- 无标题文档
查看论文信息

论文中文题名:

 MYP和MYJV型矿用电缆火灾燃烧特性及烟气毒性研究    

姓名:

 霍宇航    

学号:

 20220226136    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井火灾防控理论与方法    

第一导师姓名:

 王伟峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the combustion characteristics and smoke toxicity of MYP and MYJV mining cable fires    

论文中文关键词:

 矿井火灾 ; 矿用电缆 ; 热解特性 ; 火灾危险性 ; 燃烧特性 ; 烟气毒性    

论文外文关键词:

 Mine fire ; Mining cable ; Pyrolysis characteristics ; Fire hazard ; Combustion characteristics ; Smoke toxicity    

论文中文摘要:

随着矿山智能化建设,电气设备投入增大,矿用电缆广泛应用于煤矿井下。矿用电 缆在过载、短路和外部受热作用下,容易引起绝缘材料温度升高,导致电缆发生热解燃 烧反应,诱发矿井电缆火灾,甚至引发瓦斯爆炸等严重后果。因此,开展矿用电缆火灾 燃烧特性和烟气毒性研究具有重要的理论价值和实际意义。 本文选取两种型号(MYP、MYJV)矿用电缆为研究对象,主要研究了矿用电缆绝 缘材料的热解特性,通过分析热解产物的成分与特性,从而对矿用电缆燃烧特性及烟气 毒性进行深入的研究,研究主要涵盖以下三个方面的内容: (1)矿用电缆绝缘材料热解特性研究。通过热重-红外联用仪,对矿用电缆绝缘材 料开展热解实验。研究发现:在升温结束后,CM 护套、PVC 护套、EPDM 绝缘层均无 法完全分解,而 XLPE 绝缘层可以完全分解。四种绝缘材料在主热解阶段中活化能排序 为:CM 护套>XLPE 绝缘层>PVC 护套>EPDM 绝缘层。因此,在矿用电缆选型中, 建议选用PVC护套与EPDM绝缘层相结合的新型矿用电缆,使其具有更好的热稳定性。 (2)矿用电缆燃烧特性研究。本文选取两种型号矿用电缆(MYP 和 MYJV)作为 研究对象,通过锥形量热仪,对矿用电缆开展燃烧实验。研究发现:在 30~60 kW/m2 辐射强度下,两种矿用电缆的燃烧参数变化规律表现出较大的差异性。主要原因是 CM 护 套在高温下形成具有阻燃隔氧的致密炭层结构,使内部 EPDM 绝缘层不能充分燃烧。此 外,通过火灾危险性综合分析得出,MYP 矿用电缆具有更小的火灾危险性。 (3)矿用电缆烟气毒性研究。本文选取两种型号矿用电缆(MYP 和 MYJV)作为 研究对象,通过 NBS 烟密度试验箱和傅里叶红外烟气分析仪联用,对矿用电缆开展烟 气毒性实验。研究发现:两种矿用电缆所产生的烟气成分中,HCl 是致人伤亡最主要的 气体。此外,通过毒性指数值 CITG 值和 FED 值发现,相比 MYJV 矿用电缆,MYP 矿用电缆具有更大的毒气危害性。 通过热重-红外联用仪、锥形量热仪、NBS 烟密度箱、红外烟气成分分析仪等实验 仪器,探究了绝缘材料对矿用电缆火灾特性的影响,研究结果为矿用电缆的应用选材和应急防灾提供了一定的理论支持。

论文外文摘要:

With the establishment of intelligent mines and the increase in investment in electrical equipment, mining cables are widely used in mines. Under overload, short circuit, and external heating, mining cables can easily cause an increase in insulation material temperature, leading to thermal decomposition and combustion reactions of the cables, ultimately leading to serious consequences such as mine cable fires and even gas explosions. Therefore, conducting research on the combustion characteristics and smoke toxicity of mining cable fires has important theoretical value and practical significance. This article selects two types of mining cables (MYP and MYJV) as the research objects, mainly studying the pyrolysis characteristics of insulation materials for mining cables. By analyzing the composition and characteristics of pyrolysis products, in-depth research is conducted on the combustion characteristics and smoke toxicity of mining cables. The research mainly covers the following three aspects: (1) Research on the pyrolysis characteristics of insulation materials for mining cables. Pyrolysis experiments were conducted on insulation materials for mining cables using a thermogravimetric infrared spectrometer. Research has found that before the end of heating, the CM sheath, PVC sheath, and EPDM insulation layer cannot be completely decomposed, while the XLPE insulation layer can be completely decomposed. The activation energy sequence of the four insulation materials in the main pyrolysis stage is: CM sheath>XLPE insulation layer>PVC sheath>EPDM insulation layer. Therefore, in the selection of mining cables, it is recommended to choose a new type of mining cable that combines PVC sheath and EPDM insulation layer to ensure better thermal stability. (2) Research on the combustion characteristics of mining cables. This article selects two types of mining cables (MYP and MYJV) as the research objects, and conducts combustion experiments on mining cables using a conical calorimeter. It is found that under the radiant intensity of 30~60 kW/m2 , the variation law of combustion parameters of the two kinds of mining cables shows great difference. The main reason is that the CM sheath forms a dense carbon layer structure with flame retardancy and oxygen insulation at high temperatures, which prevents the internal EPDM insulation layer from fully burning. In addition, through comprehensive fire hazard analysis, it is concluded that MYP mining cables have a lower fire hazard. (3) Research on the toxicity of smoke from mining cables. This article selects two types of mining cables (MYP and MYJV) as the research objects, and conducts smoke toxicity experiments on mining cables through the combination of NBS smoke density test box and Fourier infrared smoke analyzer. Research has found that HCl is the main gas causing casualties among the smoke components generated by two types of mining cables. In addition, it was found through the toxicity index values CITG and FED that MYP mining cables have greater toxic gas hazards compared to MYJV mining cables. The influence of insulation materials on the fire characteristics of mining cables was explored through experimental instruments such as thermogravimetric infrared spectroscopy, cone calorimeter, NBS smoke density box, and infrared smoke composition analyzer. The research results provide certain theoretical support for the application and selection of mining cable materials and emergency disaster prevention.

参考文献:

[1] 梁运涛,罗海珠.中国煤矿火灾防治技术现状与趋势[J].煤炭学报,2008,33(2):126-130.

[2] 梁运涛,侯贤军,罗海珠,等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术,2016,44(6):1-613.

[3] 王国法,王虹,任怀伟,等.智慧煤矿 2025 情景目标和发展路径[J].煤炭学报,2018,43(02):295-305.

[4] 任晓伟,王振兴,王锐,等.煤矿电缆火灾危险性研究[J].煤矿安全,2022,53(09):151-156.

[5] 卢建.煤矿用电缆火灾致因及其防范[J].煤矿安全,2016,47(05):248-250.

[6] Kaczorek-Chrobak K, Fangrat J, Papis BK. Calorimetric behaviour of electric cables. Energies. 2021; 14(4):1007.

[7] Perka B, Piwowarski K. A method for determining the impact of ambient temperature on an electrical cable during a fire. Energies. 2021; 14(21): 7260.

[8] Li C, Chen J, Zhang W, Hu L, et al. Influence of arc size on the ignition and fl

ame propagation of cable fire. Energies. 2021; 14(18): 5675.

[9] Tripathy D, Ala C. Identification of safety hazards in Indian underground coal mines. Journal of Sustainable Mining. 2018; 17(4): 175-183.

[10] Meinier R, Sonnier R, Zavaleta P, et al. Fire behavior of halogen-free flame-retardant electrical cables with the cone calorimeter. Journal of Hazardous Materials. 2018; 342: 306-316.

[11] Meng X, Yang H, Lu Z, et al. Study on catalytic pyrolysis and combustion characteristics of waste cable sheath with crosslinked polyethylene[J]. Advanced Composites and Hybrid Materials, 2022, 5(4):2948-2963.

[12] Wang Y, Kang N, Lin J, et al. On the pyrolysis characteristic parameters of four flame-retardant classes of PVC sheathless cable insulation materials[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170:105901.

[13] Wei N, Ai J W. The study of the pyrolysis and reaction of flame-retardant cables[J]. Fire Science and Technology, 2022, 41(1):123.

[14] Kong J, Zhou K, Ren X, et al. Insight into gaseous product distribution of crosslinked polyethylene pyrolysis using ReaxFF MD simulation and TG-MS[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169:105847.

[15] 申婷.地铁隧道电线电缆火灾危险性研究[D].首都经济贸易大学,2018.

[16] 张佳庆,过羿,冯瑞,等.典型变电站阻燃低压电缆外护套材料火灾条件下热解固气产物特性及反应机理[J].清华大学学报(自然科学版),2022,62(01):33-42.

[17] 王志超. 环境气氛对典型电缆外套材料热分解行为的影响[J]. 消防科学与技术, 2019, 38(06):780-782+788.

[18] 万留杰,王卫东,李康.PVC 热解特性研究[J].河南工学院学报,2022,30(03):25-29.

[19] You J, Chung Y. Risk of Smoke Occurring in the Combustion of Plastics[J]. Fire Science and Engineering, 2019, 33(1): 69-75.

[20] Martinka J, Rantuch P, Sulová J, et al. Assessing the fire risk of electrical cables using a cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(6):3069-3083.

[21] Zhang Z, He Y, Wu Y. Experimental Study on Smoke Characteristics of Aviation Cable Material Based on Cone Calorimeter[C]//2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE). IEEE, 2019:1-7.

[22] Cai Z, Chen X, Zhang J, et al. Bench-scale experimental study on the fire behavior of electric cable arrays by considering different layouts[J]. Journal of fire sciences, 2021, 39(6):427-442.

[23] 付强.基于 CONE 和 MCC 的典型电缆燃烧性能研究[J].消防科学与技术,2012,31(03):229-233.

[24] 周游,支明.阻燃交联聚乙烯绝缘电缆耐火性与燃烧特性的实验研究[J].消防技术与产品信息,2013(06):34-36.

[25] 李印,王学辉,汪箭.ZR-KVV 电缆排布数量对燃烧特性影响的实验研究[J].火灾科学,2

022,31(02):67-75.

[26] 王志,邹积昀,曲芳.航空含氟树脂电缆燃烧及火蔓延特性研究[J].化工新型材料,2022,

50(02):95-100.

[27] 王霁,杨永斌.典型阻燃材料火灾毒性烟气释放规律研究进展[J].科学技术与工程,202

2,22(32):14100-14109.

[28] Jia P, Yu X, Lu J, et al. The Re2Sn2O7 on the enhancement of fire safety and physical performance of Polyolefin/IFR cable materials[J]. Journal of Colloid and Interface Science, 2022, 608: 1652-1661.

[29] Kim M, Lee S, Jeong S, et al. Investigation of combustion, smoke, and toxicity characteristics of flame-retardant and fiber-optic cables used in nuclear power plants[J]. Journal of Mechanical Science and Technology, 2023:1-13.

[30] Kaczorek-Chrobak K, Fangrat J. PVC-based copper electric wires under various fire conditions: Toxicity of fire effluents[J]. Materials, 2020, 13(5):1111.

[31] Seo H J, Kim N K, Lee M C, et al. Investigation into the toxicity of combustion products for CR/EPR cables based on aging period[J]. Journal of Mechanical Science and Technology, 2020, 34:1785-1794.

[32] 龚国祥,李骥,马健峰.电缆燃烧烟气毒性的探讨[J].电线电缆,2011(02):9-13.

[33] 胡定煜,杨玉胜,杨戍,等.基于因子分析的电缆烟气毒性评估[J].火灾科学,2019,28(03):

135-142.

[34] 舒中俊,王志滨.YJV 电缆燃烧烟气及主要毒性产物[J].消防科学与技术,2017,36(10):1356-1357+1363.

[35] 高阳,冯志龙,席天鹏,等.YJV 电缆护套燃烧生成的烟尘及 PAHs 与氯离子排放特征研究[J].安全与环境工程, 2022,29(06):230-239.

[36] 孙继平.《煤矿安全规程》电气部分修订意见[J].工矿自动化,2014,40(04):1-5.

[37] 姜铁竹,张彬彬,杨雷,等.不同熔融焓氯化聚乙烯对 PVC 改性的影响[J].聚氯乙烯,2022,50(02):10-12.

[38] 王银亮,田方方,杨海霞,等.氯化聚乙烯生产工艺分析及发展建议[J].氯碱工业,2022,58(06):16-1722.

[39] 王峰.氯化聚乙烯橡胶储存过程中的性能变化[J].特种橡胶制品,2021,42(02):37-39.

[40] 王亮燕,陶平,邹惠芳,等.几种配合剂对氯化聚乙烯橡胶性能影响的研究[J].橡胶科技,2018,16(08):17-21.

[41] 赵鑫,马俊易,马文斌,等. 不同牌号乙丙橡胶性能研究[J]. 青岛科技大学学报(自然科学版), 2017, 38(S2):7-10.

[42] 汤浩,陈照峰,纪荣华,等.三元乙丙橡胶性能的优化研究[J].特种橡胶制品,2020,41(02):11-15.

[43] 蔡小叶,王翠红,汪琪,等.基于橡胶加工分析仪的不同批次乙丙橡胶性能研究[J].安徽科技,2020(09):48-50.

[44] 冯洪福.并用比对三元乙丙橡胶/四丙氟橡胶性能的影响[J].化工新型材料,2020,48(12):150-153.

[45] 杨前勇,吕同策,康乐,等.三元乙丙橡胶吸水膨胀橡胶性能的研究[J].橡胶工业,2021,68(05):351-356.

[46] 彭道军,徐树全,焦亚东,等.PVC 材料基本力学性能和结构应用现状[J].建材世界,2022,43(06):1-5.

[47] 古振宏.交联聚乙烯在供电通信电缆中的应用研究[J].塑料科技, 2021,49(05):111-114.

[48] 张岩,卫荣刚,马贵荣.电缆用交联聚乙烯绝缘料性能实验研究[J].合成材料老化与应

用,2021,50(02):64-66

[49] 欧阳本红,黄凯文,赵鹏,等.中压聚丙烯和交联聚乙烯绝缘材料的结构与性能对比[J].绝缘材料,2022,55(03):32-37.

[50] 李培娴,章庆科,杨丽,等.标准条件下电缆交联聚乙烯绝缘热延伸性能的影响因素研究[J].价值工程,2022,41(20):155-158.

[51] 王俊荣,张利粉,李克营.交联聚乙烯专用料的结构与性能[J].石化技术与应用,2018, 36(01):22-24.

[52] 杨曦,于文川,马少华.影响电缆交联聚乙烯绝缘热延伸性能因素分析[J].中国新技术新产品,2017(21):79-80.

[53] 褚燕燕,宋树芹,张曰理,等.基于分布活化能模型的热重测试技术完善[J].实验科学与技术,2022, 20(06):1-5.

[54] 王忠辉.傅里叶变换红外光谱法实验教学改革探索[J].实验室科学,2021, 24(05):15-17.

[55] 王康,刘运传,孟祥艳,等.锥形量热仪测量材料热释放速率的影响因素分析[J].消防科学与技术,2018,37(04):449-452.

[56] Gross D, Loftus J, Robertson A. Method for measuring smoke from burning materials[C]//Symposium on Fire Test Methods-Restraint & Smoke 1966. ASTM International, 1967.

[57] Lee T. The smoke density chamber method for evaluating the potential smoke generation of building materials[M]. US Dept. of Commerce, National Bureau of Standards, 1973.

[58] ISO B. 5659-2. Plastics-Smoke generation. Part 2: Determination of optical density by a single-chamber test[S]. International Organization for Standardization (ISO).2012.

[59] ASTM E. 662. Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials[S]. ASTM International, West Conshohocken, PA, 1979.

[60] 王彦文,张旭然,高彦,等.基于热路模型的矿用高压电缆内因火灾预警研究[J].矿业科学学报,2022,7(02):225-232.

[61] 王雷,徐家琛,甄雅星,等.基于热重分析的呼和浩特主要园林树种热解动力学研究[J].北京林业大学学报,2020,42(02):87-95.

[62] 骆强,曲芳,姚志鹏,等.典型航空电缆的热解动力学研究[J].华南师范大学学报(自然科学版),2021,53(05):30-36.

[63] 甯红波,李泽荣,李象远.燃烧反应动力学研究进展[J].物理化学学报,2016, 32(01):131-153.

[64] 李鹤群,安崇伟,杜梦远,等.基于 Kissinger 方法的 3,4-双(4-硝基呋咱-3-基)氧化呋咱的热分解反应动力学参数和热稳定性研究(英文)[J].火炸药学报,2016,39(03):58-60+65.

[65] Zhou J, Liu G, Wang S, et al. TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC[J]. Journal of the Energy Institute, 2020, 93(6): 2362-2370.

[66] Kumar A, Choudhary R, Kumar A. Composite Asphalt Modification with Waste EPDM Rubber and Tire Pyrolytic Oil: Rheological, Chemical, and Morphological Evaluation[J]. Journal of Materials in Civil Engineering, 2022, 34(12): 04022325.

[67] Hu M, Tang B, Liang Q, et al. Research on Thermal Aging Behavior and Thermal Decomposition of Insulating Material XLPE[J]. Advances in Engineering Technology Research, 2022, 2(1): 23-23.

[68] 胡辰玮,李彬,吴玉锋,等.废有机-无机复合材料热解回收技术现状与展望[J].材料导报,2021,35(21):21091-21098+21112.

[69] Zhao D, Liu W, Shen Y, et al. Improved self-supporting and ceramifiable properties of ceramifiable EPDM composites by adding aramid fiber[J]. Polymers, 2020, 12(7): 1523.

[70] Rodriguez J, Lustosa F, Melo L, et al. Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149:104839.

[71] 任宁,王昉,张建军,等.热分析动力学研究方法的新进展[J].物理化学学报,2020,36(06):12-18.

[72] 吕亮,段成,汲胜昌,等.电线电缆引燃机理及燃烧特性研究综述[J].高电压技术,2022,48(02):612-625.

[73] International Organization for Standardization. ISO 5660-1:2015-Reaction to fire tests: heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement). 3rd ed. Geneva: International Organization for Standardization,2015.

[74] Janssens M. Measuring rate of heat release by oxygen consumption[J]. Fire Technology, 1991, 27(03):234-249.

[75] 陈善求,赵雯筠,颜龙,等.基于 CONE 的超高温耐火电缆火灾危险性分析[J].消防科学与技术,2022,41(02):156-160.

[76] Quintiere J. A theoretical basis for flammability properties[J]. Fire and Materials, 2006, 30(03):175-214.

[77] Rhodes B, Quintiere J. Burning Rate and Flame Heat Flux for PMMA in a ConeCalorimeter[J]. Fire Safety Journal, 1996, 26(03):221240.

[78] 陈海燕,王继赟,宗若雯.样品尺寸对热塑性聚氨酯燃烧性能的影响研究[J].火灾科学,2021,30(01):1-8.

[79] 史聪灵,钱小东,张漪帆,等.基于火焰传播量热仪的 ZR-YJLV 电缆燃烧特性研究[J].中国安全生产科学技术,2020,16(S1):17-21.

[80] 张政,贺元骅,伍毅,等.典型航空电缆材料的火灾危险性分析[J].塑料科技,2019,47(11):128-133.

[81] ASTM E 1474-14, Standard Test Method for Deternlining the Heat Release Rate of Upholstered Furniture and Mattress Components or Composites Using a Bench Scale Oxygen Consumption Calorimeter [S], ASTM International, West Conshohocken, PA, 2014.

[82] 王长进,费楚然,李建喜.EN 45545-2 标准对电线电缆相关要求的解析[J].电工电气,2020(10):62-65.

[83] 顾彩虹.基于 N-GAS 模型的某沙发厂火灾烟气中 HCN 分布及烟气毒性分析[J].防灾科技学院学报,2017,19(03):66-73.

[84] 邓小兵,李西黎,朱剑.小尺度和中尺度产烟模型烟气毒性评价研究[J].消防科学与技术,2022,41(10):1376-1379.

[85] 许镇,唐方勤,任爱珠.烟气毒性多气体的改进评价模型[J].清华大学学报(自然科学版),2011,51(02):194-197.

[86] 陈银,蒋勇,潘龙苇,等.基于 EDC 模型的含 HCN 火灾烟气数值模拟及毒性评价[J].安全与环境工程,2015,22(02):117-123.

[87] 李山岭,蒋勇,邱榕,等.火灾烟气危害定量评价模型 THVCH 及其应用[J].安全与环境学报,2012,12(02):250-256

中图分类号:

 TD752.3    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式