- 无标题文档
查看论文信息

论文中文题名:

 封闭状态注氮控灭对城市综合管廊火灾演变影响规律    

姓名:

 蔡国斌    

学号:

 19220214086    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 灾害应急救援    

第一导师姓名:

 郭军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Study on the effect of nitrogen injection and control on fire evolution in closed urban utility tunnel    

论文中文关键词:

 综合管廊 ; 火灾实验 ; 注氮控灭 ; 电缆燃烧 ; 演变规律    

论文外文关键词:

 Urban utility tunnel ; Fire experiment ; Nitrogen injection control and extinguishing ; Cable combustion characteristics ; Fire evolution law    

论文中文摘要:

城市地下综合管廊做到了地下空间的综合利用和资源共享,也是未来的一个发展趋势。然而,综合管廊火灾救援与普通交通隧道火灾救援有明显的差异。当天然气管道舱及容纳电力电缆舱室等发生火灾时,通常进行区段防火分隔,可采用封闭注氮的技术措施进行灭火。因此,研究封闭状态注氮控灭对综合管廊火灾演变的影响规律,将对综合管廊火灾救援具有重要的理论指导意义。 
结合城市地下综合管廊火灾的特点,基于Froude相似准则,设计搭建尺寸比例1:3的综合管廊火灾模拟实验台,考虑火源功率、注氮位置和注氮压力等因素,进行了注氮对封闭管廊火灾熄灭特性的影响规律实验研究,得到了氮气油池燃料质量损失速率峰值与注氮流量成反比关系;封闭管廊内火源燃烧的火焰相比自然通风环境中的明显减小,甲醇燃烧火焰颜色表现为近橙红色;在燃料燃烧的衰退期,火焰在油池表面上会变成游离态;综合管廊内火灾发生熄灭的氧气浓度范围为11.13~14.98%。建立了适用于封闭状态下综合管廊空间注氮过程火灾熄灭时间预测模型。
利用锥形量热仪和热分析联用实验,开展了综合管廊内典型阻燃电缆燃烧特性实验,研究了综合管廊电力舱内典型的ZRC-YJV22 8.7/15KV 3×50mm2阻燃电缆的燃烧特性及热解行为,得到了其主要热解反应各阶段的动力学参数,构建了封闭管廊电缆蔓延火灾注氮控灭数值计算模型;通过综合分析和数值模拟结果,发现综合管廊内的火灾烟气相比常规隧道更易沉降;液氮具有冷却降温与隔氧窒息特点,可快速降低火场温度和氧气浓度,降低了管廊内电缆受火灾余温作用发生短暂回燃复燃概率,有效控制封闭管廊火灾规模和发展程度,实现快速有效地火灾扑救;注氮控灭时封闭管廊内顶棚温度衰减可近似采用双指数经验预测模型来表征,但受液氮的冷却降温与隔氧窒息的耦合作用影响,该模型在各时间段有明显差异。

 

论文外文摘要:

Urban utility tunnel achieves comprehensive utilization and resource sharing of underground space, which is a development trend in the future. However, there are obvious differences between fire rescue in urban utility tunnel and ordinary traffic tunnels. When a fire occurs in the urban utility tunnel such as the gas pipeline cabin and the power cable cabin, the section fire separation is usually carried out, and the technical measures of closed nitrogen injection can be used to extinguish the fire. Therefore, studying the effect of nitrogen injection and control and extinguishing in the closed state on the fire evolution of the urban utility tunnel will have important theoretical guiding significance for the fire rescue of the urban utility tunnel.
Combined with the characteristics of urban utility tunnel fires, and based on the Froude similarity criterion, the urban utility tunnel fire simulation test bench with a size ratio of 1:3 was designed and built. Considering factors such as fire source power, nitrogen injection location and nitrogen injection pressure were carried out. The experimental study on the influence of the fire extinguishing characteristics of the closed urban utility tunnel shows that the peak fuel mass loss rate in the oil pool is inversely proportional to the nitrogen injection flow rate. The color of methanol combustion flame is nearly orange-red. In the decay period of fuel combustion, the flame will become free on the surface of the oil pool. The oxygen concentration range of the fire extinguished in the urban utility tunnel is 11.13~14.98%. A prediction model of fire self-extinguishing time suitable for nitrogen injection in urban utility tunnel under closed state is established.
Through the cone calorimeter and the quadruple analysis system, a series of experiments on the combustion characteristics of 8.7/15KV 3×50mm2 flame-retardant cable in the urban utility tunnel were carried out. Combustion characteristics and pyrolysis behavior of the cable were analyzed. The heat release rate, combustion products, ignition characteristics and cable pyrolysis reaction of cable wrapping materials of the cable were quantitatively analyzed. Based on these, a numerical calculation model for nitrogen injection control and extinguishing of the cable spread in a closed urban utility tunnel was constructed. Through theoretical analysis combined with numerical simulation analysis, it is found that the fire smoke in the urban utility tunnel is easier to settle than the conventional tunnel. Liquid nitrogen has the characteristics of cooling and oxygen insulation, which can quickly reduce the temperature and oxygen concentration of the fire site, and reduce the occurrence of the residual temperature of the cable in the urban utility tunnel. The probability of short-term re-ignition and re-ignition can effectively control the scale and development of the fire in the closed urban utility tunnel, and achieve fast and effective fighting fire. The temperature decay of the ceiling in the closed urban utility tunnel can be approximated by a double-exponential empirical prediction model when nitrogen injection is controlled and extinguished. However, the double-exponential empirical prediction model of the ceiling temperature decay in the closed urban utility tunnel has obvious differences in each time period.

 

参考文献:

[1] GB50838-2015,城市综合管廊工程技术规范[S].北京: 中国计划出版社, 2015.

[2] 刘海峰,刘敬文,沈学良,等.地下综合管廊电力舱火灾演化行为和特性[J].消防科学与技术,2021,40(06):822-826.

[3] Bai YP, Zhou R, Wu JS. Hazard identification and analysis of urban utility tunnels in China[J]. Tunnelling and Underground Space Technology, 2020,106:103584. doi:10.1016/j.tust.2020.103584.

[4] Canto-Perello J, Curiel-Esparza J. Assessing governance issues of urban utility tunnels[J]. Tunnelling and Underground Space Technology,2013,33: 82-87.

[5] 吴倩芸,许淑惠,马博洋,等.综合管廊舱燃气泄漏集聚模型实验与数值模拟研究[J].消防科学与技术,2022,41(03):379-384.

[6] 于晨龙,张作慧.国内外城市地下综合管廊的发展历程及现状[J].建设科技, 2015,17:49-51.

[7] Wang WH, Zhu ZX, Jiao ZR, et al. Characteristics of fire and smoke in the natural gas cabin of urban underground utility tunnels based on CFD simulations[J]. Tunnelling and Underground Space Technology, 2021,109: 103748. doi:10.1016/j.tust.2020.103748.

[8] 孙思.建设地下百年“大动脉”补齐城市看不见的“短板”[J].中华建设,2018,11:22-25.

[9] 乌鲁木齐构筑“地下生命线” 让城市更有韧性[J].未来城市设计与运营,2022(05):4.

[10] 朱纹静. 综合管廊电缆舱细水雾灭火实验与喷头参数优化研究[D].成都: 西华大学,2019.

[11] Ko, J. Study on the fire risk prediction assessment due to deterioration contact of combustible cables in underground common utility tunnels[J]. Journal of the Korean Society of Disaster Information, 2015,11:135-147.

[12] José-Vicente V, Faustino NG. Urban utility tunnels as a long-term solution for the sustainable revitalization of historic centres: The case study of Pamplona-Spain[J]. Tunnelling and Underground Space Technology, 2018, 81:228-236.

[13] 雷升祥,申艳军,肖清华,等.城市地下空间开发利用现状及未来发展理念[J].地下空间与工程学报,2019,15(4):965-979.

[14] 普子恒,赵伟,熊钰瑶,等.基于复杂热解和化学反应修正的电缆燃烧模拟研究[J].三峡大学学报(自然科学版),2021,43(1):88-95.

[15] 李文婷. 综合管沟电缆火灾数值模拟研究[D].北京:首都经济贸易大学,2012.

[16] 孙伟俊. 城市地下综合管廊火灾危险控制技术研究[D].西安:西安建筑科技大学,2017.

[17] 叶开. 城市综合管廊火灾顶棚射流温度场的二维预测方法研究[D].合肥:中国科学技术大学,2019.

[18] Ye K, Zhou XD, Zheng Y, et al. Estimating the longitudinal maximum gas temperature attenuation of ceiling jet flows generated by strong fire plumes in an urban utility tunnel[J]. International Journal of Thermal Sciences,2019,142:434-448.

[19] Ye K, Zhou XD, Yang LZ, et al. A multi-scale analysis of the fire problems in an urban utility tunnel[J]. Energies, 2019 12(10): 12101976. doi:10.3390/en12101976.

[20] Huang XJ, Wang YH, Ren ZY, et al. Experimental investigation on maximum ceiling jet temperature generated by a vertically spreading cable fire[J]. Fire Safety Journal,2020,10: 103125. doi.org/10.1016/j.firesaf.2020.103125.

[21] An WG, Tang YH, Kai Liang, et al. Study on temperature distribution and CO diffusion induced by cable fire in L-shaped utility tunnel[J]. Sustainable Cities and Society,2020,62: 102407. doi.org/10.1016/j.scs.2020.102407.

[22] 曲磊.电缆隧道细水雾灭火系统典型实体火灾实验[J].建筑科学,2016,32(11):102-105.

[23] 付强,张和平,龚伦伦,等.基于CONE和MCC的典型电缆燃烧性能研究[J].火灾科学,2012,21(1):13-20.

[24] Liang K, Hao XF, An WG, et al. Study on cable fire spread and smoke temperature distribution in T-shaped utility tunnel[J]. Case Studies in Thermal Engineering, 2019,14: 100433. doi.org/10.1016/j.csite.2019.100433.

[25] Ji Huaijun, Li Yunzhuo, Su Hetao,et al. Experimental investigation on the cooling and inerting effects of liquid nitrogen injected into a confined space[J]. Symmetry, 2019, 11.doi:10.3390/sym/1040579.

[26] Zhou Fubao, Shi Bobo, Cheng Jianwei, et al. A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media[J]. Fire Technology, 2015,51(2):325-334.

[27] 王长元,灵宽,张丑宏.模拟火灾注氮灭火实验[J].煤炭工程师, 1993(04):5-11.

[28] 孙明哲. 封堵及注氮对隧道火灾火行为和温度场影响的试验研究[D].徐州:中国矿业大学, 2020.

[29] 周祥. 综合管廊内线性火火灾特性及温度场分布实验研究[D]. 徐州:中国矿业大学, 2021.

[30] 杨立中,叶开.城市综合管廊消防标准及火灾研究综述[J].中国安全科学学报, 2021,31(8):132-140.

[31] 张佳庆,李文杰,范明豪,等.热源作用下高压电缆绝缘硅油引燃机制与燃烧特性试验研究[J].绝缘材料,2019,52(8):90-95.

[32] 郭子东.典型核电电缆火灾危险性的热解实验研究[J].消防科学与技术,2018, 37(5):602-604+632.

[33] Chen CK, Zhu CX, Liu XY, et al. Experiment investigation on the effect of asymmetrical sealing on tunnel fire behavior[J]. International Journal of Heat and Mass Transfer, 2016,92:55-65.

[34] Chen CK, Xiao H, Wang NN, et al. Experimental investigation of pool fire behavior to different tunnel-end ventilation opening areas by sealing[J]. Tunnelling and Underground Space Technology, 2017,63:106-117.

[35] 张晋, 徐大军, 宋文琦,等. 城市综合管廊电力舱火灾行为试验研究[J]. 地下空间与工程学报, 2020, 16(6):1819-1825

[36] Ye K, Tang X, Zheng Y, et al. Estimating the two-dimensional thermal environment generated by strong fire plumes in an urban utility tunnel[J]. Process Safety and Environmental Protection, 2021,148:737-750.

[37] 徐大军,张晋,陶鹏宇,等.基于综合管廊火灾特性的细水雾灭火系统应用研究[J].消防科学与技术,2021,40(11):1625-1630.

[38] 王璞璠. 线性火源位置对城市地下综合管廊火灾温度场分布影响研究[D].徐州:中国矿业大学,2021.

[39] 刘浩男. 圆形断面管廊火灾温度衰减与烟气沉降的实验性研究[D].徐州:中国矿业大学,2020.

[40] 梁凯. 城市地下综合管廊电缆火蔓延行为及烟流特性研究[D].徐州:中国矿业大学,2020.

[41] 于淼淼. 管廊封闭与漏缝条件下顶棚温度场分布与烟气流动规律研究[D].徐州:中国矿业大学,2019

[42] 杜长宝. 地下综合管廊电缆火灾温度场分布及烟气流动特性分析[D].徐州:中国矿业大学,2017.

[43] 黄萍,邓茜,余龙星.综合管廊电缆火灾细水雾灭火效果数值模拟[J].安全与环境工程,2021,28(5):80-87.

[44] Huang P, Ye SL, Qin L, et al. Experimental study on the maximum excess ceiling gas temperature generated by horizontal cable tray fires in urban utility tunnels[J]. International Journal of Thermal Sciences,2022,172(PB):107341. doi.org/10.1016/j.ijthermalsci. 2021.107341

[45] 孙瑞雪. 城市地下综合管廊灭火系统的试验与数值模拟研究[D].合肥:中国科学技术大学,2018.

[46] Guo J, Cai GB, Liu Y, et al. Temperature distribution and characteristics induced by fire smoke in L-shaped utility tunnels with small curvature radii[J]. Case Studies in Thermal Engineering,2021,28: 101470. doi.org/10.1016/j.csite.2021.101470.

[47] 张苗,宋文华,刘幸娜,等.防火封堵对建筑幕墙外保温系统耐火性能的影响[J].中国科学技术大学学报,2015,45(9):784-794.

[48] Gaghyeon H, Weon GS, Jaiho L. Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment[J]. Nuclear Engineering and Technology, 2020. doi.org/10.1016/j.net.2020.09.028.

[49] Fan CG, Bu RW, Xie XQ, et al. Full-scale experimental study on water mist fire suppression in a railway tunnel rescue station: Temperature distribution characteristics[J]. Process Safety and Environmental Protection, 2020,146: 396-411.

[50] 蓝美娟,冯涛,涂嘉庆,等. 液氮及排烟共同作用扑灭电缆火灾有效性研究[J]. 消防科学与技术,2021,40(9):1269-1275.

[51] Zhang H , Zhao Y . Study on underground utility tunnel fire characteristics under sealing and ventilation conditions[J]. Advances in Civil Engineering, 2020, 2020:1-11.

[52] Su S, Wang L. There dimensional reconstruction of the fire in a ship engine room with multilayer structures[J]. Ocean Engineering, 2013,70(5):201-207.

[53] Zukoski EE, Development of a stratified ceiling layer in the early stages of a closed-room fire[J]. Fire and Materials, 1978, 2. doi.10.1002/fam.810020203.

[54] Nikitin, YV. Self-extinction of fire in a closed compartment[J]. Journal of fire sciences, 1999,17:97-102.

[55] He QZ, Li CH, Lu SX, et al. Experimental study of pool fire burning behaviors in Ceiling Vented Ship Cabins [J]. Procedia Engineering, 2014, 71:462-469.

[56] 董华, 范维澄. 船舶密闭舱室火灾过程及其模拟计算[J].计算力学学报,1998,1:82-87.

[57] Collin S, Bailey JL. Assessment of intracellular calcium levels in cryopreserved bovine sperm by flow cytometry[J]. Theriogenology,1999,51(1):341-341.

[58] Li Q, Li JM, Zhang JQ, et al. Oscillating behavior of fire-induced exchange flow through a horizontal ceiling vent[J]. Procedia Engineering, 2016,135:298-307.

[59] 杨枫,浦金云,李其修,等.船舶封闭舱室池火灾温度分布特性[J].海军工程大学学报,2013,25(3):61-65.

[60] 姚勇征.受限出口边界下隧道火灾火行为和烟气输运规律研究[D].合肥:中国科学技术大学,2019.

[61] Yao YZ, Cheng XD, Shi L, et al. Experiment study on the effects of initial sealing time on fire behaviors in channel fires[J]. International Journal of Thermal Sciences, 2018,125:273-282.

[62] Yao YZ, He K, Peng M, et al. Maximum gas temperature rise beneath the ceiling in a portals-sealed tunnel fire[J]. Tunnelling and Underground Space Technology, 2018, 80:10-15.

[63] 黎昌海,陆守香,袁满,等.封闭空间池火火焰游走实验研究[J].中国科学技术大学学报,2010,40(7):751-756.

[64] 黎昌海,吴迎春,陆守香,等.封闭空间油池火火焰振荡特性研究[J].中国科学技术大学学报,2010,40(4):380-386.

[65] 黎昌海. 船舶封闭空间池火行为实验研究[D]. 合肥:中国科学技术大学,2010.

[66] Lin P , Wang ZK , Wang KH , et al. An experimental study on self-extinction of methanol fire in tilted tunnel[J]. Tunnelling and Underground Space Technology, 2019, 91(SEP.):102996.1-102996.16.

[67] You SH, Wang KH, Shi JK, et al. Self-extinction of methanol fire in tunnel with different configuration of blocks[J]. Tunnelling and Underground Space Technology, 2020, 98:103343. doi.10.1016/j.tust.2020.103343.

[68] Wang KH , Chen JM , Wang ZK , et al. An experimental study on self-extinction of tunnel fire under natural ventilation condition[J]. Tunnelling and Underground Space Technology, 2019, 84:177-188.

[69] 王凯红. 长隧道火灾自熄机理及影响因素研究[D]. 成都:西南交通大学,2020.

[70] 王国元. 隧道火灾自熄特性实验研究[D]. 成都:西南交通大学,2019.

[71] 王钟宽. 隧道火灾自熄特性数值模拟研究[D]. 成都:西南交通大学,2020.

[72] 陈长坤.不同封堵率下隧道火灾温度场数值模拟研究[A].//公安部科技信息化局、公安部天津消防研究所.2015消防工程技术国际学术研讨会论文集[C].2015:10-18.

[73] Heskestad G. Scaling the interaction of water sprays and flames[J]. Fire Safety Journal,2002, 37(6): 535-548.

[74] 付艳云. 隧道侧壁对油池火燃烧及顶棚射流特性影响的实验研究[D].合肥:中国科学技术大学,2017.

[75] Vytenis B. Estimating large pool fire nurning rates[J]. Fire Technology, 1983,19:251-261.

[76] Blinov VI, Khudiakov GN. Diffusion burning of liquids[R],U.S. Army Translation. NTIS No.AD296762 ,1961.

[77] Iqbal N, Salley MH. Fire dynamics tools (FDTs) quantitative fire hazard analysis methods for the U.S. nuclear regulatory commission fire protection inspection program[R]. U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, DC 20555-0001, June 2003.

[78] Karlsson B, Quintiere JG.Enclosure fire dynamics[M]. CRC press, 2000

[79] Sugawa O, Kawagoe K, Oka Y. Burning behavior in a poorly-ventilated compartment fire-ghosting fire [J]. Fire Science and Technology, 1989, 9(2): 2-14.

[80] Lönnermark A, Hugosson J, Ingason H. Fire incidents during contruction work of tunnels-model-scale experiments[R]. SP Technical Research Institute of Sweden, 2010.

[81] He Q, Li C, Lu S, et al. Pool fires in a corner ceiling vented cabin: Ghosting flame and corresponding fire parameters[J]. Fire Technology, 2015, 51(3): 537-352.

[82] Ji J, Li M, Gao ZH, et al. Experimental investigation of combustion characteristics under different ventilation conditions in a compartment connected to a stairwell[J]. Applied Thermal Engineering, 2016,101(1):390-401.

[83] He QZ, Ezekoye OA, Li CH, et al. Ventilation limited extinction of fires in ceiling vented compartments[J]. International Journal of Heat and Mass Transfer, 2015, 91:570-583.

[84] Utiskul Y, Quintiere JG, Rangwala AS, et al. Compartment fire phenomena under limited ventilation[J]. Fire Safety Journal, 2005,40(4):367-390.

[85] Suard S, Nasr A, Melis S, et al. Analytical approach for predicting effects of vitiated air on the mass loss rate of large pool fire in confined compartments[J]. Fire Safety Science,2011,10:1513-1524.

[86] Wahlqvist J, Hees P. Implementation and validation of an environmental feedback pool fire model based on oxygen depletion and radiative feedback in FDS[J]. Fire Safety Journal, 2016,85:35-49.

[87] Larsson I, Ingason H, Arvidson M, Model scale fire tests on a vehicle deckon board a ship[R]. SP Swedish National Testing and Research Institute,2002.

[88] Hurley MJ, Gottuk D, Hall JR, et al. SFPE handbook of fire protection engineering [M]. Springer, fifth edition, 2016.

[89] Bailey JL, Williams FW, Tatem PA. Methanol Pan fires in an enclosed space: Effect of pressure and oxygen concentration[R]. Naval Research Laboratory, 1993.

[90] Morehart JH, Zukoski EE, Kubota T. Chemical species produced in fires near the limit of flammability [J]. Fire Safety Journal,1992,19:177-188.

[91] Beyler CL. Flammability limit of premixed and diffusion flames[M]. National Fire Protection Association Quincy, Massachusetts, 2003.

[92] Quintiere JG, Rangwala AS. A theory of flame extinction based on flame temperature[J]. Fam Fire and Materials, 2003, 28:387-402.

[93] Sun RX, Yao B. Numerical simulation on extinguishing effect of water mist system in urban underground utility tunnel[J]. Fire Safety Science, 2019,28(1):28-34.

[94] Shi CL, Qian XD, Zhang YF, et al. Study on combustion characteristics of ZR-YJLV cable based on flame propagation calorimeter[J]. Journal of Safety Science and Technology, 2020,16(S1):17-21.

[95] Wang H, Xu H. Analysis of the relationship between oxygen material index and cable bundles burning[J]. Wire and Cable, 2013,1:26-28.

[96] ISO 5660-1 Reaction to fire tests—heat release, smoke production and mass loss rate-Part l: Heat release rate (Cone calorimeter method) [S]. Geneva: International Organization for Standardization (ISO),2002.

[97] Bao GH, Hu LM. Experimental study on combustion performance of FEP communication cable[J]. Fire Science and Technology, 2021,40(5):621-624.

[98] Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements [J]. Fire and Materials, 1980,4(2): 61-65.

[99] Delichatsios MA, Panagiotou TH, Kiley F. The use of time to ignition data for characterizing the thermal inertia and the minimum (critical) heat flux for ignition or pyrolysis[J]. Combustion and Flame,1991,84:323-334.

[100] Wang HS, Li L, Zhu LL, et al. Burning behavior of the typical upholstered seating-chair materials on the test with a cone calorimeter[J]. Journal of Safety and Environment, 2018,18(1):79-84.

[101] Guo D, Zhang GW, Zhu G Q, et al. Applicability of liquid nitrogen fire extinguishing in urban underground utility tunnel[J]. Case Studies in Thermal Engineering, 21, 2020. DOI: 10.1016/j.csite.2020.100657.

[102] 王志. 线缆绝缘材料热解特性与线缆燃烧及火蔓延行为研究[D].合肥:中国科学技术大学,2020.

[103] Mikkol AE, Wichman I, On the thermal ignition of combustible materials[J]. Journal of Fire and Materials,1989,14:87-96.

[104] 徐亮,张和平,万玉田.热塑性装饰材料点燃性能研究[J].中国工程科学, 2007(12):39-43+52.

[105] Xu L, Zhang HP, Wan YT. Study on ignition of thermoplastic linings[J]. Strategic Study of CAE, 2007(12):39-43+52.

[106] Janssens M. Improved method of analysis for the LIFT apparatus. Part I: Ignition[C]//Proceedings of the 2nd Fire and Materials Conference. London, England: Interscience Communications,1993:37-46.

[107] Xie B, Han Y, Huang H, et al. Numerical study of natural ventilation in urban shallow tunnels: Impact of shaft cross section[J]. Sustainable Cities and Society,2018, 42:521-537.

[108] 范梦琳,李元洲.车辆阻塞效应下隧道火灾烟气温度及烟气逆流长度变化规律研究[J].火灾科学,2017,26(1):29-36.

[109] 吴天琦. 基于实验与区域模型的受限空间多层电缆桥架火灾研究[D].合肥:中国科学技术大学,2016.

[110] McGrattan K, McDermott R, Hostikka S, et al. Fire Dynamics Simulator User’s Guide[M]. NIST Special Publication 1019 Sixth Edition, 2018.

[111] 李颖臻. 含救援站特长隧道火灾特性及烟气控制研究[D].成都:西南交通大学,2010.

[112] Ingason H, Li YZ, Model scale tunnel fire tests with longitudinal ventilation[J]. Fire Safety Journal,2010,45:371-384.

[113] 李华祥,张国维,贾伯岩,等.城市地下综合管廊液氮灭火特性试验研究[J].中国安全科学学报,2020,30(8):143-150.

[114] P. Marke. Cable tunnels—an integrated fire detection/suppression system for rapid extinguishment[J]. Fire Technology,1991,27(3):219-233.

中图分类号:

 X928.7    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式