论文中文题名: | 降雨条件下黄土边坡稳定性评价研究 |
姓名: | |
学号: | 18204209043 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 边坡工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-07-13 |
论文答辩日期: | 2021-05-29 |
论文外文题名: | Stability Evaluation of Loess Slope Under Rainfall Infiltration |
论文中文关键词: | |
论文外文关键词: | rainfall infiltration ; unsaturated loess slope ; failure mechanism ; effective stress principle ; finite element simulation |
论文中文摘要: |
黄土边坡在降雨条件下的雨水入渗机理、力学特性研究和边坡稳定性评价对于降低滑坡等自然灾害发生的风险,保护黄土地区较为脆弱的生态环境,减少经济损失具有重要作用。以西安地区为研究背景,通过理论分析、室内试验和数值模拟相结合的方法,评价黄土边坡的稳定性,主要的研究成果如下: 通过分析降雨条件下黄土边坡的雨水渗流特点,建立降雨条件下黄土边坡物理模型,构建了考虑降雨时长、降雨强度、坡角和任意深度处的瞬态含水率表达式,探索了降雨条件下黄土边坡的入渗规律。 完成了非饱和黄土的三轴剪切试验,在试样含水率不断增加的过程中,土体的粘聚力会逐渐降低,内摩擦角也会降低,但是降低的速率要比粘聚力降低的速率要小。对于非饱和黄土,基质吸力和围压的变化,会引起强度的变化,随着基质吸力的不断增大,其粘聚力不断增大,内摩擦角变化不大,但是内摩擦角的度数是在缓慢变大的,表明基质吸力的变化对黄土内摩擦角的影响较小。将试验结果进行拟合,得出了随着基质吸力变化而变化的φb的表达式以及非饱和有效应力公式中参数 通过使用压力板仪进行了土水特征曲线试验,研究分析了非饱和黄土的土水特性,将渗流场与应力场进行了耦合。在土水特征曲线的一整个减湿增湿的过程中,不同过程中的体积含水量与基质吸力之间不是完全对应的关系,存在一定的偏差,相同基质吸力下,在减湿的过程中体积含水率会高于增湿过程中的体积含水率,这个现象和土体的孔隙大小、空间骨架结构有关。通过拟合,得到了VG模型的相应的参数,在减湿过程中α=0.30325,q=2.0,R2=0.98823;在增湿的过程中,α=0.11773,q=2.43843,R2=0.98198。 基于渗流场与应力场的耦合,通过降雨强度、降雨历时、坡角等参数,采用边坡稳定性分析的条分法,得到降雨条件下黄土边坡的安全系数计算表达式,建立降雨条件下黄土边坡稳定性分析模型,探究边坡的失稳机理,评价降雨条件下黄土边坡的稳定性。 (5)基于GTS/NS有限元数值模拟软件,通过Galerkin方法构建起计算边坡稳定性的有限元方程。根据试验所得的数据建立起降雨条件下二维边坡的有限元分析模型,考虑坡角、坡高、降雨强度、降雨时长的因素,对每一种因素建立不同的分析工况,具体如下:坡角选择20°、30°、45°、60°、80°五种;坡高选择10m、15m、20m、25m、30m五种;降雨强度选择10mm/d、35mm/d、50mm/d、65mm/d、80mm/d,降雨时长选择0.5d、1d、1.5d、2d、3d。对于坡角、坡高、降雨强度来说,当它们都变大时,边坡的安全系数是逐渐减小的,但是坡角和坡高的变化所引起的安全系数的变化值要大于降雨强度的影响;对于降雨时长,在整个下雨的过程中,随着雨水的渗入,边坡的安全系数是逐渐减小的,减小值变化的幅度很小。 |
论文外文摘要: |
The study of rainfall infiltration mechanism, mechanical properties and slope stability evaluation of loess slope under rainfall conditions plays an important role in reducing the risk of landslide and other natural disasters, protecting the fragile ecological environment and reducing economic losses. Taking Xi'an area as the research background, the stability of loess slope is evaluated by combining theoretical analysis, laboratory test and numerical simulation.The main research results are as follows: (1) Based on the analysis of rainfall seepage characteristics of loess slope under rainfall condition, the physical model of loess slope under rainfall condition is established, and the transient water content expression considering rainfall duration, rainfall intensity, slope angle and arbitrary depth is constructed, and the infiltration law of loess slope under rainfall condition is explored. (2) The triaxial shear test of unsaturated loess is completed. In the process of increasing the moisture content of the sample, the cohesion of the soil will gradually decrease, and the internal friction angle will also decrease, but the decreasing rate is smaller than that of the cohesion. For unsaturated loess, the change of matric suction and confining pressure will cause the change of strength. the degree of internal friction angle increases slowly, which indicates that the change of matric suction has little effect on the internal friction angle of loess. By fitting the experimental results, the relationship between the change of matric suction and the change of matric suction was obtainedφb .The expression of (3) The soil water characteristics of unsaturated loess are studied through the soil water characteristic curve test with pressure plate apparatus. In the whole process of soil water characteristic curve dehumidification and humidification, the relationship between volume water content and matric suction in different processes is not completely corresponding, and there is a certain deviation. Under the same matric suction, the volume water content in the process of dehumidification will be higher than that in the process of humidification, which is related to the pore size and spatial skeleton structure of soil. The experimental data are input into origin for fitting, and the corresponding parameters of VG model are obtained α=0.30325,q=2.0,R2=0.98823;In the process of humidification, α=0.11773,q=2.43843,R2=0.98198。 (4) Based on the coupling of seepage field and stress field, through the rainfall intensity, rainfall duration, slope angle and other parameters, the slice method of slope stability analysis is adopted to obtain the calculation expression of safety factor of loess slope under rainfall conditions, establish the stability analysis model of loess slope under rainfall conditions, explore the instability mechanism of slope, and evaluate the stability of loess slope under rainfall conditions. (5) Based on GTS / NS finite element numerical simulation software, the finite element equation of slope stability is established by Galerkin method. According to the experimental data, the finite element analysis model of two-dimensional slope under rainfall condition is established. Considering the factors of slope angle, slope height, rainfall intensity and rainfall duration, different analysis conditions are established for each factor. The details are as follows: slope angle selection is 20°、30°、45°、60°、80°; The slope height is 10 m, 15 m, 20 m, 25 m and 30 m; The rainfall intensity is 10 mm / d, 35 mm / d, 50 mm / d, 65 mm / d and 80 mm / d, and the rainfall duration is 0.5 d, 1 d, 1.5 d, 2 d and 3 d. For slope angle, slope height and rainfall intensity, when they all increase, the safety factor of slope decreases gradually, but the change value of safety factor caused by the change of slope angle and slope height is greater than that of rainfall intensity; For the duration of rainfall, in the whole process of rainfall, with the infiltration of rainwater, the safety factor of the slope is gradually reduced, and the decreasing range is very small. |
参考文献: |
[1]徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J].岩石力学与工程学报.2017, 7):1297-1312. [2]陈洪江, 韩珠峰, 周春梅, 张训文. 降雨条件下黄土路堑高边坡稳定性分析 [J].公路.2017,(2):6-11. [3]李国荣, 陈文婷, 李进芳, 朱海丽, 胡夏嵩. 黄土边坡降雨入渗规律及其对边坡稳定性的影响[J].中国水土保持.2015,(8):36-39,69. [4]李毅, 邵明安. 人工草地覆盖条件下降雨入渗影响因素的试验研究[J].农业工程学报,2007,23(3):18-23. [5]朱兴华, 彭建兵, 同霄, 马鹏辉. 黄土地区地质灾害链研究初探 [J]. 工程地质学报.2017,(1):117-122. [6]张少宏, 康顺祥, 李永红. 降雨对黄土边坡稳定性的影响[J].水土保持报.2005,(5):52-55. [7]李晓. 重庆地区的强降雨过程与地质灾害的相关分析[J].中国地质灾害与防治学报, 1995,6(3):39-52. [8]殷跃平. 中国滑坡防治工程理论与实践[J].水文地质工程地质,1998,25(1):5-9. [9]钟荫乾. 滑坡与降雨关系及其预报[J].中国地质灾害与防治学报.1998.9 (5): 81-86. [10] 张友谊. 不同降雨条件下峡口滑坡稳定性研究[D].成都:西南交通大学博士学位论文,2007. [11] 胡晋川, 谢永利, 王文生. 降雨条件下阶梯状黄土边坡稳定性试验[J].广西大学学报(自然科学版).2010,(1):83-89. [12] 吴宏伟, 陈守义, 宠宇威. 雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土学报,1999,20(1):1–15. [13] 陈晓清, 崔鹏, 韦方强. 泥石流起动原型试验及预报方法探索[J].中国地质灾害与防治学报.2006,(5):73-78,96. [14] 杨志刚. 降雨入渗条件下土质边坡稳定性分析[D].河海大学,2007. [15] 张杰, 谢颂华, 莫明浩, 涂安国, 邬江颖. 不同自然降雨雨型下红壤坡地地表径流和壤中流输出特征[J].水电能源科学.2017,(7):18-21. [16] 李萍, 李同录, 付昱凯, 常维, 侯晓坤, 梁燕. 非饱和黄土中降雨入渗规律的现场监测研究[J]. 中南大学学报(自然科学版),2015,55(10):3551-3560 [17] 黄晓虎, 王常明, 宋朋燃, 王天佐.黄土边坡降雨侵蚀特征的物理模拟试验研究[J].工程地质学报.2015,(5):725-730. [18] 朱伟, 山村和也. 降雨时土堤内的饱和-非饱和渗流及其解析[C].第八届全国土力学与岩土工程学术会议论文集.北京:万国学术出版社,1999: 361-365. [19] 王成华, 万正义. 非饱和粉质黏土坡面降雨非正交入渗试验研究[J]. 岩土力学. 2015, (A1):59-55. [20] RICHARDS L A. Capillary conduction of liquids in porous mediums[J]. Physics, 1931,1: 318–333. [27] 詹良通, 贾官伟, 陈云敏. 考虑土体非饱和特性的无限长斜坡降雨入渗解析解[J].岩土工程学报,2010,32( 8) :1215-1 220. [28] 李宁, 许建聪. 无限长均质斜坡降雨入渗解析解[J].岩土工程学报,2015(12):2325-2330. [29] 常金源, 包含, 伍法权, 常中华, 罗浩 .降雨条件下浅层滑坡稳定性探讨[J]. 岩土力学,2015,36(05):995-1001. [30] 豆红强, 蒋森辉. 一个考虑浅层地下水位埋深的降雨物理入渗模型[J].福州大学学报(自然科学版).2017,(5):582-588. [32] 赤木浩一, 大西有三, 西恒誠. 有限要素法による饱和—不饱和の渗透流解析[C].土木学会论文报告集. 265:1–25. [35] 王协群, 张有祥, 邹维列, 熊海帆. 降雨入渗条件下非饱和路堤变形与边坡的稳定数值模拟[J].岩土力学,2010,31(11):3650-3655+3655. [36] 谭新, 陈善雄, 杨明. 降雨条件下土坡饱和—非饱和渗流分析[J].岩土力学,2003,25(3) : 381-38. [37] 武丽.降雨入渗对边坡渗流特性及稳定的影响研究[D].河海大学,2005. [40] 陈正汉. 非饱和土与特殊土力学的基本理论研究 [J]. 岩土工程学报,2015,36(02): [41] 沈珠江. 广义吸力和非饱和土的统一变形理论[J].岩石工程学报.1996(02):1-9. [42] 李荣建, 郑文, 邵生俊, 常体鹏.非饱和土边坡稳定分析中强度折减法与条分法的比较[J].西北农林科技大学学报(自然科学版),2010,38(09):207-215. [43] 张少宏, 康顺祥, 李永红.降雨对黄土边坡稳定性的影响[J].水土保持通报, 2005 (05): 56-58. [44] 吴海艳, 郭抗美, 王超.降雨入渗对黄土边坡破坏面的形成及滑动机理研究[J].路基工程.2011,(5):156-159. [45] 刘博, 孙树林, 刘俊, 王恩喜, 陈怿旸. 降雨入渗条件下裂隙发育的黄土边坡稳定性分析研究[J].工程勘察.2016,(10):16-21,78. [46] 李国荣, 陈文婷, 朱海丽, 郭章军, 李进芳, 王涛, 胡夏嵩.青藏高原东北部黄土地区降雨入渗对土质边坡稳定性的影响研究[J].水文地质工程地质.2015,(2):105-111. [47] 王掌权, 许健, 郑翔, 任建威.反复冻融条件下黄土边坡稳定性分析[J].中国地质灾害与防治学报.2017,(2):15-21. [51] 赵尚毅, 郑颖人, 时卫民.有限元强度折减法求边坡稳定安全系数[J].岩土工程学报.2002,129(3):353-356. [53] 弗雷德隆德.D.G.,拉哈尔佐.H.非饱和土土力学[M].陈仲颐等译.北京:中国建筑工业出版社.1997. [59]王云强,张兴昌,从伟,魏清才.黄土区不同土地利用方式坡面土壤含水率的空间变异性研究[J].农业工程学报,2006(12):65-71. [60]简文星,蒋毅.基于指数型的浅层滑坡非积水降雨入渗模型研究[J].安全与环境工程,2017,24(01):22-25+32. [61]潘永亮,简文星,李林均,林雨秋,田朋飞.基于改进Green-Ampt模型的花岗岩残积土边坡降雨入渗规律研究[J].岩土力学,2020,41(08):2685-2692. |
中图分类号: | TU457 |
开放日期: | 2021-07-14 |