论文中文题名: | 冻融循环下土石混合体-混凝土界面剪切蠕变特性研究 |
姓名: | |
学号: | 20204053005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081401 |
学科名称: | 工学 - 土木工程 - 岩土工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 冻土工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-08 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Study on Shear Creep Behavior of Soil-rock Mixture-Concrete Interface Under Freeze-thaw Cycles |
论文中文关键词: | |
论文外文关键词: | Soil-rock mix-concrete ; Freeze-thaw cycle ; creep ; Mechanical properties ; numerical simulation ; Constitutive model |
论文中文摘要: |
因冻土物理力学性质受环境影响变化极大,所以寒区工程大多采用“以桥带路”的形式,而目前活动层厚度随季节变化显著,桩基受冻融循环的间歇性蠕变病害问题日益凸显,究其原因为土石混合体-混凝土界面受冻融影响蠕变强度劣化所致。因此,本文为探究不同冻融循环次数下土石混合体-混凝土界面剪切蠕变特性开展了以下试验研究:(1)通过室内直剪试验,研究不同影响因素对土石混合体-混凝土界面的应力-位移曲线、抗剪强度以及其相关参数的变化规律,并基于冻融和含石率等参数,提出界面抗剪强度的经验公式;(2)基于直剪试验结果,开展不同工况下土石混合体-混凝土分级加载进行界面剪切蠕变试验,明确界面的蠕变特性、明晰界面蠕变强度,基于蠕变理论,以土石混合体-混凝土界面剪切蠕变试验为基础,在前人模型基础上并联加入塑性元件,考虑高加载系数下的界面松散化现象,建立土石混合体-混凝土界面黏弹塑性剪切蠕变模型,对试样结果进行参数辨识,验证并对比分析蠕变参数变化规律;(3)基于PFC2D软件构建界面蠕变模型,明晰剪切蠕变过程中裂隙发育、颗粒旋转、位移变化,从细观颗粒角度探究界面宏观蠕变变形破坏机制,为寒区桩基承载力劣化提供理论参考。 针对土石混合体-混凝土界面强度变化问题,研究表明应力-位移曲线在峰值后无软化现象,属于应变硬化性,界面的抗剪强度会随着冻融循环作用而出现明显的急剧下降、回升和稳态下降的趋势,抗剪强度随含石率呈现先增大后减小趋势;界面强度和黏聚力变化趋势基本一致,利用摩尔库伦理论模型,结合冻融次数和含石量等因素提出了一个用于评估土石混合体-混凝土界面抗剪强度的经验公式。 针对土石混合体-混凝土界面蠕变特性问题,发现剪切应力较小时,土石混合体-混凝土界面不具备明显的剪切蠕变特征,当施加各级荷载之后极短的一段时间内,剪切位移迅速增大,但剪切蠕变速率逐渐减小,呈现衰减特征。在此过程之后,蠕变剪切速率以及蠕变剪切位移均趋于0。当加载系数逐渐增大,剪切蠕变特征开始增强,并且剪切蠕变速率随着时间增加。大部分工况中加载系数达到0.85时,出现了较为明显的瞬时剪切蠕变、初始剪切蠕变、稳态剪切蠕变和非线性加速剪切蠕变阶段。冻融循环次数越多,破坏时所需蠕变剪切应力就越小,不同含石率下土石混合体-混凝土界面蠕变强度为常规直剪强度的57.71%~69.52% 针对土石混合体-混凝土界面剪切蠕变本构问题,考虑土石混合体-混凝土界面硬化及松散化效应,加入塑性构件改进Burgers模型建立土石混合体-混凝土界面剪切蠕变本构模型,对比分析不同工况下蠕变参数,结果发现粘滞系数 针对土石混合体-混凝土界面剪切蠕变过程中剪切带细观发展破坏特征,利用PFC模拟界面剪切蠕变过程,结果发现冻融循环次数与剪切破坏裂纹数量呈正相关,颗粒旋转及位移量受冻融作用影响较小;含石率的增加剪切带厚度随之变厚,总体看来不同含石率下界面的裂纹的生成方向均为剪切蠕变运动方向的反方向向剪切蠕变运动方向产生,裂缝宽度及空间分布受到界面含石率的影响。研究成果为土石混合体-混凝土界面蠕变体系的发展做出了重要贡献,并且为寒冷地区的桩基工程建设和维护提供了有价值的指导。 |
论文外文摘要: |
Due to the significant changes in environmental impact on frozen soil, most projects in cold regions adopt the form of "bridges leading roads". Currently, the thickness of the active layer varies significantly with the seasons, and the creep problem caused by freeze-thaw cycles is becoming increasingly prominent. Therefore, in order to explore the shear creep characteristics of the soil rock mixture concrete interface under different freeze-thaw cycles, the following experimental studies were carried out: (1) Through the indoor direct shear test, the stress displacement curve, shear strength and its related parameters of the soil rock mixture concrete interface affected by different factors were studied, and based on the freeze-thaw and rock content parameters, an empirical formula for the shear strength of the interface was proposed; (2) Based on the results of the direct shear test, the interface shear creep test of soil rock mixture concrete under different working conditions was carried out under graded loading to clarify the creep characteristics and creep strength of the interface. Based on the creep theory and the shear creep test of soil rock mixture concrete interface, plastic elements were added in parallel on the basis of previous models, and the interface looseness phenomenon under high loading coefficient was considered, Establish a viscoelastic plastic shear creep model for the interface between soil rock mixture and concrete, identify the parameters of the sample results, verify and compare the changes in creep parameters; (3) Based on PFC2D software, an interface creep model is constructed to clarify the development of cracks, particle rotation, and displacement changes during shear creep. The macroscopic creep deformation and failure mechanism of the interface is explored from the perspective of microscopic particles, providing theoretical reference for the deterioration of pile foundation bearing capacity in cold regions. Research has shown that there is no softening phenomenon in the stress-strain curve after the peak value, which belongs to strain hardening. The shear strength of the interface will show a significant sharp decrease, rebound, and steady-state decrease trend with the freeze-thaw cycle, and the shear strength will first increase and then decrease with the stone content; The trend of changes in interface strength and cohesion is basically consistent. Using the Mohr Coulomb theory model and considering factors such as freeze-thaw cycles and stone content, an empirical formula for evaluating the shear strength of the soil concrete interface is proposed. Regarding the creep characteristics of the interface between soil and rock mixture and concrete, it was found that when the shear stress is low, the interface between soil and rock mixture and concrete does not exhibit obvious shear creep characteristics. After applying various levels of loads, the shear displacement rapidly increases for a short period of time, but the shear creep rate gradually decreases, showing a attenuation characteristic. After this process, the creep shear rate and creep shear displacement both tend to zero. As the loading coefficient gradually increases, the shear creep characteristics begin to enhance, and the shear creep rate increases over time. When the loading coefficient reaches 0.85 in most working conditions, there are obvious stages of instantaneous shear creep, initial shear creep, steady-state shear creep, and nonlinear accelerated shear creep. The more freeze-thaw cycles, the smaller the required creep shear stress for failure. When the loading coefficient is high, the number of freeze-thaw cycles has a greater impact on the shear creep curve. The shear strain at the inflection point increases with the increase of the loading coefficient. In response to the constitutive problem of shear creep at the interface between soil and rock mixture and concrete, considering the hardening and loosening effects of the interface between soil and rock mixture and concrete, a plastic component was added to improve the Burgers model and establish a shear creep constitutive model for the interface between soil and rock mixture and concrete. A comparative analysis of creep parameters under different working conditions was conducted, and it was found that the changes in viscosity coefficient In response to the microscopic development and failure characteristics of shear bands during the shear creep process of the soil rock mixture concrete interface, PFC was used to simulate the interface shear creep process. The results showed that the number of freeze-thaw cycles was positively correlated with the number of shear failure cracks, and the particle rotation and displacement were less affected by freeze-thaw effects; As the stone content increases, the thickness of the shear band becomes thicker. Overall, the direction of crack generation at the interface under different stone content is the opposite direction of shear creep movement, and the width and spatial distribution of cracks are affected by the stone content at the interface.This research achievement has made an important contribution to the development of the creep system at the interface between soil rock mixture and concrete, and provides valuable guidance for the construction and maintenance of pile foundation engineering in cold regions. |
参考文献: |
[1] 金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000(02): 161-173. [2] 蔡汉成, 李 勇, 杨永鹏, 等. 青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2016, 35(7): 1434-1444. [3] 吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学(D辑: 地球科学), 2002, 32(2): 141-148. [4] 孙厚超, 杨平, 王国良. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12): 3636-3641+3643. [5] 史向阳. 冻土层下水对桩基热稳定性影响研究[D]. 兰州交通大学, 2016. [6] 汪双杰, 王佐, 陈建兵. 青藏高原工程走廊冻土环境与高速公路布局[M]. 上海: 上海科学出版社, 2017. [7] 中铁第一勘察设计院集团有限公司. 改建铁路青藏线格尔木至拉萨段扩能改造车站工程勘察报告[R]. 西安: 中铁第一勘察设计院集团有限公司, 2014. [10] 王宇, 李晓, 赫建明, 等. 土石混合体细观特性研究现状及展望[J]. 工程地质学报, 2014, 22(01): 112-123. [13] 侯鑫, 马巍, 李国玉, 等. 冻融循环对硅酸钠固化黄土力学性质的影响[J]. 冰川冻土, 2018, 40(1): 86-93. [14] 刘晖, 刘建坤, 邰博文, 等. 冻融循环对含砂粉土力学性质的影响[J]. 哈尔滨工业大学学报, 2018, 50(3): 135-142. [26] 张国栋, 罗雯, 杜鹏. 三峡库区典型土石混合体与混凝土接触面大型剪切试验研究[J]. 水利水电技术, 2014, 45(08): 149-152. [27] 董博. 堆石料与混凝土面板之间接触面变形特性试验研究[D]. 大连理工大学, 2018. [29] 成浩, 王晅, 张家生, 等. 颗粒粒度与级配对碎石料与结构接触面剪切特性的影响[J]. 中南大学学报(自然科学版), 2018, 49(04): 925-932. [30] 陈静, 李邵军, 孟凡震, 等. 三峡库区滑坡土石混合体与桩的接触面力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(S1): 2888-2895. [31] 张嘎, 张建民. 粗粒土与结构接触面单调力学特性的试验研究[J]. 岩土工程学报, 2004, 26(1): 21-25. [32] 张嘎, 张建民. 大型土与结构接触面循环加载剪切仪的研制及应用[J]. 岩土工程学报, 2003(02): 149-153. [33] 温智, 俞祁浩, 马巍, 等. 青藏粉土-玻璃钢接触面力学特性直剪试验研究[J]. 岩土力学, 2013,34(S2): 45-50. [34] 杨忠平, 蒋源文, 李诗琪, 等. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020,v.42; No.355(10): 1947-1954. [35] 丑亚玲, 黄守洋, 孙丽源, 等. 基于冻融作用的氯盐渍土-钢块界面力学模型[J]. 岩土力学, 2019(S1): 1-13. [36] 丑亚玲, 郏书胜, 张庆海. 基于冻融作用的非饱和黄土-混凝土界面力学模型[J]. 工程地质学报, 2018, 26(04): 825-834. [37] 何鹏飞, 马巍, 穆彦虎, 等. 冻融循环对冻土–混凝土界面冻结强度影响的试验研究[J]. 岩土工程学报, 2020, 42(02): 299-307. [38] 赵淑萍, 何平, 朱元林, 等. 冻结粉土的动静蠕变特征比较[J]. 岩土工程学报, 2006(12): 2160-2163. [39] 赵淑萍, 马巍, 郑剑峰, 等. 冻结粉土的动蠕变强度[J]. 实验室研究与探索, 2007(10): 288-290+296. [40] 蒋炼, 侯丰, 刘恩龙, 等.冻结黄土三轴蠕变特性[J]. 人民黄河, 2019, 41(02): 148-152. [41] 陈雨漫, 林斌. 冻结黏土单轴力学性能试验及蠕变模型研究[J]. 低温工程, 2021(04):70-76. [42] 高志. 冻融循环作用下路基土蠕变研究[J]. 资源信息与工程, 2021, 36(01): 64-67. [43] 董连成, 张公, 赵淑萍, 等.冻土蠕变指标试验研究[J]. 冰川冻土, 2014, 36(01): 130-136. [44] 尹晓文, 傅强, 马昆林. 冻土三轴蠕变非线性数学模型研究[J]. 冰川冻土, 2013, 35(01): 171-176. [49] 曲广周, 张建明, 程东幸. 青藏高原冻结粉质黏土直剪蠕变特性试验研究[J]. 岩土力学, 2011,32(01): 95-98. [50] 刘向阳, 程桦, 曹广勇. 阜阳刘庄矿东风井人工冻土蠕变实验研究[J]. 安徽建筑大学学报, 2014, 22(06): 37-41. [51] 梁军, 刘汉龙, 高玉峰. 堆石蠕变机理分析与颗粒破碎特性研究[J]. 岩土力学, 2003(03): 479-483. [52] 程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007(08): 1151-1158. [53] 郭鸿, 郭瑞, 南亚林, 等. 坡积土石混合体蠕变特性的Burgers模型[J]. 中山大学学报(自然科学版), 2020, v. 59; No.272(06): 64-69. [54] 杨进财. 高温冻土-混凝土接触面剪切蠕变特性试验研究[D]. 兰州交通大学,2020. [55] 王廷栋, 赵希淑, 吴紫汪, 等. 冻土蠕变模拟实验的相似条件[J]. 冰川冻土, 1995(04): 322-327. [56] 盛煜, 吴紫汪, 苗丽娜, 等. 冻土单轴压缩蠕变的归一化模型[J]. 自然科学进展, 1996(03): 103-106. [57] 刘子昕, 张潮潮, 周艳. 滨海软土地层人工冻土蠕变试验研究[J]. 四川建材, 2018, 44(09): 95-96. [58] 方蕾蕾. 不同冻结温度下人工冻土热力学性质及蠕变特性试验研究[D]. 安徽理工大学,2015. [59] 李佐良, 许再良, 杨爱武, 等.德州松软土蠕变特性及其模型研究[J]. 工程地质学报, 2013,21(06): 967-972. [60] 张峰瑞, 姜谙男, 江宗斌, 等. 低温冻土地区的软土路基蠕变沉降数值分析[J].公路工程, 2020, 45(04): 79-84. [61] 何菲. 冻结粉土-混凝土界面非线性剪切蠕变特性研究[D]. 兰州交通大学, 2019. [62] 吴晓云, 刘爽. 冻结黏土开尔文与伯格斯蠕变模型分析[J]. 安徽理工大学学报(自然科学版), 2020, 40(02): 67-72. [63] 郭梦圆, 姚兆明, 李梦洁, 等. 冻结黏土力学特性分析及改进S-M蠕变模型[J]. 力学与实践, 2018, 40(06): 653-660. [64] 黄方勇, 毛芬. 冻结砂土遗传算法分数阶导数Burgers蠕变模型[J]. 安徽建筑, 2015,22(06): 99+102. [65] 孙琦, 张向东, 杨佳, 等. 冻结条件下风积土蠕变损伤特性及本构模型研究[J]. 公路交通科技, 2015, 32(05): 61-67. [66] 曹伟, 项蒙佳, 赵少飞. 冻土蠕变的非线性模型研究[J]. 华北科技学院学报, 2015, 12(03): 82-86+100. [67] 曹伟, 李文静, 张红芬, 等. 冻土蠕变模型在ABAQUS中的二次开发[J]. 华北科技学院学报, 2019, 16(01): 63-69. [68] 张虎, 张建明, 苏凯, 等.冻土原位旁压蠕变试验粘弹性模型分析[J]. 土木建筑与环境工程, 2013, 35(06): 22-27+39. [71] 杨岁桥, 王宁宁, 张虎. 高温冻土的蠕变特性试验及蠕变模型研究[J]. 冰川冻土, 2020, 42(03): 834-842. [72] 李君善. 冻结砂土与混凝土接触面的剪切蠕变特性试验研究[D]. 兰州交通大学, 2021. [73] 张强, 汪小刚, 赵宇飞, 等. 不同围压加载方式下土石混合体变形破坏机制颗粒流模拟研究[J]. 岩土工程学报, 2018, 40(11): 2051-2060. [74] 赵亦凡, 刘文白. 粗粒土与结构接触面往返剪切试验的PFC2D数值模拟[J]. 上海海事大学学报, 2015, 36(01): 81-85. [77] 杨忠平, 雷晓丹, 王雷, 等. 含石量对土石混合体剪切特性影响的颗粒离散元数值研究[J]. 工程地质学报, 2017, 25(04): 1035-1045. [78] 丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(03): 477-484. [79] 张强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(08): 1545-1554. [81] 后浩斌, 李盛, 尤著刚, 等. 基于PFC(2D)的高填黄土减载明洞土体固结蠕变分析[J]. 科学技术与工程, 2022,22(32): 14360-14369. [82] 交通部公路科学研究院. JTG 3430-2020 公路土工试验规程[S]. 北京: 人民交通出版社, 2020. [83] 李广信. 论土骨架与渗透力[J]. 岩土工程学报, 2016, 38(08): 1522-1528. [84] 张敏超, 刘新荣, 王鹏, 等. 不同含石率下泥岩土石混合体剪切特性及细观破坏机制[J]. 土木与环境工程学报, 2019, 41(06): 17-26. [85] 沈明荣, 谌洪菊, 张清照.基于蠕变试验的结构面长期强度确定方法[J]. 岩石力学与工程学报, 2012, 31(01):1-7. [86] 唐丽云, 李屹恒, 于永堂, 等.冻融作用下土石混合体-混凝土界面强度劣化、孔隙结构演化及颗粒运移研究[J/OL]. 冰川冻土:1-16. [87] 李鑫, 刘恩龙, 侯丰.考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(02):624-631. |
中图分类号: | TU445 |
开放日期: | 2023-06-08 |