- 无标题文档
查看论文信息

论文中文题名:

 改进UNet+++网络用于高分辨率遥感影像变化检测    

姓名:

 何雪    

学号:

 19210210064    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 遥感图像处理    

第一导师姓名:

 刘英    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-08    

论文外文题名:

 Improving UNet+++ Network for High Resolution Remote Sensing Image Change Detection    

论文中文关键词:

 变化检测 ; 注意力机制 ; Siamese UNet+++ ; 损失函数 ; 全尺度特征图    

论文外文关键词:

 Change detection ; Attention mechanism ; Siamese UNet+++ ; Loss function ; full-scale feature map    

论文中文摘要:

高分辨率遥感影像具有更丰富多彩的纹理特征及邻接关系等几何图像数据信息,能为遥感影像智能解译提供可靠的信息来源,也加深了其在变化检测(Change Detection,CD)中的应用,现有的CD算法面临巨大挑战:一是网络依靠逐层卷积实现特征提取,缺少对重要信息的挖掘,上采样过程缺乏有效连接,导致网络学习到的变化特征有限;二是网络受噪声干扰,在获取图像特征的同时难以充分挖掘图像间的差异信息;三是训练过程中难易样本分类问题会影响网络精度。因此,本文在深入分析当前高分辨率遥感影像变化检测技术的基础上,结合深度学习技术对CD任务展开研究,具体研究内容如下:
(1)通过在分割网络UNet+++中添加坐标注意力机制(Coordination Attention,CA),充分学习来自编码器的全尺度语义并解决图像特征提取过程中信息获取不足的问题。对比自注意力、通道注意力、卷积注意力集成结果,CA UNet+++在LEBEDV和LEVIR-CD两种不同变化类型的数据集上结果最优,综合评价指标(F1-Score,F1)和总体精度(Overall Accuracy,OA)分别为89.2%、97.4%和87.2%、97.0%。通过分析不同注意力模块对网络中间层的特征响应,证明注意力机制是增强网络特征提取能力的潜在手段。
(2)针对早期融合操作带来的原始图像高维特征和图像对间差异性息难以获取等问题,提出基于孪生结构和全尺度特征重构的变化检测网络Siamese UNet+++,利用权值共享的孪生结构编码器提取两期影像不同尺度的特征信息及其差异信息,在解码阶段,连接差异信息和后一时相的高维特征进行全尺度特征重构,减少特征信息在层级间的消耗。结果表明,Siamese UNet+++在LEBEDV和LEVIR-CD数据集上F1和OA值分别为96.9%、99.2%和90.3%、98.3%,同其他对比方法相比,精度有所提高。不同全尺度连接方式对网络精度产生一定影响,本文设计的方法在上述数据集上最有效。Focal dice loss使网络聚焦于分类困难样本的训练,从而使网络能够察觉出图像对上的细小变化。相较于Dice loss和平衡二元交叉熵组合的混合损失,Focal dice loss对Siamese UNet+++的训练更有效,F1提高了3.5%。
(3)利用Labelme图象注释工具对红沙泉矿区2016和2020年两景Sentinel2影像进行标注,圈出变化区域并分割利用荒漠化矿区数据集对本文方法进行验证分析。结果表明,CA UNet+++和Siamese UNet+++方法在该数据集上具有一定适用性,同基准方法相比,精度达到最优和次优,F1和OA分别为80.1%、99.5%和79.2%、99.5%,同时,上述方法受噪声干扰程度低于其他基准方法,能够得到完整紧凑的矿区变化区域。

论文外文摘要:

High-resolution remote sensing images have more colorful geometric image data information such as texture features and adjacency relationships, which can provide a reliable source of information for intelligent interpretation of remote sensing images, and deepen their application in Change Detection (CD). Existing CD algorithms face huge challenges: First, the network relies on layer-by-layer convolution for feature extraction, lacks the mining of important changing features, and the upsampling process lacks effective connections, resulting in limited changing features learned by the network; second, the network is affected by Due to noise interference, it is difficult to fully exploit the difference information between images while obtaining image features; third, the problem of difficult and easy sample classification in the training process will affect the network accuracy. Therefore, this paper deeply analyzes the basis of the current high-resolution remote sensing image change detection technology In the above, combined with deep learning technology, the CD task is studied. The specific research contents are as follows:

(1)   By adding the Coordination Attention (CA) mechanism to the segmentation network UNet+++, the full-scale semantics from the encoder is fully learned and the problem of insufficient information acquisition in the image feature extraction process is solved. Comparing the results of self-attention, channel attention, and convolutional attention integration, CA UNet+++ has the best results on two datasets with different variation types, LEBEDV and LEVIR-CD, with F1 and OA of 89.2%, 97.4% and 87.2%, 97.0%, respectively. by analyzing the feature responses of different attention modules to the middle layer of the network, it is demonstrated that the attention mechanism is a potential means to enhance the network potential means of feature extraction capability.

(2) To address the problems brought about by the early fusion operation, such as the difficulty in obtaining the high-dimensional features of the original image and the disparity information between image pairs, a change detection network Siamese UNet+++ based on twin structure and full-scale feature reconstruction is proposed to extract the feature information and its disparity information at different scales of the two image phases using the twin structure encoder with shared weights, and in the decoding phase, the disparity information is connected with the high-dimensional information of the later phase In the decoding stage, the full-scale feature reconstruction is performed to reduce the consumption of feature information between layers. The results show that the F1 and OA values of Siamese UNet+++ are 96.9%, 99.2% and 90.3%, 98.3% on LEBEDV and LEVIR-CD datasets, respectively, and the accuracy is improved compared with other comparison methods. Focal dice loss allows the network to focus on the training of difficult samples for classification, thus enabling the network to detect small changes in the image pairs. Focal dice loss is more effective for training Siamese UNet+++ with a 3.5% improvement in F1 compared to a mixture of Dice loss and balanced binary cross-entropy combination.

(3)   The Labelme image annotation tool was used to annotate two scenes of Sentinel2 images of the Red Sand Spring mining area in 2016 and 2020, circle the change area and segmentation using the desertification mining area dataset for validation analysis of the method in this paper. The results show that the CA UNet+++ and Siamese UNet+++ methods have some applicability on this dataset, and the accuracy reaches the optimal and suboptimal compared with the benchmark methods, with F1 and OA of 80.1%, 99.5% and 79.2%, 99.5%, respectively, while the above methods are less disturbed by noise than other benchmark methods and can obtain complete and compact change areas of the mine area.

参考文献:

我叫何毛毛:

[1] Tian J, Reinartz P, d’Angelo P, et al. Region-based automatic building and forest change detection on Cartosat-1 stereo imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 226-239.

[2] Stramondo S, Bignami C, Chini M, et al. Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies[J]. International Journal of Remote Sensing, 2006, 27(18/20):4433-4447.

[3] 刘统飞. 基于高分辨率遥感影像空-谱特征联合的地表覆盖变化检测方法研究[D]. 西安:西安理工大学, 2020.

[4] Khelifi L, Mignotte M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis[J]. IEEE Access, 2020, 8: 126385-126400.

[5] 马利媛. 多光谱遥感图像的变化检测算法研究[D]. 乌鲁木齐:新疆大学, 2020.

[6] Saha S, Bovolo F, Bruzzone L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Transactions on Geoscience and Remote Sensing, 2019. 57(6): 3677-3693.

[7] Wang M, Zhang H, Sun W, et al. A Coarse-to-Fine deep learning based land use change detection method for high-resolution remote sensing images[J]. Remote Sensing, 2020, 12(12): 1933.

[8] 赵伟伟. 基于遥感图像的变化检测方法与应用研究[D]. 西安:西京学院, 2020.

[9] 樊玮, 周末, 黄睿. 多尺度深度特征融合的变化检测[J]. 中国图象图形学报, 2020, 25(04): 669-678.

[10] 林凯. 基于自编码网络及水平集方法的变化检测研究[D]. 大连:大连理工大学, 2020.

[11] Lu D, Mausel P, Brondizio E, et al. Change detection techniques[J]. International journal of remote sensing, 2004, 25(12): 2365-2401.

[12] 鲍腾飞. 基于卷积神经网络的高分辨率遥感影像变化检测[D]. 上海:上海交通大学, 2020.

[13] Al Rawashdeh S B. Evaluation of the differencing pixel-by-pixel change detection method in mapping irrigated areas in dry zones[J]. International journal of remote sensing, 2011, 32(8): 2173-2184.

[14] Singh S, Talwar R. A comparative study on change vector analysis based change detection techniques[J]. Sadhana, 2014, 39(6): 1311-1331.

[15] Chang N B, Han M, Yao W, et al. Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine[J]. Journal of Applied Remote Sensing, 2010, 4(1): 043551.

[16] Wu C, Du B, Zhang L. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(5): 2858-2874.

[17] Mishra S, Shrivastava P, Dhurvey P. Change detection techniques in remote sensing: A review[J]. International Journal of Wireless and Mobile Communication for Industrial Systems, 2017, 4(1): 1-8.

[18] Wang D, Chen X, Jiang M, et al. ADS-Net: An Attention-Based deeply supervised network for remote sensing image change detection[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101: 102348.

[19] Asokan A, Anitha J. Change detection techniques for remote sensing applications: a survey[J]. Earth Science Informatics, 2019, 12(2): 143-160.

[20] 王崇阳, 田昕. 基于 GF⁃ 1 PMS 数据的森林覆盖变化检测[J]. 遥感技术与应用, 2021, 36(1): 208-216.

[21] 徐俊峰, 蔡晓娜, 张保明, 等. 利用慢特征分析进行多尺度融合的高分辨率影像变化检测[J]. 测绘科学技术学报, 2019, 36(01): 62-68.

[22] Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J]. IEEE geoscience and remote sensing letters, 2009, 6(4): 772-776.

[23] Lyon J G, Yuan D, Lunetta R S, et al. A change detection experiment using vegetation indices[J]. Photogrammetric engineering and remote sensing, 1998, 64(2): 143-150.

[24] 刘巨峰, 刘勇, 蒋月, 等. 集成基于对象影像分析与贝叶斯软融合的土地覆被变化检测[J]. 兰州大学学报(自然科学版), 2020, 56(02): 196-204.

[25] 周末. 基于卷积神经网络的图像变化检测研究[D]. 天津:中国民航大学, 2020.

[26] 李向军. 遥感土地利用变化检测方法探讨[D]. 北京:中国科学院遥感应用研究所, 2006.

[27] Shang R, Xie K, Okoth M A, et al. SAR image change detection based on mean shift pre-classification and fuzzy C-means[C].IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019: 2358-2361.

[28] Im J, Jensen J R. A change detection model based on neighborhood correlation image analysis and decision tree classification[J]. Remote Sensing of Environment, 2005, 99(3): 326-340.

[29] Liu S, Du Q, Tong X, et al. Multiscale morphological compressed change vector analysis for unsupervised multiple change detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 4124-4137.

[30] Luppino L T, Bianchi F M, Moser G, et al. Unsupervised Image Regression for Heterogeneous Change Detection[J]. IEEE Transactions on Geoence and Remote Sensing, 2019, PP(99):1-16.

[31] Nemmour H, Chibani Y. Multiple support vector machines for land cover change detection: An application for mapping urban extensions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61(2): 125-133.

[32] 王明常, 朱春宇, 陈学业, 等. 基于 FPN Res-Unet 的高分辨率遥感影像建筑物变化检测[J]. 2021.

[33] 吴洁慧. 基于神经网络特征的遥感图像变化检测算法研究[D]. 成都:电子科技大学, 2021.

[34] 徐永杰. 基于高分影像的城市新增建设用地变化检测研发[D]. 重庆:重庆交通大学, 2021.

[35] Cai L, Shi W, Zhang H, et al. Object-oriented change detection method based on adaptive multi-method combination for remote-sensing images[J]. International journal of remote sensing, 2016, 37(22): 5457-5471.

[36] Zhang C, Li G, Cui W. High-resolution

我叫何毛毛:

[37] Jabari S, Rezaee M, Fathollahi F, et al. Multispectral change detection using multivariate Kullback-Leibler distance[J]. ISPRS Journal of Photogrammetry and Remote sensing, 2019, 147: 163-177.

[38] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1885-1898.

[39] Pacifici F, Del Frate F, Solimini C, et al. An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9): 2940-2952.

[40] 王萌. 基于高分辨率遥感影像的变化检测方法研究[D]. 成都:电子科技大学, 2020.

[41] 张朋朋. 基于邻域信息和深度学习的遥感图像变化检测[D]. 成都:西安电子科技大学, 2020.

[42] Wang Y, Gao L, Hong D, et al. Mask DeepLab: End-to-end image segmentation for change detection in high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102582.

[43] 侯沙沙. 注意力引导卷积神经网络的高分辨率遥感影像分类方法研究[D]. 西安:西安科技大学, 2021.

[44] You Y, Cao J, Zhou W. A survey of change detection methods based on remote sensing images for multi-source and multi-objective scenarios[J]. Remote Sensing, 2020, 12(15): 2460.

[45] 王庆. 基于深度学习的遥感影像变化检测方法研究[D]. 武汉:武汉大学, 2019.

[46] Alcantarilla P F, Stent S, Ros G, et al. Street-view change detection with deconvolutional networks[J]. Autonomous Robots, 2018, 42(7): 1301-1322.

[47] Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.

[48] 陈敏, 潘佳威, 李江杰, 等. 结合 VGGNet 与 Mask R-CNN 的高分辨率遥感影像建设用地检测[J]. 遥感技术与应用, 2021, 36(2): 256-264.

[49] 张宁. 基于 FCN 的循环卷积网络的变化检测方法研究[J]. 航空计算技术, 2021.

[50] 郝明, 田毅, 张华, 等. 基于DeepLab V3+深度学习的无人机影像建筑物变化检测研究[J]. 现代测绘, 2021, 44(02): 1-4.

[51] 孟琮棠, 赵银娣, 向阳. 基于卷积神经网络的遥感图像变化检测[J]. 现代测绘, 2019, 42(5): 1-5.

[52] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409. 1556, 2014.

[53] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.

[54] Wang Q, Zhang X, Chen G, et al. Change detection based on Faster R-CNN for high-resolution remote sensing images[J]. Remote sensing letters, 2018, 9(10): 923-932.

[55] Venugopal N. Automatic semantic segmentation with DeepLab dilated learning network for change detection in remote sensing images[J]. Neural Processing Letters, 2020, 51(3): 2355-2377.

[56] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.

[57] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.

[58] 余晓娜, 黄亮, 陈朋弟. 基于 Segnet 网络和迁移学习的复杂街区场景变化检测[J]. 重庆大学学报, 2019.

[59] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.

[60] 王民水, 孔祥明, 陈学业, 等. 基于随机补片和 DeepLabV3+ 的建筑物遥感图像变化检测[J]. 吉林大学学报 (地球科学版), 2021, 51(6): 1932-1938.

[61] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]. International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.

[62] Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: A nested u-net architecture for medical image segmentation[M]. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, 2018: 3-11.

[63] Peng D, Zhang Y, Guan H. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 1382.

[64] Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.

[65] 梅旭璋, 江红, 孙军. 基于密集注意力网络的视网膜血管图像分割[J]. 计算机工程, 2020, 46(03): 267-272+279.

[66] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(06): 13-23+125.

[67] Fang S, Li K, Shao J, et al. SNUNet-CD: A densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.

[68] Zhang C, Yue P, Tapete D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.

[69] 韩星, 韩玲, 李良志, 等. 基于深度学习的高分辨率遥感图像建筑物变化检测[J]. 激光与光电子学进展, 2022, 59(10): 55-63.

[70] Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.

[71] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13713-13722.

[72] Lyu H, Lu H, Mou L. Learning a transferable change rule from a recurrent neural network for land cover change detection[J]. Remote Sensing, 2016, 8(6): 506.

[73] Liu R, Cheng Z, Zhang L, et al. Remote sensing image change detection based on information transmission and attention mechanism[J]. IEEE Access, 2019, 7: 156349-156359.

[74] Daudt R C, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]. 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 4063-4067.

[75] Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 4353-4361.

[76] Liu J, Gong M, Qin K, et al. A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[J]. IEEE transactions on neural networks and learning systems, 2016, 29(3): 545-559.

[77] Zhan Y, Fu K, Yan M, et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1845-1849.

[78] Guo E, Fu X, Zhu J, et al. Learning to measure change: Fully convolutional siamese metric networks for scene change detection[J]. arXiv preprint arXiv:1810.09111, 2018.

[79] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.

[80] Chen J, Yuan Z, Peng J, et al. DASNet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1194-1206.

[81] Zhang M, Xu G, Chen K, et al. Triplet-based semantic relation learning for aerial remote sensing image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(2): 266-270.

[82] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122, 2015.

[83] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

[84] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.

[85] Chen H, Wu C, Du B, et al. Deep siamese multi-scale convolutional network for change detection in multi-temporal VHR images[C]. 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2019: 1-4.

[86] Jiang H, Hu X, Li K, et al. PGA-SiamNet: Pyramid feature-based attention-guided siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 484.

[87] Li S, Han P, Bu S, et al. Change detection in images using shape-aware siamese convolutional network[J]. Engineering Applications of Artificial Intelligence, 2020, 94: 103819.

[88] Wang Z, Peng C, Zhang Y, et al. Fully convolutional siamese networks based change detection for optical aerial images with focal contrastive loss[J]. Neurocomputing, 2021, 457: 155-167.

[89] Huang H, Lin L, Tong R, et al. Unet 3+: A full-scale connected unet for medical image segmentation[C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 1055-1059.

[90] 杨彬. 基于深度学习的高分辨率遥感影像变化检测[D]. 徐州:中国矿业大学, 2019.

[91] Dahl G E, Sainath T N, Hinton G E. Improving deep neural networks for LVCSR using rectified linear units and dropout[C]. 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013: 8609-8613.

[92] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

[93] Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.

[94] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13713-13722.

[95] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.

[96] Wei B Y, Shen X L, Yuan Y L. Remote sensing scene classification based on improved Ghostnet. Journal of Physics: Conference Series, 2020.

[97] 田青林, 秦凯, 陈俊, 等. 基于注意力金字塔网络的航空影像建筑物变化检测[J]. 光学学报, 2020, 40(21): 47-56.

[98] 安冉. 基于卷积神经网络的遥感图像变化检测[D]. 河北:河北地质大学, 2020.

[99] 张家兵, 张耀, 徐洪丽, 等. 基于深度监督残差网络的肝脏及肝肿瘤分割[J]. 集成技术, 2020, 9(3): 66-74.

[100] 董月, 冯华君, 徐之海, 等. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报 (工学版), 2019, 53(2): 373-381.

[101] Li, Chen. Attention unet++: A nested attention-aware u-net for liver ct image segmentation. IEEE International Conference on Image Processing (ICIP), 2020.

[102] Selvaraju R R. Grad-cam: Visual explanations from deep networks via gradient-based localization. 2017.

[103] Li K, Li Z, Fang S. Siamese NestedUNet Networks for Change Detection of High Resolution Satellite Image[C]. CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System. 2020.

[104] Cao Z. Detection of Small Changed Regions in Remote Sensing Imagery Using Convolutional Neural Network. IOP Conference Series Earth and Environmental Science, 2020. 502: 012017.

[105] Hou B. From W-Net to CDGAN: Bitemporal change detection via deep learning techniques. IEEE Transactions on Geoscience and Remote Sensing, 2019. 58(3): 1790-1802.

[106] 胡铁石. 对于矿区资源开发情况进行遥感动态监测研究[J]. 世界有色金属, 2019(01): 111+114.

[107] 邓文娟. 红沙泉露天煤矿水资源优化配置研究. 淮南:安徽理工大学, 2020.

[108] 向阳, 赵银娣, 董霁红. 基于改进 UNet 孪生网络的遥感影像矿区变化检测. 煤炭学报, 2019. 44(12): 3773-3780.

[109] 岳辉, 朱蓉, 刘英, 等. 荒漠化露天矿土壤湿度监测模型的构建——以红沙泉矿区为例[J]. 煤炭科学技术, 2022, 50(02): 300-311.

[110] Lyu J, Hu Y, Ren S, et al. Extracting the Tailings Ponds from High Spatial Resolution Remote Sensing Images by Integrating a Deep Learning-Based Model[J]. Remote Sensing, 2021, 13(4): 743.

中图分类号:

 P237    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式