- 无标题文档
查看论文信息

论文中文题名:

 双端驱动带式输送机的永磁同步电机预测控制研究    

姓名:

 杨舒淼    

学号:

 22206227121    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电机控制    

第一导师姓名:

 张玉峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-16    

论文答辩日期:

 2025-06-05    

论文外文题名:

 Research on Predictive Control Strategy of Permanent Magnet Synchronous Motors in Dual-End Drive of Belt    

论文中文关键词:

 永磁同步电机 ; 模型预测电流控制 ; 最优矢量快速选择法 ; 双电机同步控制 ; 交叉耦合结构    

论文外文关键词:

 Permanent magnet synchronous motor ; Model predictive current control ; Optimal vector rapid selection method ; Dual-motor synchronous control ; Cross coupled structure    

论文中文摘要:

相较于传统的交流异步电机,永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)具有噪声小、功率密度高以及运行速域宽等显著优势,成为交流电机应用场合的研究热点之一。PMSM应用范围的不断扩大对系统控制精度、稳定性和动态响应速度等控制性能都提出了越来越高的要求。在双端PMSM驱动的带式输送机中,采用直驱方式可以省去齿轮箱等机械环节,能够使得系统的安装空间减小、功率密度和可靠性提升;且能够满足长距离运输、需要智能调速的现代化物流系统需求,近年来已成为带式输送机领域的研究热点。双端驱动的带式输送机需要双电机同步协调运行以确保系统的运行指标,进而满足运输效率、安全以及企业效益需求,因此提高双电机协同控制的性能具有很重要的工程价值。

模型预测电流控制(Model Predictive Current Control,MPCC)作为一种先进控制算法,具有动态性能好、鲁棒性强、适用于多变量系统的优点,能够很好的适用于非线性、强耦合的时变系统。针对多矢量MPCC计算量大和三矢量MPCC不能实现全局最优的问题,本文提出了基于最优矢量快速选择法的PMSM模型预测控制算法。该算法首先使用一次比较确定预测电压矢量所处象限,后再根据预测电压矢量所处象限,选择需要比较基本电压矢量并计算对应的代价函数值,在第二次比较后就得到了预测电压矢量所处的具体扇区位置;当预测电压矢量位于扇区边界时,可以直接确定矢量组合方式而不需要后续比较。这种对扇区进行重新划分的方式代替了传统MPCC使用的遍历法,大幅减轻了系统的计算负担。同时计算出三电压矢量组合和双电压矢量组合的代价函数值进行比较,选取具有更小代价函数值的组合作为输出电压矢量组合,以获得更好的控制效果。最后通过仿真和实验证明了所提改进算法具有更小的转矩脉动和转速脉动。

通过对现有带式输送机多电机同步控制结构的分析,发现交叉耦合结构中耦合系数的选取对双电机的同步状态起着至关重要的作用。针对交叉耦合结构中耦合系数固定且难以整定的问题,本文提出了一种变耦合系数模型预测控制算法,将两台电机的转速差、位置差作为变量引入变耦合系数模型预测控制器。同时在每台PMSM的模型预测电流控制器中对代价函数进行改进,加入一致的约束项,用以确保两台电机在预测时域内逐步收敛,避免独立优化导致的策略冲突。为了确保优化问题的解在实际应用中具有可行性和合理性,还设置了相应的约束条件。最后通过仿真和实验证明了所提策略能够使两台电机拥有更稳定的转速、更小的转矩脉动和更好的同步性。

论文外文摘要:

Compared to traditional alternating-current induction motors, the Permanent Magnet Synchronous Motor (PMSM) demonstrates significant advantages including lower noise, higher power density, and wider operating speed range, making it a prominent research focus in alternating-current motor applications. In belt conveyors driven by dual-ended PMSMs (Permanent Magnet Synchronous Motors), the adoption of direct drive eliminates mechanical components such as gearboxes. This reduction in mechanical complexity enables a more compact system installation footprint while enhancing power density and reliability. Furthermore, this configuration meets the demands of modern logistics systems requiring long-distance transportation and intelligent speed regulation. Consequently, it has become a prominent research focus in the belt conveyor field in recent years. These dual-motor driven systems necessitate synchronized coordination between two PMSMs to ensure operational efficiency, safety, and economic benefits, thereby underscoring the critical engineering significance of enhancing cooperative control performance.

Model Predictive Current Control (MPCC), as an advanced control algorithm, exhibits superior dynamic performance, strong robustness, and multi-variable system compatibility, making it particularly suitable for nonlinear, strongly coupled time-varying systems.To resolve the inherent limitations of conventional MPCC - excessive computational load in multi-vector implementations and suboptimal global performance in three-vector approaches - this paper proposes an improved PMSM predictive control algorithm based on an optimal vector rapid selection method. The algorithm first determines the predictive voltage vector quadrant through initial comparison, then selects candidate basic voltage vectors and computes corresponding cost functions based on quadrant positioning. The specific sector location is identified through secondary comparison. When predictive vectors reside at sector boundaries, vector combinations can be directly determined without further comparisons. This sector reconfiguration strategy replaces traditional exhaustive search methods, substantially reducing computational burden. Simultaneous evaluation of three-vector and two-vector combinations through cost function comparison enables selection of optimal vector combinations with minimized cost values, thereby achieving enhanced control performance. Simulation and experimental results verify that the proposed algorithm significantly reduces torque and speed ripples.

Through analysis of existing multi-motor synchronization structures in belt conveyors, this study reveals the critical influence of coupling coefficient selection in cross-coupled configurations on dual-motor synchronization. To address the limitations of fixed coupling coefficients in conventional cross-coupled structures, a variable coupling coefficient model predictive control algorithm is developed. This approach integrates speed and position differences between dual motors into the predictive controller as dynamic variables. Furthermore, consistent constraint terms are incorporated into the cost function of each PMSM's MPCC controller to ensure gradual convergence within the prediction horizon and prevent strategy conflicts from independent optimization. Practical feasibility is guaranteed through constraint condition implementation. Experimental validation demonstrates that the proposed strategy achieves more stable speed synchronization, reduced torque pulsation, and enhanced synchronization performance.

参考文献:

[1] 毕贵红,李玉洪,赵四洪,等.基于WST和Shuffle-PMDA的永磁同步电机故障识别[J/OL]. 电工技术学报, 1-16. [2025-04-07]

[2] 杨公德,杨雲静,林明耀. 基于超螺旋积分滑模观测器的永磁同步电机三矢量无模型预测电流控制[J/OL]. 中国电机工程学报, 1-12. [2025-04-07]

[3] Yang T, Du Y W, Li B, et al. An enhanced equivalent input disturbance approach to current control of PMSM with periodic and aperiodic disturbances[J]. Science China (Information Sciences), 2025, 68 (03): 272-285.

[4] 弓丽栋, 谢越韬, 吴蓁, 等. 欧盟碳边境调节机制及其对我国可再生能源产业的影响与对策建议[J]. 环境保护, 2024, 52 (Z3): 79-83.

[5] 胡丽珍. 高效智能电机助力“双碳”的途径及应用研究[J]. 科技创新与生产力, 2024 ,45 (05): 56-58+62.

[6] Vladislav M Bida, Dmitry V Samokhvalov, Fuad S. Al-Mahturi. PMSM vector control techniques — A survey[C]. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus).

[7] Richalet J, Rault A, Testud J L, et al. Model predictive heuristic control: Applications to industrial processes[J]. Automatica, 1978, 14 (5): 413-428.

[8] 颜学龙. 基于模型预测控制的永磁同步电机电流控制技术综述[J]. 电机与控制应用, 2019, 46 (9): 1-11.

[9] 冯凌, 付建国, 廖丽诚, 文宇良, 宋文胜. 一种改进的永磁同步牵引电机低开关频率模型预测直接转矩控制策略[J]. 中国电机工程学报, 2021, 41 (21): 7507-7517.

[10] 陈一兵, 李匡正, 刘姣, 等. 基于模型预测的矿用带式输送机节能优化控制[J]. 煤炭技术, 2024, 43 (09): 255-259.

[11] Zhang X G, Zhang L, Zhang Y C. Model predictive current control for PMSM drives with parameter robustness improvement [J]. IEEE Transactions on Power Electronics, 2019, 34 (2): 1645-1657.

[12] Wei J T, Zhu B. Model predictive control for trajectory-tracking and formation of wheeled mobile robots[J]. Neural Computing and Applications, 2022, 34: 16351-16365.

[13] 卢宏平, 赵文祥, 陶涛, 等. 永磁同步电机低载波比精确无差拍预测电流控制[J]. 中国电机工程学报, 2025, 45 (03): 1108-1118.

[14] Meesala R E K, Kunisetti V P K, Thippiripati V K. Enhanced predictive torque control for open end winding induction motor drive without weighting factor assignment[J]. IEEE Transactions on Power Electronics, 2018, 34 (1): 503-513.

[15] 姚骏, 刘瑞阔, 尹潇. 永磁同步电机三矢量低开关频率模型预测控制研究[J]. 电工技术学报, 2018, 33 (13): 2935-2945.

[16] Martin C, Arahal M R, Barrero F, et al. Five-phase induction motor rotor current observer for finite control set model predictive control of stator current[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (7): 4527-4538.

[17] Sergio Vazquez, Jose Rodriguez, Marco Rivera, et al. Model Predictive Control for Power Converters and Drives: Advances and Trends[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (2): 935-947.

[18] 杨玮林, 胡官洋, 许德智. 基于连续控制集的永磁同步直线电机模型预测控制[J]. 控制理论与应用, 2021, 38 (10):1671-1682.

[19] Wang J X, Wang F X, Zhang Z B, et al. Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems [J]. IEEE Transactions on Industrial Informatics, 2017, 13 (5): 2645-2656.

[20] Bemporad A, Morari M, Dua V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38 (1): 3-20.

[21] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control—Part I. the basic algorithm[J] Automatica, 1987, 23 (2): 137-148.

[22] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control—Part II. Extensions and interpretations [J]. Automatica, 1987, 23 (2): 149-160.

[23] Wang B, Shi K, Zhang C, et al. Fuzzy Generalized Predictive Control for Nonlinear Brushless Direct Current Motor[J]. Journal of Computational and Nonlinear Dynamics, 2016, 11 (4): 041004.

[24] Rodrigues L L, Vilcanqui Oram A C, Conde D, et al. Generalized predictive control applied to the DFIG power control using state-space model and voltage constraints[J]. 2020, Electric Power Systems Research, 182: 106227.

[25] 朱芮. 电机系统模型预测控制研究综述[J]. 电机与控制应用, 2019, 46 (8):1-10+30.

[26] Bleda K, Vosmik D. Explicit generalized predictive control of speed and position of PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (6): 3889-3896.

[27] 杨帆, 赵希梅, 金鸿雁, 等. 基于无参数PMSM的自适应有限集模型预测控制[J]. 中国电机工程学报, 2023, 43 (22): 8935-8944.

[28] 陈卓易, 邱建琪, 金孟加. 永磁同步电机有限集无参数模型预测控制[J]. 电机与控制学报, 2019, 23 (01): 19-26.

[29] 陈卓易, 屈稳太, 邱建琪. 一种开关频率可控的有限集模型预测控制[J]. 电工技术学报, 2022, 37 (16): 4134-4142.

[30] 孙坚, 汪意和. 基于三矢量的永磁同步电机快速预测电流控制[J]. 武汉大学学报 (工学版), 2025, 58 (01): 94-102.

[31] 兰志勇, 罗杰, 李延昊, 等. 基于快速选择表的永磁同步电机模型预测转矩控制[J]. 电工技术学报, 2023, 38 (21): 5749-5757.

[32] Liu M, Chan K W, Hu J, et al. Model predictive direct speed control with torque oscillation reduction for PMSM drives[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (9): 5282.

[33] Yu Z Y, Long J. Review on Advanced Model Predictive Control Technologies for High-Power Converters and Industrial Drives[J]. Electronics, 2024, 13(24): 4969-4989.

[34] Karamanakos P, Liegmann E, Geyer T, et al. Model predictive control of power electronics systems: methods, results, and challenges[J]. IEEE Open Journal of Industry Applications, 2020, 1: 95-114.

[35] 齐昕, 苏涛, 周珂, 等. 交流电机模型预测控制策略发展概述[J]. 中国电机工程学报, 2021, 41 (18): 6408-6419.

[36] Wang F X, Mei X Z, Rodriguez J, et al. Model predictive control for electrical drive systems-an overview[J]. CES Transactions on Electrical Machines and Systems, 2017, 1 (3): 219-230.

[37] Xue C, Song W S, Wu X S, et al. A constant switching frequency finite-control-set predictive current control scheme of a five-phase inverter with duty-ratio optimization[J]. IEEE Transactions on Power Electronics, 2018, 33 (4): 3583-3594.

[38] 王海峰, 吴新振. 九相开绕组永磁同步电机谐波电流模型预测控制[J]. 中国电机工程学报, 2024, 44 (23): 9431-9442.

[39] Kang S, Soh J, Kim R. Symmetrical three-vector-based model predictive control with deadbeat solution for IPMSM in rotating reference frame[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (1): 159-168.

[40] Kawai H, Zhang Z B, Kennel R. Finite control set model predictive speed control with a load torque compensation[J]. IEEJ Transactions on Electrical Engineering, 2020, 15 (10): 1530-1540.

[41] 高锋阳, 徐昊, 杨凯文,等. 双三相永磁同步电机改进型模型预测电流控制[J]. 湖南大学学报(自然科学版), 2024, 51 (02): 81-92.

[42] Han Y F, Gong C, Yan L, et al. Multiobjective finite control set model predictive control using novel delay compensation technique for PMSM[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 11193-11204.

[43] Davari S A, Khaburi D A, Kennel R. An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1540-1551.

[44] Zhang Y C, Yang H T. Two-vector-based model predictive torque control without weighting factors for induction motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1381-1390.

[45] Yan Y, Wang S, Xia C L, et al. Hybrid control set-model predictive control for field-oriented control of VSI-PMSM[J]. IEEE Transactions on Energy Conversion, 2016, 31(4): 1622-1633.

[46] 李耀华, 苏锦仕, 秦辉, 等. 表贴式永磁同步电机多步预测控制简化算法[J]. 电机与控制学报, 2022, 26 (11): 122-131.

[47] 杨辰宇, 刘凯, 胡铭觐, 等. 基于FPGA的永磁同步电机零计算延迟扩张控制集模型预测电流控制[J]. 中国电机工程学报, 2024, 44 (S1): 264-273.

[48] Yuan J, Wen D, Zhang Y. Model Predictive Control Strategy With Reduced Computation Burden[J]. Mathematical Problems in Engineering, 2021 (20): 1-10.

[49] 陈荣, 舒胡平, 翟凯淼. 低复杂度永磁同步电机三矢量固定开关频率模型预测电流控制策略[J]. 中国电机工程学报, 2023, 38 (14): 3812-3823.

[50] Huang Y, Zhang J, Chen D, et al. Model reference adaptive control of marine permanent magnet propulsion motor based on parameter identification[J]. Electronics, 2022, 11(7):1012.

[51] 叶宇豪, 彭飞, 黄允凯. 多电机同步运动控制技术综述[J]. 电工技术学报, 2021, 36 (14): 2922-2935.

[52] Shu R Z, Wei J, Tan R L, et al. Investigation of dynamic and synchronization properties of a multi-motor driving system: Theoretical analysis and experiment[J]. Mechanical Systems and Signal Processing, 2021, 153 (06): 107496-107504.

[53] 朱博, 张钰朋, 徐攀腾, 等. 实现位置同步的双电机交叉耦合控制策略[J]. 哈尔滨理工大学学报, 2022, 27 (05): 114-121.

[54] ]胡松钰, 钱松, 吴伟, 等. 相邻交叉耦合直线开关磁阻电机位置同步控制[J]. 中国电机工程学报,2017,37 (23): 7024-7031+7094.

[55] 徐宇捷, 周扬忠. 基于线性自抗扰的双直线电机改进交叉耦合同步控制研究[J/OL]. 电源学报: 1-11. [2025-03-02]

[56] 肖雄, 王浩丞, 武玉娟, 等. 基于双滑模估计的主从结构共轴双电机模型预测直接转矩控制无速度传感器控制策略[J]. 电工技术学报, 2021, 36 (05): 1014-1026.

[57] Wu Y J, Cheng Y B, Wang Y L. Research on a multi-motor coordinated control stragedy based on fuzzy ring net work control[J]. IEEE Acess, 2020, 8: 39375-39388.

[58] Wang B F, Iwasaki M, Yu J P. Command filtered adaptive backstepping control for dual-motor servo systems with torque disturbance and uncertainties[J]. IEEE Transactions on Industrail Electronics, 2022, 69(2): 1773-1781.

[59] 徐宇捷, 周扬忠. 基于线性自抗扰的双直线电机改进交叉耦合同步控制研究[J]. 电源学报, 2024, 14 (1): 1-11.

[60] 朱博, 张钰朋, 徐攀腾, 等. 实现位置同步的双电机交叉耦合控制策略[J]. 哈尔滨理工大学学报, 2022, 27 (5): 114-121.

[61] Zhu C, Tu Q, Jiang C, et al. A cross coupling control strategy for dual-motor speed synchronous system based on second order global fast terminal sliding mode control[J]. IEEE Acess, 2020 (8): 217967-217976.

[62] 金奎, 厉伟, 张炳义, 等. 长距离带式输送机电机自抗扰变速节能控制策略[J]. 电机与控制应用, 2022, 49 (12): 21-27.

[63] 杨春雨, 王海, 赵建国.基于强化学习的刚性联接双电机系统无模型最优协调控制[J].中国电机工程学报, 2024, 61 (1): 1-13.

[64] Zhong G, Yi H, Dou W. Design of dual-drive vertical lift servo system and synchronous control performance analysis[J]. IEEE ASME Transactions on Mechatronics, 2020, 25(6): 2927-2937.

[65] Jung D, Kim S. A passive demposition based robust synchronous motion control of multi-motors and experimental verification[J]. Sensors, 2023, 23 (17): 7603.

[66] 耿强, 李亮, 周湛青, 等. 双永磁电机系统抗扰动转速同步控制[J]. 中国电机工程学报, 2021, 41 (19): 6787-6796.

[67] Lin X, LinZ, Wei S. Multi-objective optimized driving strategy of dual-motor EVs using NSGA-Ⅱ as a case study and comparison of various intelligent algorithms[J]. Applied Soft Computing, 2021 (11): 107684.

[68] 张磊, 鲍久圣, 郝建伟, 等. 永磁直驱带式输送机模糊自抗扰偏差耦合多电机控制策略[J]. 中国机械工程, 2024, 35 (11): 2071-2081.

[69] Li W H, Sun Y Q, Chen H Q, et al. Model predictive controller design for ship dynamic positioning system based on state-space equations[J]. Journal of Marine Science and Technology, 2017, 22 (3): 426-431.

[70] Wang B, Yang L, Wu F J, et al. Fuzzy predictive functional control of a class of non-linear systems[J]. IET Control Theory and Applications, 2019, 13 (24): 2281-2288.

[71] Kufoalor D K M, Imsland L, Johansen T A. Efficient implementation of step response models for embedded model predictive control[J]. Computers & Chemical Engineering, 2017, 90: 121-135.

[72] Da Costa Sousa J M,Kaymak U. Model predictive control using fuzzy decision functions[J]. IEEE Transactions on System, man, and cybernetics. Part B, Cybernetic: a publication of the IEEE System, man, and Cybernetics Society, 2001, 31 (1): 54-65.

[73] Wang W, Zhang J, Cheng M. Line‐modulation‐based flux‐weakening control for permanent‐magnet synchronous machines[J]. IET Power Electronics, 2018, 11 (5): 930-936.

[74] 刘雪松, 刘文生.基于最大转矩电流比控制的永磁同步电机模型预测控制[J]. 电机与控制应用, 2017, 44 (08): 38-42.

[75] Abdelrahem M, Hackl C M, Kennel R. Finite Position Set-Phase Locked Loop for Sensorless Control of Direct-Driven Permanent-Magnet Synchronous Generators[J]. IEEE Transactions on Power Electronics, 2018, 33 (4): 3097-3105.

[76] [智利] Rodriguez J, 等. 功率变换器和电气传动的预测控制[M]. 陈一民, 等, 译. 北京: 机械工业出版社, 2014.

中图分类号:

 TM351    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式