论文中文题名: | 改进UNet+++网络用于高分辨率遥感影像变化检测 |
姓名: | |
学号: | 19210210064 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 遥感图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-08 |
论文外文题名: | Improving UNet+++ Network for High Resolution Remote Sensing Image Change Detection |
论文中文关键词: | 变化检测 ; 注意力机制 ; Siamese UNet+++ ; 损失函数 ; 全尺度特征图 |
论文外文关键词: | Change detection ; Attention mechanism ; Siamese UNet+++ ; Loss function ; full-scale feature map |
论文中文摘要: |
高分辨率遥感影像具有更丰富多彩的纹理特征及邻接关系等几何图像数据信息,能为遥感影像智能解译提供可靠的信息来源,也加深了其在变化检测(Change Detection,CD)中的应用,现有的CD算法面临巨大挑战:一是网络依靠逐层卷积实现特征提取,缺少对重要信息的挖掘,上采样过程缺乏有效连接,导致网络学习到的变化特征有限;二是网络受噪声干扰,在获取图像特征的同时难以充分挖掘图像间的差异信息;三是训练过程中难易样本分类问题会影响网络精度。因此,本文在深入分析当前高分辨率遥感影像变化检测技术的基础上,结合深度学习技术对CD任务展开研究,具体研究内容如下: |
论文外文摘要: |
High-resolution remote sensing images have more colorful geometric image data information such as texture features and adjacency relationships, which can provide a reliable source of information for intelligent interpretation of remote sensing images, and deepen their application in Change Detection (CD). Existing CD algorithms face huge challenges: First, the network relies on layer-by-layer convolution for feature extraction, lacks the mining of important changing features, and the upsampling process lacks effective connections, resulting in limited changing features learned by the network; second, the network is affected by Due to noise interference, it is difficult to fully exploit the difference information between images while obtaining image features; third, the problem of difficult and easy sample classification in the training process will affect the network accuracy. Therefore, this paper deeply analyzes the basis of the current high-resolution remote sensing image change detection technology In the above, combined with deep learning technology, the CD task is studied. The specific research contents are as follows: (1) By adding the Coordination Attention (CA) mechanism to the segmentation network UNet+++, the full-scale semantics from the encoder is fully learned and the problem of insufficient information acquisition in the image feature extraction process is solved. Comparing the results of self-attention, channel attention, and convolutional attention integration, CA UNet+++ has the best results on two datasets with different variation types, LEBEDV and LEVIR-CD, with F1 and OA of 89.2%, 97.4% and 87.2%, 97.0%, respectively. by analyzing the feature responses of different attention modules to the middle layer of the network, it is demonstrated that the attention mechanism is a potential means to enhance the network potential means of feature extraction capability. (2) To address the problems brought about by the early fusion operation, such as the difficulty in obtaining the high-dimensional features of the original image and the disparity information between image pairs, a change detection network Siamese UNet+++ based on twin structure and full-scale feature reconstruction is proposed to extract the feature information and its disparity information at different scales of the two image phases using the twin structure encoder with shared weights, and in the decoding phase, the disparity information is connected with the high-dimensional information of the later phase In the decoding stage, the full-scale feature reconstruction is performed to reduce the consumption of feature information between layers. The results show that the F1 and OA values of Siamese UNet+++ are 96.9%, 99.2% and 90.3%, 98.3% on LEBEDV and LEVIR-CD datasets, respectively, and the accuracy is improved compared with other comparison methods. Focal dice loss allows the network to focus on the training of difficult samples for classification, thus enabling the network to detect small changes in the image pairs. Focal dice loss is more effective for training Siamese UNet+++ with a 3.5% improvement in F1 compared to a mixture of Dice loss and balanced binary cross-entropy combination. (3) The Labelme image annotation tool was used to annotate two scenes of Sentinel2 images of the Red Sand Spring mining area in 2016 and 2020, circle the change area and segmentation using the desertification mining area dataset for validation analysis of the method in this paper. The results show that the CA UNet+++ and Siamese UNet+++ methods have some applicability on this dataset, and the accuracy reaches the optimal and suboptimal compared with the benchmark methods, with F1 and OA of 80.1%, 99.5% and 79.2%, 99.5%, respectively, while the above methods are less disturbed by noise than other benchmark methods and can obtain complete and compact change areas of the mine area. |
参考文献: |
[3] 刘统飞. 基于高分辨率遥感影像空-谱特征联合的地表覆盖变化检测方法研究[D]. 西安:西安理工大学, 2020. [5] 马利媛. 多光谱遥感图像的变化检测算法研究[D]. 乌鲁木齐:新疆大学, 2020. [8] 赵伟伟. 基于遥感图像的变化检测方法与应用研究[D]. 西安:西京学院, 2020. [9] 樊玮, 周末, 黄睿. 多尺度深度特征融合的变化检测[J]. 中国图象图形学报, 2020, 25(04): 669-678. [10] 林凯. 基于自编码网络及水平集方法的变化检测研究[D]. 大连:大连理工大学, 2020. [12] 鲍腾飞. 基于卷积神经网络的高分辨率遥感影像变化检测[D]. 上海:上海交通大学, 2020. [20] 王崇阳, 田昕. 基于 GF⁃ 1 PMS 数据的森林覆盖变化检测[J]. 遥感技术与应用, 2021, 36(1): 208-216. [21] 徐俊峰, 蔡晓娜, 张保明, 等. 利用慢特征分析进行多尺度融合的高分辨率影像变化检测[J]. 测绘科学技术学报, 2019, 36(01): 62-68. [24] 刘巨峰, 刘勇, 蒋月, 等. 集成基于对象影像分析与贝叶斯软融合的土地覆被变化检测[J]. 兰州大学学报(自然科学版), 2020, 56(02): 196-204. [25] 周末. 基于卷积神经网络的图像变化检测研究[D]. 天津:中国民航大学, 2020. [26] 李向军. 遥感土地利用变化检测方法探讨[D]. 北京:中国科学院遥感应用研究所, 2006. [32] 王明常, 朱春宇, 陈学业, 等. 基于 FPN Res-Unet 的高分辨率遥感影像建筑物变化检测[J]. 2021. [33] 吴洁慧. 基于神经网络特征的遥感图像变化检测算法研究[D]. 成都:电子科技大学, 2021. [34] 徐永杰. 基于高分影像的城市新增建设用地变化检测研发[D]. 重庆:重庆交通大学, 2021. [36] Zhang C, Li G, Cui W. High-resolution [38] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12): 1885-1898. [40] 王萌. 基于高分辨率遥感影像的变化检测方法研究[D]. 成都:电子科技大学, 2020. [41] 张朋朋. 基于邻域信息和深度学习的遥感图像变化检测[D]. 成都:西安电子科技大学, 2020. [43] 侯沙沙. 注意力引导卷积神经网络的高分辨率遥感影像分类方法研究[D]. 西安:西安科技大学, 2021. [45] 王庆. 基于深度学习的遥感影像变化检测方法研究[D]. 武汉:武汉大学, 2019. [48] 陈敏, 潘佳威, 李江杰, 等. 结合 VGGNet 与 Mask R-CNN 的高分辨率遥感影像建设用地检测[J]. 遥感技术与应用, 2021, 36(2): 256-264. [49] 张宁. 基于 FCN 的循环卷积网络的变化检测方法研究[J]. 航空计算技术, 2021. [50] 郝明, 田毅, 张华, 等. 基于DeepLab V3+深度学习的无人机影像建筑物变化检测研究[J]. 现代测绘, 2021, 44(02): 1-4. [51] 孟琮棠, 赵银娣, 向阳. 基于卷积神经网络的遥感图像变化检测[J]. 现代测绘, 2019, 42(5): 1-5. [58] 余晓娜, 黄亮, 陈朋弟. 基于 Segnet 网络和迁移学习的复杂街区场景变化检测[J]. 重庆大学学报, 2019. [60] 王民水, 孔祥明, 陈学业, 等. 基于随机补片和 DeepLabV3+ 的建筑物遥感图像变化检测[J]. 吉林大学学报 (地球科学版), 2021, 51(6): 1932-1938. [65] 梅旭璋, 江红, 孙军. 基于密集注意力网络的视网膜血管图像分割[J]. 计算机工程, 2020, 46(03): 267-272+279. [66] 徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法[J]. 计算机工程与应用, 2019, 55(06): 13-23+125. [69] 韩星, 韩玲, 李良志, 等. 基于深度学习的高分辨率遥感图像建筑物变化检测[J]. 激光与光电子学进展, 2022, 59(10): 55-63. [90] 杨彬. 基于深度学习的高分辨率遥感影像变化检测[D]. 徐州:中国矿业大学, 2019. [97] 田青林, 秦凯, 陈俊, 等. 基于注意力金字塔网络的航空影像建筑物变化检测[J]. 光学学报, 2020, 40(21): 47-56. [98] 安冉. 基于卷积神经网络的遥感图像变化检测[D]. 河北:河北地质大学, 2020. [99] 张家兵, 张耀, 徐洪丽, 等. 基于深度监督残差网络的肝脏及肝肿瘤分割[J]. 集成技术, 2020, 9(3): 66-74. [100] 董月, 冯华君, 徐之海, 等. Attention Res-Unet: 一种高效阴影检测算法[J]. 浙江大学学报 (工学版), 2019, 53(2): 373-381. [106] 胡铁石. 对于矿区资源开发情况进行遥感动态监测研究[J]. 世界有色金属, 2019(01): 111+114. [107] 邓文娟. 红沙泉露天煤矿水资源优化配置研究. 淮南:安徽理工大学, 2020. [108] 向阳, 赵银娣, 董霁红. 基于改进 UNet 孪生网络的遥感影像矿区变化检测. 煤炭学报, 2019. 44(12): 3773-3780. [109] 岳辉, 朱蓉, 刘英, 等. 荒漠化露天矿土壤湿度监测模型的构建——以红沙泉矿区为例[J]. 煤炭科学技术, 2022, 50(02): 300-311. |
中图分类号: | P237 |
开放日期: | 2022-06-23 |