论文中文题名: |
冻融裂隙砂岩细观损伤机制及单轴破坏特征研究
|
姓名: |
谭皓
|
学号: |
19204209057
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
建筑与土木工程
|
研究方向: |
细观岩石力学
|
第一导师姓名: |
宋勇军
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-14
|
论文答辩日期: |
2022-05-31
|
论文外文题名: |
Research on Meso-damage Mechanism and Uniaxial Failure Characteristics of Freeze-thawed Fractured Sandstone
|
论文中文关键词: |
冻融循环 ; 裂隙砂岩 ; CT扫描 ; 细观损伤 ; 分形维数 ; 数字体相关
|
论文外文关键词: |
Freeze-thaw cycles ; Fractured sandstone ; CT scanning ; Mesoscopic damage ; Fractal dimension ; Digital volume correlation
|
论文中文摘要: |
︿
寒区岩质边坡因循环冻融引发细观损伤扩展,并由天然节理导致宏观性能弱化。此外,裂隙赋存水量影响冻融效果:饱水冻融与饱冰冻融之间存在本质区别,后者可产生更为严重的冻害,对寒区岩体工程的设计建造与运营维护构成威胁。然而,尚无研究从细观层面探究饱水/饱冰裂隙在循环冻融过程中的劣化效应与损伤机制;另一方面,细观行为解读对宏观破裂评判尤为重要,但却鲜有报道讨论冻岩的宏-细观关联。基于上述考虑,本文立足细观尺度,开展试验研究,以揭示岩石冻融损伤机制及受载破坏特征。为此,对不同冻融次数与不同应力状态的饱水完整砂岩、饱水裂隙砂岩、饱冰裂隙砂岩进行CT扫描。通过三维重构图像,进行细观参数演化分析与分形几何定量描述,再由数字体相关法评估受载过程的应变局部化特征。主要研究结论如下:
(1)裂隙岩石的表征单元体可通过分形维数进行有效衡量,岩桥区域与裂隙区域其尺寸分别为260体素与580体素。因冻融损伤,表征单元随循环次数增加而增大。
(2)砂岩细观冻融损伤因孔径大小而异:小孔增量最大,且占比超60%;中孔数量下降,但体积分数在70%以上;而大孔占比与体积分数增长最快。细观结构于冻融前期表现为喉道数量锐增;后期表现为孔喉加剧扩张。完整岩石主要形成环状冻融损伤,而裂隙岩石的损伤集中区位于低倾角预制裂隙附近。水冰相变间接产生的静水压力是饱冰裂隙起裂主因,而后试件在循环冻融作用下形成树状裂隙网络。分形维数、迂曲度分形维数分别适用于孔隙率、绝对渗透率的定量表征,可由多项式函数与对数函数建立关联。循环冻融可扩大岩石裂隙结构自相似范围;但超过某一阈值后将破坏分形特征。
(3)冻融砂岩受载过程中,小/中孔压密闭合,大孔相互联结形成特大孔隙。完整砂岩于试件中部起裂形成单一裂纹;裂隙砂岩于冻融损伤集中区首先破坏形成复杂裂隙网络。其中:前者的应变场表现为倾角约75°的剪切带,但边缘区域出现应变集中;后者主要于低倾角预制裂隙区域发生应变局部化,且顺阶梯状滑移方向应变较大。等效应变与正应变的统计频率分别呈对数正态分布与正态分布。完整岩石的冻融损伤可直接引发应变集中,引导次级裂隙发展;裂隙岩石的破坏特征由预制裂隙排布决定,冻融损伤与应变发展关联较弱,因此饱水/饱冰砂岩应变分布趋同,但其可作为翼裂纹形成的诱因。
综上,本文结合CT技术从细观层面对砂岩的冻融及受载过程进行系统分析,研究方法与结论可为探究寒区岩质边坡的冻融损伤机制与破坏预测方法提供新的参考。
﹀
|
论文外文摘要: |
︿
The meso-damage expansion of rock slope in cold region is caused by cyclic freeze-thaw (F-T), and the macroscopic performance is weakened by natural joints. In addition, the amount of water stored in fractures affects the effect of F-T: there is an essential difference between saturated F-T and ice-filled F-T. The latter can cause more serious frost damage, which poses a threat to the design, construction, operation and maintenance of rock mass engineering in cold regions. However, no research has explored the degradation effect and damage mechanism of saturated/ice-filled fractures during cyclic F-T from a mesoscopic level; on the other hand, mesoscopic behavior interpretation is particularly important for macroscopic fracture evaluation, but few reported studies Macro- and mesoscopic correlations of frozen-thawed rocks. Based on the above considerations, this paper conducts experimental research on the meso-scale to reveal the rock F-T damage mechanism and load failure characteristics. For this reason, CT scanning was carried out on saturated intact, saturated fractured and ice-filled fractured sandstone with different F-T times and stress states. Through the three-dimensional reconstruction image, the meso-parameter evolution analysis and fractal geometry quantitative description are carried out, and then the strain localization characteristics of the loading process are evaluated by the digital volume correlation method. The conclusions are as follows:
(1) The representative elementary volume (REV) of fractured rock can be measured by fractal dimension, and the size of rock bridge and fracture region are 260 and 580 voxels respectively. Due to F-T damage, the REV increases with the increase of the F-T times.
(2) During F-T cycling, pore characteristics vary according to size: micropores account for >60% of pores and increase in number more than pores of other sizes. Mesopores gradually decrease in number but their volume fraction remains >70%. Macropores have the greatest increase in volume fraction. Early F-T cycling induces the connection of pore throats, while later cycling accelerates their expansion. The intact rock mainly forms annular F-T damage, while the damage concentration area of the fractured rock is located near the prefabricated fractures with low dip angle. Increases in hydrostatic pressure indirectly caused by water-ice phase transformation are the leading cause of cracking in ice-filled fractures, and then the specimen forms a tree-like fracture network under the action of cyclic F-T. Fractal dimension and tortuosity fractal dimension are suitable for the quantitative characterization of porosity and absolute permeability, respectively, and can be correlated by cubic polynomial function and logarithmic function. Cyclic F-T can expand the self-similar range of rock fracture structure; however, fractal features will be destroyed after a certain threshold is exceeded.
(3) During the loading process of the frozen-thawed sandstone, the micropores and mesopores are compacted and closed, and the macropores are interconnected to form extra-large pores. The intact sandstone cracks in the middle of the specimen to form a single fracture, while the fractured sandstone is first broken in the F-T damage concentration area to form a complex fracture network. Among them, the strain field of the former is mainly shown as a shear zone with an inclination of about 75°, but strain concentration occurs in the edge area; the latter mainly occurs strain localization in the region of prefabricated fractures with low dip angle, and the strain is larger along the step slip direction. The statistical frequencies of equivalent strain and normal strain are lognormal distribution and normal distribution respectively. F-T damage of intact rock directly induces strain concentration and guides the development of secondary fractures. The failure characteristics of fractured rocks are determined by the arrangement of the prefabricated fractures, and F-T damage is weakly related to the strain development. Therefore, the strain distribution of saturated/ice-filled sandstone is similar, but F-T damage can be used as the inducement for the formation of wing cracks.
To sum up, this paper systematically analyzes the F-T and loading process of sandstone from the mesoscopic level combined with CT technology. The research methods and conclusions can provide a new reference for the F-T damage mechanism and failure prediction method of rock slopes in cold regions.
﹀
|
参考文献: |
︿
[1] Deprez M, De Kock T, De Schutter G, et al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews, 2020, 203: 103143. [2] 南卓铜. 中国1:1000万冻土区划及类型图[EB]. 国家冰川冻土沙漠科学数据中心, 2019. [3] 周科平, 许玉娟, 李杰林, 等. 冻融循环对风化花岗岩物理特性影响的实验研究[J]. 煤炭学报, 2012, 37(S1): 70-74. [4] 刘泉声, 黄诗冰, 康永水, 等. 低温冻结岩体单裂隙冻胀力与数值计算研究[J]. 岩土工程学报, 2015, 37(9): 1572-1580. [5] 夏才初, 李强, 吕志涛, 等. 各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J]. 岩石力学与工程学报, 2018, 37(2): 274-281. [6] Cao P, Liu T, Pu C, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J]. Engineering Geology, 2015, 187: 113-121. [7] Zhou X P, Zhang J Z, Wong L N Y. Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1379-1400. [8] 贾海梁, 项伟, 申艳军, 等. 冻融循环作用下岩石疲劳损伤计算中关键问题的讨论[J]. 岩石力学与工程学报, 2017, 36(2): 335-346. [9] 陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336. [10] Song Y, Tan H, Yang H, et al. Fracture evolution and failure characteristics of sandstone under freeze-thaw cycling by computed tomography[J]. Engineering Geology, 2021, 294: 106370. [11] Hirschwald J. Die Prüfung der natürlichen Bausteine auf ihre Wetterfeständigkeit[M]. W. Ernst & Sohn, 1908. [12] Powers T C. A working hypothesis for further studies of frost resistance of concrete[C]//Journal Proceedings. 1945, 41. [13] Taber S. Frost heaving[J]. The Journal of Geology, 1929, 37(5): 428-461. [14] Everett D H. The thermodynamics of frost damage to porous solids[J]. Transactions of the Faraday society, 1961, 57: 1541-1551. [15] Powers T C, Helmuth R A. Theory of volume changes in hardened portland-cement paste during freezing[C]//Highway research board proceedings. 1953, 32. [16] Sass O. Rock moisture fluctuations during freeze-thaw cycles: Preliminary results from electrical resistivity measurements[J]. Polar Geography, 2004, 28(1): 13-31. [17] Harris C, Arenson L U, Christiansen H H, et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses[J]. Earth-Science Reviews, 2009, 92(3-4): 117-171. [18] 刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报, 2015, 34(3): 452-471. [19] 杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018, 37(3): 545-563. [20] 蔡美峰, 何满潮, 刘东燕. 岩石力学与工程[M]. 北京: 科学出版社, 2013. [21] 王子娟. 干湿循环作用下砂岩的宏细观损伤演化及本构模型研究[D]. 重庆大学, 2016. [22] Zhang L, Chen S, Zhang C, et al. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology[J]. Fuel, 2020, 262: 116635. [23] 白骏. 岩石流变力学特性CT试验研究[D]. 太原理工大学, 2019. [24] 李晓, 王思敬, 史戎坚, 等. 高能加速器CT多场耦合岩石力学试验系统[Z]. 国家科技成果. [25] Wang G, Qin X, Han D, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. International Journal of Mining Science and Technology, 2021, 31(2): 175-185. [26] Chandra D, Vishal V. A critical review on pore to continuum scale imaging techniques for enhanced shale gas recovery[J]. Earth-Science Reviews, 2021: 103638. [27] 赖远明, 吴紫汪, 朱元林, 等. 大坂山隧道围岩冻融损伤的CT分析[J]. 冰川冻土, 2000, 3: 206-210. [28] Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555-565. [29] De Kock T, Boone M A, De Schryver T, et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling[J]. Environmental science & technology, 2015, 49(5): 2867-2874. [30] Maji V, Murton J B. Micro‐computed tomography imaging and probabilistic modelling of rock fracture by freeze-thaw[J]. Earth Surface Processes and Landforms, 2020, 45(3): 666-680. [31] 杨鸿锐, 刘平, 孙博, 等. 冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J]. 岩石力学与工程学报, 2021, 40(3): 545-555. [32] 刘杰, 张瀚, 王瑞红, 等. 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(5): 1381-1394. [33] 任建喜. 冻结裂隙岩石加卸载破坏机理CT实时试验[J]. 岩土工程学报, 2004, 5: 641-644. [34] 宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160. [35] Wang D J, Tang H, Shen P, et al. Co-effects of bedding planes and parallel flaws on fracture evolution in anisotropic rocks[J]. Engineering Geology, 2020, 264: 105382. [36] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 863-888. [37] Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979-999. [38] McGreevy J P, Whalley W B. Rock moisture content and frost weathering under natural and experimental conditions: a comparative discussion[J]. Arctic and Alpine Research, 1985, 17(3): 337-346. [39] Matsuoka N, Murton J. Frost weathering: recent advances and future directions[J]. Permafrost and Periglacial Processes, 2008, 19(2): 195-210. [40] Weber S, Fäh D, Beutel J, et al. Ambient seismic vibrations in steep bedrock permafrost used to infer variations of ice-fill in fractures[J]. Earth and Planetary Science Letters, 2018, 501: 119-127. [41] Zhang J, Deng H, Deng J, et al. Fractal analysis of pore structure development of sandstone: a nuclear magnetic resonance investigation[J]. IEEE Access, 2019, 7: 47282-47293. [42] Kruhl J H. Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy[J]. Journal of Structural Geology, 2013, 46: 2-21. [43] Rahner M S, Halisch M, Fernandes C P, et al. Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano-and micro-computed tomography[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 298-311. [44] Miao T, Yu B, Duan Y, et al. A fractal analysis of permeability for fractured rocks[J]. International Journal of Heat and Mass Transfer, 2015, 81: 75-80. [45] 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996. [46] Mandelbrot B B. Fractals–Form, Chance and Dimension[M]. San Francisco: W. H. Freeman, 1977. [47] Liu Y, Xiao B, Yu B, et al. Fractal analysis of digit rock cores[J]. Fractals, 2020, 28(6): 2050144. [48] Yang H W, Lourenço S D N, Baudet B A. 3D fractal analysis of multi-scale morphology of sand particles with μCT and interferometer[J]. Géotechnique, 2022, 72(1): 20-33. [49] 尹小涛, 王水林, 党发宁, 等. CT实验条件下砂岩破裂分形特性研究[J]. 岩石力学与工程学报, 2008, 27(S1): 2721-2726. [50] 彭瑞东, 杨彦从, 鞠杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266. [51] 腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征[J]. 岩石力学与工程学报, 2018, 37(S1): 3263-3278. [52] 薛东杰, 唐麒淳, 王傲, 等. 煤岩微观相态FCN智能识别与分形重构[J]. 岩石力学与工程学报, 2020, 39(6): 1203-1221. [53] Zhou X P, Li C Q, Zhou L S. The effect of microstructural evolution on the permeability of sandstone under freeze-thaw cycles[J]. Cold Regions Science and Technology, 2020, 177: 103119. [54] Li J, Zhou K, Liu W, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997-3003. [55] Tan H, Song Y, Guo X. Analysis of porosity, permeability, and anisotropy of sandstone in freeze-thaw environments using computed tomography and fractal theory[J]. Fractals, 2021, 29(8): 2150239. [56] Renard F, McBeck J, Kandula N, et al. Volumetric and shear processes in crystalline rock approaching faulting[J]. Proceedings of the National Academy of Sciences, 2019, 116(33): 16234-16239. [57] 李浩然, 王子恒, 孟世荣, 等. 高温三轴应力下大理岩损伤演化与声发射活动特征研究[J]. 岩土力学, 2021, 42(10): 2672-2682. [58] 刘享华, 张科, 李娜, 等. 含孔双裂隙3D打印类岩石试件破裂行为定量识别[J]. 岩土力学, 2021, 42(11): 3017-3028. [59] Renard F, McBeck J, Cordonnier B, et al. Dynamic in situ three-dimensional imaging and digital volume correlation analysis to quantify strain localization and fracture coalescence in sandstone[J]. Pure and Applied Geophysics, 2019, 176(3): 1083-1115. [60] 毛灵涛, 袁则循, 连秀云, 等. 基于CT数字体相关法测量红砂岩单轴压缩内部三维应变场[J]. 岩石力学与工程学报, 2015, 34(1): 21-30. [61] Bay B K, Smith T S, Fyhrie D P, et al. Digital volume correlation: three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics, 1999, 39(3): 217-226. [62] 邹翔, 潘兵, 王延珺, 等. 高斯预滤波对数字体图像相关测量的影响[J]. 光学学报, 2021, 41(15): 140-150. [63] Mao L, Liu H, Lei Y, et al. Evaluation of Global and Local Digital Volume Correlation for Measuring 3D Deformation in Rocks[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4949-4964. [64] 邹翔, 张轩豪, 王延珺, 等. DVC中内部散斑质量评价及计算体素点的优化选择[J]. 力学学报, 2021, 53(7): 1971-1980. [65] Gonzalez J, Lambros J. A parametric study on the influence of internal speckle patterning for digital volume correlation in X-ray tomography applications[J]. Experimental Techniques, 2016, 40(5): 1447-1459. [66] Li C, Kong L, Shu R, et al. Dynamic three-dimensional imaging and digital volume correlation analysis to quantify shear bands in grus[J]. Mechanics of Materials, 2020, 151: 103646. [67] Shi H L, Hosdez J, Rougelot T, et al. Influences of structural anisotropy and heterogeneity on three-dimensional strain fields and cracking patterns of a clay-rich rock[J]. Acta Geotechnica, 2021: 1-13. [68] Voltolini M, Rutqvist J, Kneafsey T. Coupling dynamic in situ X-ray micro-imaging and indentation: A novel approach to evaluate micromechanics applied to oil shale[J]. Fuel, 2021, 300: 120987. [69] Abdallah Y, Sulem J, Bornert M, et al. Compaction Banding in High‐Porosity Carbonate Rocks: 1. Experimental Observations[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2020JB020538. [70] 谭皓,宋勇军,郭玺玺,等. 冻融裂隙砂岩细观损伤与应变局部化研究[J/OL]. 岩石力学与工程学报, 2022. [71] 张朝宗, 郭志平, 张朋, 等. 工业CT技术和原理[M]. 北京: 科学出版社, 2009. [72] 王宇, 李晓. 岩体细观结构力学工业CT技术与应用[M]. 北京: 冶金工业出版社, 2021. [73] 赵修成, 赵晓彦, 郭佳奇. 断续节理岩体声学力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(7): 1408-1419. [74] Huang D, Cen D, Ma G, et al. Step-path failure of rock slopes with intermittent joints[J]. Landslides, 2015, 12(5): 911-926. [75] Brideau M A, Yan M, Stead D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures[J]. Geomorphology, 2009, 103(1): 30-49. [76] Ju Y, Xi C, Zhang Y, et al. Laboratory in situ CT observation of the evolution of 3D fracture networks in coal subjected to confining pressures and axial compressive loads: a novel approach[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3361-3375. [77] Lenoir N, Bornert M, Desrues J, et al. Volumetric digital image correlation applied to X‐ray microtomography images from triaxial compression tests on argillaceous rock[J]. Strain, 2007, 43(3): 193-205. [78] Wang Y, Miller J D. Current developments and applications of micro-CT for the 3D analysis of multiphase mineral systems in geometallurgy[J]. Earth-Science Reviews, 2020: 103406. [79] Baveye P C, Laba M, Otten W, et al. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data[J]. Geoderma, 2010, 157(1-2): 51-63. [80] Schlüter S, Sheppard A, Brown K, et al. Image processing of multiphase images obtained via X‐ray microtomography: a review[J]. Water Resources Research, 2014, 50(4): 3615-3639. [81] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005, 2. [82] 王晓明, 郑银河. 裂隙岩体表征单元体及尺寸效应研究进展[J]. 岩土力学, 2015, 36(12): 3456-3464. [83] Bear J. Dynamics of fluids in porous media[M]. Courier Corporation, 1988. [84] Wu H, Yao Y, Zhou Y, et al. Analyses of representative elementary volume for coal using X-ray μ-CT and FIB-SEM and its application in permeability predication model[J]. Fuel, 2019, 254: 115563. [85] Wang D, Zeng F, Wei J, et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108051. [86] Fan L F, Gao J W, Wu Z J, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140: 505-519. [87] Lindquist W B, Lee S M, Coker D A, et al. Medial axis analysis of void structure in three‐dimensional tomographic images of porous media[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 8297-8310. [88] Baldwin C A, Sederman A J, Mantle M D, et al. Determination and characterization of the structure of a pore space from 3D volume images[J]. Journal of colloid and interface science, 1996, 181(1): 79-92. [89] Silin D B, Jin G, Patzek T W. Robust determination of the pore space morphology in sedimentary rocks[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 2003. [90] Cai J, Wei W E I, Hu X, et al. Fractal characterization of dynamic fracture network extension in porous media[J]. Fractals, 2017, 25(2): 1750023. [91] Wang X, Hou J, Liu Y, et al. Overall PSD and fractal characteristics of tight oil reservoirs: A case study of Lucaogou Formation in Junggar Basin, China[J]. Fractals, 2019, 27(1): 1940005. [92] Wang G, Shen J, Liu S, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104082. [93] Yu B M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158. [94] Yu B M, Li J H. A geometry model for tortuosity of flow path in porous media[J]. Chinese Physics Letters, 2004, 21(8): 1569. [95] Xu P, Yu B. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry[J]. Advances in water resources, 2008, 31(1): 74-81. [96] 蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 北京: 科学出版社, 2015. [97] Lee B H, Lee S K. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study[J]. Journal of hydrology, 2013, 496: 122-141. [98] Zhang Z, Xie H, Zhang R, et al. Size and spatial fractal distributions of coal fracture networks under different mining-induced stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132: 104364. [99] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016, 35(5): 879-895. [100] Liu B, Ma Y, Liu N, et al. Investigation of pore structure changes in Mesozoic water-rich sandstone induced by freeze-thaw process under different confining pressures using digital rock technology[J]. Cold Regions Science and Technology, 2019, 161: 137-149. [101] Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena, 2020, 195: 104915. [102] Katz A J, Thompson A H. Fractal sandstone pores: implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325. [103] Bonnet E, Bour O, Odling N E, et al. Scaling of fracture systems in geological media[J]. Reviews of geophysics, 2001, 39(3): 347-383. [104] Yu B, Li J. Some fractal characters of porous media[J]. Fractals, 2001, 9(03): 365-372. [105] 段永婷, 冯夏庭, 李晓. 页岩细观矿物条带对其宏观破坏模式的影响研究[J]. 岩石力学与工程学报, 2021, 40(1): 43-52. [106] 王登科, 曾凡超, 王建国, 等. 显微工业CT的受载煤样裂隙动态演化特征与分形规律研究[J].岩石力学与工程学报, 2020, 39(6): 1165-1174. [107] Buljac A, Jailin C, Mendoza A, et al. Digital volume correlation: review of progress and challenges[J]. Experimental Mechanics, 2018, 58(5): 661-708. [108] Rueckert D, Sonoda L I, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images[J]. IEEE transactions on medical imaging, 1999, 18(8): 712-721. [109] Mao L, Liu H, Wang Y, et al. 3-D strain estimation in sandstone using improved digital volumetric speckle photography algorithm[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 141: 104736. [110] Shi H L, Hosdez J, Rougelot T, et al. Analysis of local creep strain field and cracking process in claystone by X-ray micro-tomography and digital volume correlation[J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 1937-1952. [111] McBeck J, Kobchenko M, Hall S A, et al. Investigating the onset of strain localization within anisotropic shale using digital volume correlation of time‐resolved X‐ray microtomography images[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(9): 7509-7528. [112] 王宇, 高少华, 孟华君, 等. 不同频率增幅疲劳荷载下双裂隙花岗岩破裂演化声发射特性与裂纹形态研究[J]. 岩石力学与工程学报, 2021, 40(10): 1976-1989. [113] Niu Y, Zhou X P, Zhang J Z, et al. Experimental study on crack coalescence behavior of double unparallel fissure-contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression[J]. Cold Regions Science and Technology, 2019, 158: 166-181. [114] Sun Y, Zhai C, Xu J, et al. Characterisation and evolution of the full size range of pores and fractures in rocks under freeze-thaw conditions using nuclear magnetic resonance and three-dimensional X-ray microscopy[J]. Engineering Geology, 2020, 271: 105616. [115] 宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(8): 1513-1524. [116] Huang S, Liu Q, Liu Y, et al. Freezing strain model for estimating the unfrozen water content of saturated rock under low temperature[J]. International Journal of Geomechanics, 2018, 18(2): 04017137. [117] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D]. 中国地质大学, 2016. [118] Bennai F, El Hachem C, Abahri K, et al. Microscopic hydric characterization of hemp concrete by X-ray microtomography and digital volume correlation[J]. Construction and Building Materials, 2018, 188: 983-994. [119] Zheng X, Cordonnier B, McBeck J, et al. Mixed‐mode strain localization generated by hydration reaction at crustal conditions[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 4507-4522. [120] Kim T W, Yun W, Kovscek A R. Application of digital volume correlation to x-ray computed tomography images of shale[J]. Energy & Fuels, 2020, 34(11): 13636-13649.
﹀
|
中图分类号: |
TU458
|
开放日期: |
2022-06-14
|