coupled heat pump systems ; Coupled heat transfer and seepage model    

论文中文摘要:

深部矿井蕴藏着大量地热资源,充填过程中埋入换热管构建埋管充填体换热器方式 将深部采矿和地热开采相结合,是实现矿产和地热资源开发共赢,延长深部矿山寿命的 重要举措。本文在分析国内外充填矿井埋管充填体换热器研究现状的基础上,提出了一 种水平方螺旋形埋管充填体换热器,利用 COMSOL 软件建立了三维瞬态埋管充填体换 热器热-渗耦合模型并验证了其可靠性。基于建立的数学模型,开展了管内流速、管径、 管间距、地下水渗流速度和入口水温等因素对方螺旋形埋管充填体换热器换热性能的影 响规律研究,方螺旋形埋管充填体换热器耦合热泵系统的性能特性与生态效益评价分析, 方螺旋埋管换热器换热管的布置优化与性能对比分析等研究工作。具体内容如下: (1)在相同几何尺寸和物理条件下,对比研究了单层方螺旋形和两种传统蛇形埋管 充填体换热器的换热性能。发现单层方螺旋形埋管换热性能优于传统蛇形埋管,且在较 高地下水渗流速度条件下的优势更明显。地下水渗流速度在 0~1E-5 (m·s-1 )范围内,方螺 旋形埋管平均单位管长换热功率比性能较好的纵向蛇形埋管提高 0.16~1.99 (W·m-1 )。 (2)研究了管内流速、管径、管间距、渗流速度和入口水温等参数对单层方螺旋形 埋管充填体换热器的取热性能及其热泵耦合系统性能的影响。综合考虑出口水温和单位 管长换热功率,管内流速和管间距存在最佳范围;管径增大会缩短埋管换热的稳定时间。 (3)分析评价了单层方螺旋形埋管充填体耦合热泵系统的性能变化和生态效益。结 果显示,单层方螺旋形埋管充填体耦合热泵系统的一次能源利用率比传统燃煤锅炉提升 260%,单位供暖面积 CO2排放量降低 61.6%。 (4)优化了方螺旋埋管充填体换热器的管路布置,与传统蛇形等 5 种埋管在不同渗 流速度、充填体及围岩热物性下进行了性能对比分析。结果表明,双层方螺旋埋管换热 性能明显高于同管长的单层方螺旋埋管。 本文提出的方螺旋埋管形式为充填体内部管路布置提供新思路,建立的热-渗耦合埋 管充填体换热器数值模型为研究其在渗流条件下的换热特性变化规律提供了理论工具。

论文外文摘要:

Deep mines contain a large amount of geothermal resources, and the combination of deep mining and geothermal mining by burying heat exchanger tubes in the filling process is an important step to realize the win-win situation of mineral and geothermal resources development and extend the life of deep mines. In this paper, based on the analysis of the current situation of the research on buried tube filled body heat exchanger in filled mines at home and abroad, a horizontal square spiral buried tube filled body heat exchanger is proposed, and a threedimensional transient buried tube filled body heat exchanger thermal-permeability coupling model is established and its reliability is verified by using COMSOL software. Based on the established mathematical model, the research work was carried out to study the influences of flow velocity, pipe diameter, pipe spacing, groundwater seepage rate and inlet water temperature on the heat transfer performance of the square spiral buried tube filled heat exchanger, the performance characteristics and eco-efficiency evaluation of the square spiral buried tube filled heat exchanger coupled heat pump system, and the optimization of the arrangement and performance comparison analysis of the square spiral buried tube heat exchanger heat transfer pipe. The specific contents are as follows: (1) The heat transfer performance of single-layer square spiral and two conventional serpentine buried tube filled body heat exchangers were comparatively studied under the same geometrical dimensions and physical conditions. It is found that the heat transfer performance of single-layer square spiral buried tube is more obvious due to the traditional serpentine buried tube and under the condition of higher groundwater percolation velocity. The average heat transfer power per unit tube length of the square spiral buried pipe was found to be 0.16-1.99 (W·m-1 ) higher than that of the better performing longitudinal serpentine buried pipe for groundwater seepage velocities in the range of 0-1E-5 (m·s-1 ). (2) The effects of parameters such as tube flow velocity, tube diameter, tube spacing, percolation rate and inlet water temperature on the heat extraction performance of single-layer square spiral buried tube filled heat exchanger and its heat pump coupling system performance were investigated. The results show that, considering the outlet water temperature and heat transfer power per unit tube length, the optimal range of tube flow velocity and tube spacing exists; increasing the tube diameter will shorten the stabilization time of buried tube heat transfer. (3) The performance changes and ecological benefits of the single-layer square spiral buried pipe filling coupled with heat pump system were analyzed and evaluated. The results show that the higher groundwater infiltration rate not only significantly improves the energy efficiency of the coupled heat pump system, but also shortens the stabilization time of the heat pump system. The primary energy efficiency of the single-layer square spiral buried tube filled body coupled heat pump system is 260% higher than that of the traditional coal-fired boiler, and the CO2 emission per unit heating area is 61.6% lower. (4) The piping arrangement of the square spiral buried tube filled body heat exchanger was optimized, and the performance was compared with five types of buried tubes such as traditional serpentine under different seepage velocity, filling body and thermal properties of surrounding rock. The results show that the heat transfer performance of double-layer square spiral buried pipe is significantly higher than that of single-layer square spiral buried pipe with the same pipe length. The square spiral buried tube form proposed in this paper provides a new idea for the internal piping arrangement of the filling body, and the numerical model of the thermal-osmotic coupling buried tube filling body heat exchanger established in this paper provides a theoretical tool to study the change law of its heat transfer characteristics under the seepage flow conditions.

中图分类号:

 TK529    

开放日期:

 2023-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式