- 无标题文档
查看论文信息

论文中文题名:

 超声辅助激光熔覆 Ni60 合金热力耦合模拟与实验研究    

姓名:

 张娜娜    

学号:

 22205224100    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 表面工程与再制造    

第一导师姓名:

 高中堂    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-11    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Thermal coupling simulation and experimental study of ultrasound-assisted laser cladding of Ni60 alloy    

论文中文关键词:

 激光熔覆 ; 超声辅助 ; 数值模拟 ; 微观组织 ; 耐磨耐蚀性能    

论文外文关键词:

 Laser cladding ; Ultrasonic vibration ; Numerical simulation ; Microstructure ; Wear and corrosion resistance    

论文中文摘要:

在高端智能制造与再制造技术中,激光熔覆占据着举足轻重的地位,其核心是将金 属粉末在基体表面熔化进而形成性能优异的熔覆层,从而实现零部件性能的提升。然而, 基体与熔覆层之间材料属性不同,因而热物性差异悬殊,致使熔覆层容易出现气孔、裂 纹、微观组织粗大以及应力集中等问题,极大限制了激光熔覆在工程实践中的应用,而 超声辅助可以通过改变温度场和应力场的方式进而改善凝固组织和力学性能。因此,本 文以 Ni60 合金为研究对象,基于理论分析,借助试验与数值模拟相结合的方法展开研 究,深入探讨超声能场引发的空化效应、声流效应以及热效应对激光熔池凝固过程的调 控机制。针对超声振动于熔池传热传质中的作用机理,分析其在性能优化及组织细化方 面的机制。具体研究内容与结论如下:

首先采用 COMSOL Multi-physics 软件中的固体力学、固体传热和压力声学等功能模 块,构建了超声辅助激光熔覆镍基合金过程的温度场以及应力场模型,并对其进行数值 模拟。通过在模型的温度场中选取节点,发现最大温度梯度出现在熔覆层与基体的结合 处,且随着超声振幅的增加温度梯度先减小后增加,凝固速率先增加后减小,同时引入 超声振动后熔池最高温度由 2540 K 降低到 2360 K。在应力场中选取路径,发现在熔覆 层与基体的结合界面处产生了应力集中现象,这成为涂层出现裂纹的首要因素。残余应 力由无超声时的 710 MPa 减小到超声振幅为 24 μm 的 665 MPa,熔覆末端残余应力发生 突变,说明此时材料发生了变形。

其次,开展了不同超声振幅下(0 μm、12 μm、24 μm 和 36 μm)单道熔覆试验,通过 和实验数据的比较,对所建立模型的可靠性进行了验证。借助电子背散射衍射仪(EBSD) 以及扫描电子显微镜(SEM)等分析手段,从熔覆层宏观形貌和微观组织两个方面探讨了 超声波对熔覆涂层的影响机制。最终结果证实,当超声振幅不断上升时,稀释率和润湿 角都呈先减小后增加的趋势,当振幅为 24 μm 时稀释率最低为 25%,润湿角最低为 65°, 超声振幅的施加使熔覆层底部的柱状晶减少且生长方向也发生了改变,超声波对金属熔体的搅拌效应使得柱状枝晶发生破裂,从而造成涂层组织由粗大柱状枝晶变为树状晶、 等轴枝晶。

最后,开展了超声辅助激光熔覆 Ni60 涂层的耐磨耐蚀性能研究,通过分析显微硬 度、耐磨性能、NaCl 和 H2SO4 溶液中的耐蚀性能,探讨超声振幅对熔覆层性能的影响。 结果表明,超声的施加使涂层的平均显微硬度提升了 45.4%,平均摩擦系数降低 42.9, 涂层的磨损率以及磨损痕迹的宽度和深度逐渐减小,磨损机制由无超声时严重的磨粒磨 损、粘着磨损和剥层磨损向轻微的磨粒磨损转变,不同超声振幅下熔覆层在 3.5 wt.% NaCl 溶液中的耐蚀性能优于 3.5 wt.% H2SO4 溶液,超声振幅为 24 μm 时涂层的耐磨耐蚀性能最佳。

论文外文摘要:

In high-end intelligent manufacturing and remanufacturing technology, laser cladding occupies a pivotal position, the core of which is to melt metal powder on the surface of the substrate to form a cladding layer with excellent performance, so as to improve the performance of parts. However, due to the different material properties between the matrix and the cladding layer, the thermal and physical properties of the cladding layer are very different, which makes the cladding layer prone to porosity, cracks, coarse microstructure and stress concentration, which greatly limits the application of laser cladding in engineering practice. In this paper, Ni60 alloy is taken as the research object, based on theoretical analysis and by combining numerical simulation and experiment, the regulation mechanism of cavitation effect, acoustic flow effect and thermal effect induced by ultrasonic energy field on the solidification process of laser melt pool is deeply discussed. Aiming at the main action mechanism of ultrasonic vibration in the heat and mass transfer process of molten pool, the mechanism of its performance optimization and microstructure refinement was analyzed. The specific research contents and conclusions are as follows:

Firstly, a three-dimensional model of temperature field and thermo-stress coupling in the process of Ni-base alloy cladding assisted by ultrasound was established by using the functional modules of solid mechanics, solid heat transfer and pressure acoustics in COMSOL Multiphysics software, and the numerical simulation was carried out. By selecting nodes in the temperature field of the model, it was found that the maximum temperature gradient appeared at the junction of the cladding layer and the matrix, and with the increase of ultrasonic amplitude, the temperature gradient first decreased and then increased, and the solidification rate first increased and then decreased. At the same time, the application of ultrasound reduced the maximum temperature of the molten pool from 2540 K to 2360 K. By selecting a path in the stress field, it is found that stress concentration occurs at the bonding interface between the cladding layer and the matrix, which is the main reason for the crack of the cladding layer. The residual stress decreases from 710 MPa in the absence of ultrasound to 665 MPa in the ultrasonic amplitude of 24 μm, and the residual stress at the end of the cladding layer changes abruptly, indicating that the material is deformed at this time.

Secondly, single-channel cladding tests were carried out at different ultrasonic amplitudes (0 μm, 12 μm, 24 μm and 36μm), and the reliability of the established model was verified by comparing with the experimental data. By means of electron back scattering diffractometer (EBSD) and scanning electron microscope (SEM), the influence mechanism of ultrasonic wave on the cladding coating was investigated from two aspects of macroscopic morphology and microscopic structure. The results show that with the increase of ultrasonic amplitude, the dilution rate and wetting Angle decrease first and then increase. When the amplitude is 24 μm, the dilution rate is the lowest 25%, and the wetting Angle is the lowest 65°. The application of ultrasonic amplitude reduces the columnar crystals at the bottom of the cladding layer and changes the growth direction. As a result, the coating structure changes from coarse columnar dendrites to dendritic and equiaxial dendrites.

Finally, the wear and corrosion resistance of the Ni60 coating fabricated via ultrasonic - assisted laser cladding was investigated. The influence of ultrasonic amplitude on the properties of the coating was discussed by characterizing the microhardness, wear resistance and corrosion resistance in NaCl and H2SO4 solution. The results showed that with the introduction of ultrasound, the average microhardness of the coating increased by 45.4%, the average friction coefficient decreased by 42.9, the wear rate of the coating and the width and depth of the wear marks gradually decreased, and the wear mechanism changed from severe wear particle wear, peeling wear and adhesive wear in the absence of ultrasound to slight wear particle wear. The corrosion resistance of the cladding layer with different ultrasonic amplitudes is better than that of 3.5 wt.% H2SO4 solution, especially when the ultrasonic amplitudes reach 24 μm, the wear and corrosion resistance of the coating is the best.

参考文献:

[1] 侯健成, 超声振动辅助激光熔覆 WTaNbMo 合金工艺及高温性能研究[D]. 江苏科

技大学, 2022.

[2] Q. Fan, C. Chen, C. Fan, et al. Ultrasonic induces grain refinement in gas tungsten arc cladding AlCoCrFeNi high-entropy alloy coatings [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2023, 821(21), 141607.

[3] J. Xu, J. Zhou, W. Tan, et al. Ultrasonic vibration on wear property of laser cladding Febased coating [J]. Surface Engineering, 2020, 36(6), 1261-1269.

[4] 吕杰, 超声振动辅助激光熔覆IN718/WC复合涂层耐磨性能及残余应力研究[D]. 江

苏大学, 2022.

[5] F.K. Mirzade, M.D. Khomenko, V.G. Niziev. Numerical simulation of solute evolution during laser cladding with nickel superalloy powder injection [J]. Optical and Quantum Electronics, 2023, 48, 513.

[6] F. Yao, L. Fang. Thermal Stress Cycle Simulation in Laser Cladding Process of Ni-Based Coating on H13 Steel [J]. Coatings, 2021, 11(2), 203.

[7] 郭卫, 李凯凯, 柴蓉霞, 激光熔覆 304 不锈钢稀释效应的数值模拟与实验 [J]. 激光与光电子学进展, 2019, 56(5), 161-169.

[8] H. Zhang, C. Zhang, C. Wang, et al. A survey of non-destructive techniques used for inspection of bearing steel balls [J]. Measurement, 2020, 159(15), 107773.

[9] Z. Zhang, C. Wang, B. Koe, et al. Synchrotron X-ray imaging and ultrafast tomography in situ study of the fragmentation and growth dynamics of dendritic microstructures in solidification under ultrasound [J]. Acta Materialia, 2021, 209, 116796.

[10] 田嘉宇, 激光熔覆 Fe-Mn-Si 记忆合金涂层残余应力的数值模拟及试验研究[D].贵州大学, 2020.

[11] D. Wang, Q. Hu, Y. Zheng, et al. Study on deposition rate and laser energy efficiency of Laser-Induction Hybrid Cladding [J]. Optics and Laser Technology, 2016, 77, 16-22.

[12] 叶寒, 朱小刚, 余廷. 激光熔覆 Ni/WC 涂层温度场及形貌模拟 [J]. 激光与红外, 2018, 48, 425-430.

[13] 胡新新, 多场复合辅助激光熔覆碳化坞镍基涂层组织与性能研究[D].福建工程学院,2023.

[14] S. Wang, Y. Zhang, C. Schuman, et al. Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests [J]. Acta Materialia, 2015, 82(6), 424-436.

[15] M. Chu, H. Xiao, L. Ren, et al. Microstructure and properties of Ti–Al–C composite coatings prepared by laser cladding [J]. Ceramics International, 2024, 50(7), 12498-12509.

[16] X. Han, H. Sun, C. Li. Quantitative assessment method of thermal cycle accumulation mechanism during the pulsed laser single-channel multilayer cladding process [J]. Journalof Adhesion Science and Technology, 2024, 38,(24), 4405-4438.

[17] Q. Marsac, C. Gueudre, M.-A. Ploix, et al. Realistic Model to Predict the Macrostructure of GTAW Welds for the Simulation of Ultrasonic Non destructive Testing [J]. Journal of Nondestructive Evaluation, 2024, 39, 3546-3559.

[18] 王传玉, 超声振动辅助激光熔覆 IN718 涂层数值模拟和实验研究[D]. 江苏大学,

2022.

[19] 纪皓文, 超声辅助激光熔覆 Inconel 625 高温合金工艺实验研究[D]. 中国矿业大学, 2023.

[20] D. Beiranvandi, R. Shoja Razavi, A. Mirak, et al. Evaluation of the corrosion and oxidation resistance of NiCoCrAlY cladding on CMSX-4 by laser cladding [J]. Journal of Materials Research and Technology, 2024, 33, 4875-4883.

[21] 魏坤坤, 黄勇, 郭辉, 变壁厚铜锌合金管激光熔覆应力场数值模拟分析[J]. 机工

程与自动化, 2021, 35-38.

[22] T. Zhang, J. Zhou, J. Lv, et al. A novel hybrid ultrasonic and electromagnetic field assisted laser cladding: Experimental study and synergistic effects [J]. Journal of Materials Processing Technology, 2022, 307, 117658.

[23] Y.-K. Jo, D.-S. Shim, S.-H. Park. Enhancing high-temperature wear resistance of cladded Inconel 718 through hybrid of directed energy deposition with ultrasonic nano-crystal surface modification [J]. Materials Characterization, 2024, 217, 114438.

[24] J. Hao, F. Hu, X. Le, et al. Microstructure and high-temperature wear behaviour of Inconel 625 multi-layer cladding prepared on H13 mould steel by a hybrid additive manufacturing method [J]. Journal of Materials Processing Technology, 2024, 291, 117036.

[25] A. Priyadarshi, M. Khavari, T. Subroto, et al. On the governing fragmentation mechanism of primary intermetallics by induced cavitation [J]. Ultrasonics Sonochemistry, 2021, 70, 105260.

[26] S. Wu, Z. Liu, X. Huang, et al. Process parameter optimization and EBSD analysis of Ni60A-25% WC laser cladding [J]. International Journal of Refractory Metals & Hard Materials, 2024, 101, 105675.

[27] M. Li, J. Yang, B. Han, et al. Comparative investigation on microstructures and properties of WC/Cr3C2 reinforced laser cladding Ni-based composite coatings subjected to ultrasonic impact treatment [J]. Materials Today Communications, 2023, 34, 105219.

[28] Z. Wei, A. Najafi, M. Taheri, et al. The Effect of an Ultrasonic Field on the Microstructure and Tribological Behavior of ZrB2ZrC+Ni60A/WC Composite Coating Applied by Laser Cladding [J]. Coatings, 2023, 13(11), 1928.

[29] 张吉平, 石世宏, 蒋伟伟, 三光束光内送丝激光熔覆温度场仿真分析与工艺优化

[J]. 中国激光, 2019, 46, 122-129.

[30] Y. Hu, L. Cao, L. Wang, et al. Effects of electromagnetic compound field on the macroscopic morphology of laser cladding [J]. Optics & Laser Technology, 2024, 174, 110555.

[31] D. Zhan, D. Jiang, Y. Tong, et al. Effect of Electromagnetic Field Assistance on the Wear and Corrosion Resistance of Nickel-Based Coating by Laser Cladding [J]. Metals, 2024, 14(9), 998.

[32] 杜晓彤, 激光熔覆温度场数值模拟及扫描路径优化研究[D]. 中国矿业大学, 2022.

[33] K. Zheng, Y. Lin, J. Cai, et al. Corrosion Resistance and Tribological Properties of Laser Cladding Layer of H13 Die Steel Strengthened by Ultrasonic Rolling [J]. Chinese Journal of Mechanical Engineering, 2022, 35(137),4268-4283.

[34] P. Farahmand, R. Kovacevic. Laser cladding assisted with an induction heater (LCAIH) of Ni-60%WC coating [J]. Journal of Materials Processing Technology, 2024, 222(12), 244-258.

[35] A.I. Gorunov, O.A. Nyukhlaev, A.K. Gilmutdinov. Investigation of microstructure and properties of low-carbon steel during ultrasonic-assisted laser welding and cladding [J]. International Journal of Advanced Manufacturing Technology, 2023, 99(8), 2467-2479.

[36] B. Onuike, A. Bandyopadhyay. Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718 [J]. Materials Letters, 2024, 252(2), 256-259.

[37] T. Yuan, S. Koub, Z. Luo, Grain refining by ultrasonic stirring of the weld pool [J]. Acta Materialia, 2016, 106, 144-154.

[38] 王忠柯, 王涛, 辜建辉, 陶星之, 激光表面熔覆层凝固组织特征形成过程 [J]. 激光技术, 2000, 24(1), 66-68.

[39] S. Shen, H. Wang, B. He, et al. Microstructure evolution and phase transformation behavior of Ti17 and γ-TiAl bimetallic structure fabricated by directed energy deposition [J]. Journal of Alloys and Compounds, 2022, 907(25), 164571.

[40] X. Zhang, S. Hou, M. Liang, et al. Engineering nanofusiform Iron-doped

polydiaminopyridine boost intratumoral penetration for immunogenic cell Deathmediated synergistic Photothermal/Chemo therapy [J]. Chemical Engineering Journal, 2023, 462(15), 142159.

[41] 张维平. 激光熔覆 Ni 基金属陶瓷复合涂层的裂纹研究[J]. 复合材料学报, 2005, 22(3), 98-102.

[42] 何敏仪, 师文庆, 朱志凯, 316L 不锈钢激光熔覆 WC/Ni 熔覆层组织与性能研究 [J]. 应用激光, 2023, 43, 27-33.

[43] S. Bhatnagar, H.S. Magham, S. Mullick, et al. Evaluation of microstructure and thermal history for TiC/Inconel 625 MMC deposition through pre-placed laser cladding method with and without the application of ultrasonic vibration [J]. Cirp Journal of Manufacturing Science and Technology, 2023, 41(5), 453-464.

[44] G. Hu, Y. Yang, R. Sun, et al. Microstructure and properties of laser cladding NiCrBSi coating assisted by electromagnetic-ultrasonic compound field [J]. Surface & Coatings Technology, 2020, 404(25),126469.

[45] Q. Zhang, P. Xu, G. Zha, et al. Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding [J]. Optik,2021, 242,167079.

[46] S. Sun, H. Fu, S. Chen, et al. A numerical-experimental investigation of heat distribution,stress field and crack susceptibility in Ni60A coatings [J]. Optics and Laser Technology,2023, 117(3), 175-185.

[47] X.-L. Yan, S.-Y. Dong, B.-S. Xu, et al. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating [J]. Materials, 2024, 11(2), 293.

[48] H. Liu, X. Qin, M. Wu, et al. Numerical simulation of thermal and stress field of single track cladding in wide-beam laser cladding [J]. International Journal of Advanced Manufacturing Technology, 2019, 104, 3959-3976.

[49] C. Li, Y. Xu, T. Jia, et al. Numerical simulation research on multifield coupling evolution mechanism of IN625 laser cladding on nodular cast iron [J]. International Journal of Advanced Manufacturing Technology, 2022, 119, 5647-5669.

[50] M. Ababekri, Y. Wang, R.-T. Guo, et al. Dynamics of relativistic vortex electrons in external laser fields [J]. Physical Review A, 2024, 110, 052207.

[51] S. Jing, X. Xi, D. Su, et al. Spatio-Temporal Photovoltaic Power Prediction with Fourier Graph Neural Network [J]. Electronics, 2017, 10(7), 1003.

[52] K. Qi, L. Jiang, Q. Sun, et al. Influence of Electromagnetic Effect on the Microstructure and Properties of Cobalt-Based Alloys by Laser Metal Deposition [J]. Jom, 2024, 77, 517-528.

[53] L. Jiang, K. Qi, H. Zhang, et al. Optimization of Magnetic Field-Assisted Laser Cladding Based on Hierarchical Analysis and Gray Correlation Method [J]. Crystals, 2024, 14(11), 927.

[54] L. Zhai, Z. Maimaitiming, X. Cao, et al. Nitrogen-doped carbon nanocages and human umbilical cord mesenchymal stem cells cooperatively inhibit neuroinflammation and protect against ischemic stroke [J]. Neuroscience Letters, 2019, 708(24),134345.

[55] Y.P. Shao, P. Xu, J.Y. Tian. Numerical Simulation of the Temperature and Stress Fields in Fe-Based Alloy Coatings Produced by Wide-Band Laser Cladding [J]. Metal Science and Heat Treatment, 2021, 63(12), 327-333.

[56] V.T. Kilic, E. Unal, H.V. Demir. High-efficiency flow-through induction heating [J]. Iet Power Electronics, 2020,13(9), 2119-2126.

[57] M.T. Dalaee, L. Gloor, C. Leinenbach, et al. Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD) [J]. Surface & Coatings Technology, 2020, 384(25),125275.

[58] S. Zhao, B. Zhang, S. Mehrez, et al. Laser cladding of IN625 superalloy assisted by hybrid ultrasonic-electromagnetic field [J]. Materials Letters, 2022, 323(15), 13259.

[59] J. Xu, Z. Hu, S. Wang, et al. Laser cladding Co-based coating coupled with electromagnetic/ultrasonic compound energy field [J]. Materials Science and Technology, 2023, 39(11), 803-814.[60] J. Lv, J. Zhou, T. Zhang, et al. Microstructure and Wear Properties of IN718/WC

Composite Coating Fabricated by Ultrasonic Vibration-Assisted Laser Cladding [J]. Coatings, 2022, 12(3), 412.

[61] J. Yang, C. Xie, J. Zhang, et al. Design strategies for enhancing strength and toughness in ultrasonic welding of dissimilar metals: A review [J]. Materials Today Communications, 2025, 42, 111502.

[62] C. Zhang, Q. Li, J. Hu, et al. Effect of Recovery Treatment on the Microstructure and Tribological Properties of Ultrasonic Impacted Al2FeCoNiCrW0.5 High-Entropy Alloy Coatings [J]. Coatings, 2025, 15(9),4623-4631.

[63] B. Gu, Y. Wang, G. Xu, et al. Effect of ultrasonic impact on the microstructure and properties of 30% WC-Ni ceramic coatings by laser cladding [J]. Ceramics International, 2025, 51(5), 4677-4692.

[64] Z. Wang, Y. Chen, C. Guan, et al. Experimental and Numerical Simulation Study of Ultrasonic Vibration Effect on Abrasive Grain Distribution and Movement Behavior in Laser Cladding Melt Pool for Abrasive Layer Fabrication [J]. Applied Sciences-Basel, 2025, 15(3),2645-2659.

[65] R. Chen, J. He, X. Xu, et al. Femtosecond Laser Direct Writing of PolarizationControllable DBR Fiber Lasers for Harsh Environmental Vibration/Acoustic Sensing [J]. Journal of Lightwave Technology, 2025, 43(5), 334-344.

[66] J. Zhang, Q. Xu, Q. Ding, et al. Microstructure characteristics and cavitation erosion resistance of Co-based coating fabricated via laser cladding [J]. Journal of Laser Applications, 2025, 37,1536-1549.

[67] J. Zhou, J. Zeng, L. Zhou, et al. Research on the mechanism of ultrasonic-assisted underwater laser wet welding of 304 stainless steel [J]. Journal of Laser Applications, 2025, 9(6), 15648-15661.

[68] S. Zhang, Y. Zhang. Automated weld defect segmentation from phased array ultrasonic data based on U-net architecture [J]. Ndt & E International, 2.24, 154, 2044–2054.

[69] A. Logar, D. Klobcar, U. Trdan, et al. Impact of Ultrasonic Welding Parameters on Weldability and Sustainability of Solid Copper Wires with and without Varnish [J]. Materials, 2024, 17(20), 5033.

[70] Y. Li, X. Yuan, Y. Chen, et al. Improved microstructure and wear resistance of(CoCrNi)82Al9Ti9 cladding layers via extreme high-speed laser cladding [J]. Surface & Coatings Technology, 2024, 494(1), 131298.

[71] C. Zheng, K. Huang, T. Mi, et al. Laser cladding Ni60 WC/ Cu encapsulated rough MoS2self-lubricating wear resistant composite coating and ultrasound-assisted optimization [J]. Ceramics International, 2024, (50), 36555-36569.

[72] A. Gester, D. Ozherelkov, G. Wagner. Morphological Evolution of Single-Core MultiStrand Wires during Ultrasonic Metal Welding [J]. Metals, 2024, 14(3), 362.

[73] X. Zhu, S. Yao, M. Deng, et al. The Multi-Frame Imaging Detection of Ultrasonic GuidedWaves in Welded Structural Plates Based on Arc Sparse Array with Left Rank [J]. Applied Sciences-Basel, 2024, 14(19), 8981.

[74] S. Zhou, C. Zhou, J. Tian, et al. Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber [J]. Sensors, 2024, 24(9), 1491.

[75] X. Han, H. Zhan, C. Li, et al. A Simulation Study on the Effect of Supersonic Ultrasonic Acoustic Streaming on Solidification Dendrite Growth Behavior During Laser Cladding Based on Boundary Coupling [J]. Coatings, 2024, 14(4), 1381.

[76] 张莉, 李晓谦, 葛尚, 超声辅助连铸连轧制造 1030B 铝板带的显微组织、力学性能和成形性能[J]. Transactions of Nonferrous Metals Society of China, 2024, 1-23.

[77] 李安庆, 张立华, 蒋日鹏, 冷却速度及超声振动协同作用对 7085 铝合金凝固组织及力学性能的影响 [J]. 材料工程, 2021, 49(6), 63-71.

[78] 靳继波, 超声辅助激光熔覆 Ni60 涂层工艺研究[D]. 辽宁工业大学, 2022.

[79] S. Zhao, M. Taheri, K. Shirvani, et al. Microstructure of NbMoTaTiNi Refractory HighEntropy Alloy Coating Fabricated by Ultrasonic Field-Assisted Laser Cladding Process [J]. Coatings, 2023, 13(12), 995.

[80] Y.-M. Hwang, C.-T. Pan, B.-S. Chen, et al. Numerical Analysis of the Welding Behaviors in Micro-Copper Bumps [J]. Metals, 2021, 11(3), 460.

[81] 俞晓文, 超声振动在激光熔覆成形中的作用机制及其建模方法[D]. 浙江工业大学, 2021.

[82] 李传钰, 李金华, 姚芳萍. 模具钢表面超声辅助激光熔覆 Ni60 合金涂层的仿真与实验分析 [J]. 制造技术与机床, 2022, (7), 51-57.

[83] 刘大宇, 超声辅助模具磨损表面激光熔覆修复层的数值模拟[D]. 哈尔滨理工大学, 2022.

[84] 卫晨军, 超高速激光熔覆 ZL101 铝合金数值模拟与实验研究[D]. 中北大学, 2024.

[85] 郑小豪, 镐型截齿头部激光熔覆表面强化数值模拟研究[D]. 安徽理工大学, 2024.

[86] 陈彦龙, 高速激光熔覆热力耦合过程数值模拟及实验研究[D]. 陕西理工大学, 2023.

[87] Y. Wu, C. Pei, H. Zhang, et al. A Fast Finite Element Simulation Method of Phased Array Ultrasonic Testing and Its Application in Sleeve Fillet Weld Inspection [J]. Applied Sciences-Basel, 2022, 12(5), 5384.

[88] K. Yuan, Y. Sumi. Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT) [J]. International Journal of Fatigue, 2016, 92(11), 321-332.

[89] J. Chen, J. Chu, W. Jiang, et al. Experimental and Numerical Simulation to Study the Reduction of Welding Residual Stress by Ultrasonic Impact Treatment [J]. Materials, 2020, 13(5), 837.

[90] Z. Liu, X. Jin, J. Li, et al. Numerical simulation and experimental analysis on the deformation and residual stress in trailing ultrasonic vibration assisted laser welding [J].Advances in Engineering Software, 2022, 172(8), 103200.[91] C. Zhou, Y.G. Tong, Y.L. Hu, et al. Interactions between hard phase, twins and dislocations strengthen dual-phase Cu-Fe alloys [J]. Materials Today Communications, 2024, 38,108238.

[92] W. J. Wang, Y.F. Zheng, W.j. Zheng, et al. Dilution induced variation of microstructure and mechanical properties on Co-Cr-Fe-Ni high entropy alloy coatings prepared by laser cladding [J]. Surface & Coatings Technology, 2024, 493(2), 131256.

[93] C. W. Li, J. L. Zhu, C. M. Wang, et al. Microstructure and properties of underwater insitu wire-based laser additive manufactured duplex stainless steel [J]. Virtual and Physical Prototyping, 2024, 312, 2401925(19).

[94] L. Chen, Y. K. Lan, Y. H. Cheng, et al. Friction behavior and wear mechanism of laser cladded FeNiCr-WC composite coatings in comparison with different friction pairs [J]. Journal of Materials Research and Technology, 2024, 31(11), 1956-1973.

[95] S. Rui, D. J. Kong. Laser cladded Co08–xTi3AlC2 coatings: Microstructure, corrosive–wear and electrochemical corrosion [J]. Materials Today Communications, 2024, 39, 109354

中图分类号:

 TH142    

开放日期:

 2025-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式