题名: | 新安矿岩浆侵入煤氧化放热特性及自燃预测指标研究 |
作者: | |
学号: | 21220226169 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 085700 |
学科: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防控 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-17 |
答辩日期: | 2024-06-02 |
外文题名: | Study on oxidizing and exothermic characteristics of magma intrusion coal and early warning indicators of spontaneous combustion in Xin’an mine |
关键词: | |
外文关键词: | Magma intrusion ; metamorphic coal ; exothermic capacity ; activation energy ; early warning indicators. |
摘要: |
岩浆侵入煤系地层在我国广泛存在,探究岩浆侵入作用对煤低温氧化特性的影响,对开采岩浆侵入煤层自燃灾害的防控具有重要意义。本文以现场地质背景为依据,结合理论分析和实验测试对岩浆侵入区煤自燃特性进行研究,以新安矿二采区负350工作面的变质煤以及原煤为研究对象,系统地开展了煤体基础物性参数与岩浆作用规律研究,岩浆侵入区变质煤微观结构研究,岩浆侵入区变质煤低温氧化热效应研究,岩浆侵入区煤自燃预测指标研究,为防治岩浆侵入区煤自燃工作提供理论支持。 通过工业分析与镜质组反射率测试,发现变质煤的物化性质发生较大变化,包括变质煤中水分、挥发分随距岩浆岩距离增加呈递增趋势,灰分、固定碳、镜质组反射率随距岩浆岩距离增加呈递减趋势。将变质煤分为强侵蚀煤、弱侵蚀煤、同镜质组高阶煤,并以变质煤的物性参数作为预测指标,以原煤的物性参数为极限指标,预测出岩浆的侵入作用范围大约为15.17m~20.03m,为此区域岩浆含量(宽度9.4m)的161.38%~213.09%。 通过扫描电镜和压汞测试定性定量地研究了变质煤与原煤的孔隙结构,发现变质煤表面粗糙具有更多的裂隙,出现较多的脱挥发孔,原煤的表面相对平整,没有明显的裂隙;变质煤的比表面积降低,但变质煤的总孔体积升高,且随距岩浆岩距离的增加而减小,强侵蚀煤的渗流孔体积约占总孔体积的94.27%,弱侵蚀煤与同镜质组高阶煤为93.53%和91.19%,原煤仅为89.29%;通过红外光谱测试结果可知,变质煤的苯环多取代基增多,减少了煤体芳香结构中氢原子的数量,由于岩浆的高温灼烧以及矿物元素迁移,导致变质煤中矿物质及灰分多于原煤,变质煤中芳基与烷基醚键C-O减少,羰基C=O含量升高,变质煤的脂肪结构不如原煤稳定,且芳环C=C随距岩浆侵入体距离的增加而降低,岩浆侵入提升了煤化程度。 通过C80微量热测试分析了变质煤与原煤低温氧化热效应的差异,发现在相同升温速率条件下变质煤的特征温度点提前,放热量高于原煤约8.23%~352.3%,表观活化能低于原煤约18.49%~82.41%;在不同供风量条件下变质煤的放热量高于原煤约1.72%~135.76%,表观活化能低于原煤约1.62%~69.02%,岩浆侵入对煤低温氧化起到的促进作用主要体现在强侵蚀煤区域,在不同升温速率和供风量条件下,变质煤与原煤的放热量与氧化活性总体趋势为强侵蚀煤>弱侵蚀煤>同镜质组高阶煤>原煤,但强侵蚀煤受到风量的影响较为剧烈,在供风量为100mL/min时的放热量最高,且更易与氧气反应,放热能力更强。 通过程序升温实验分析变质煤与原煤的气体产物差异,发现变质煤具有更多的原生CO、CO2以及CH4气体,C2H6和C2H4的初现温度均低于原煤,变质煤达到快速氧化阶段所需的温度更低,在相同的实验条件下,变质煤的耗氧速率以及CO生成速率均高于原煤,变质煤的自然发火危险性高于原煤,因此,确定了CO、C2H6、C2H4、R2、C2H6/CH4作为岩浆侵入区煤自燃主要预报指标,R1、R3、C2H4/C2H6作为岩浆侵入区煤自燃辅助预报指标。 |
外文摘要: |
Magma intrusion into coal beds is widely existed in China, and it is of great significance to investigate the influence of magma intrusion on the low-temperature oxidization characteristics of coal, and to prevent and control the spontaneous combustion disaster of magma intrusion into coal beds in mining. Based on the geological background of the site, combined with theoretical analysis and experimental tests to study the spontaneous combustion characteristics of coal in the magma intrusion area, and taking the metamorphic coal in the -350 working face of the second mining area of Xin'an Mine and the raw coal as the research objects, we have systematically carried out the research on the basic physical parameters of the coal body and the law of magma action, the research on the microstructure of the metamorphic coal and the raw coal in the magma intrusion area, the research on the low-temperature oxidization thermal effect of the metamorphic coal and the raw coal in the magma intrusion area. In addition, the research on early warning indicators of spontaneous combustion of coal in magma intrusion areas has been carried out to provide theoretical support for the prevention and control of spontaneous combustion of coal in magma intrusion areas. Through industrial analysis and specular group reflectance test, it was found that the physical and chemical properties of the metamorphic coal changed greatly, including moisture and volatile matter in the metamorphic coal showed an increasing trend with the increase of the distance from the magma rock, and ash, fixed carbon, and specular group reflectance showed a decreasing trend with the increase of the distance from the magma rock. The metamorphic coals were categorized into strongly eroded coals, weakly eroded coals, and high rank coals of the same specular group, and the range of magma intrusion effect was predicted to be about 15.17m~20.03m, which is 161.38%~213.09% of the magma content in this area (width of 9.4m), by using the physical parameters of the metamorphic coals as a prediction index, and using the physical parameters of the raw coals as a limiting index. The pore structure of the metamorphic coal and the raw coal was studied qualitatively and quantitatively by scanning electron microscopy and piezometric mercury test, and it was found that the surface of the metamorphic coal was rough with more fissures and appeared more de-volatilized pores, while the surface of the raw coal was relatively flat and had no obvious fissures. The specific surface area of the metamorphic coal decreased, but the total pore volume of the metamorphic coal was elevated and decreased with the increase of the distance from the magma rock, and the seepage pore volume of the strongly eroded coal accounted for about 94.27% of the total pore volume, that of the weakly eroded coal and the high rank coal of the same specular group was 93.53% and 91.19%, and that of the raw coal was only 89.29%. The results of infrared spectroscopy test show that the metamorphic coal has more benzene ring polysubstituents, which reduces the number of hydrogen atoms in the aromatic structure of the coal body; due to the high temperature burning of the magma and the migration of the mineral elements, the minerals and ash in the metamorphic coal are more than that of the raw coal; the aryl and alkyl ether bonding C-O in the metamorphic coal decreases, and the content of the carbonyl group C=O is elevated, and the aliphatic structure of metamorphic coal is not as stable as that of the raw coal, and the aryl C=C decreases with the increase of the distance from the magmatic The fat structure of the metamorphic coal is not as stable as that of the raw coal, and the C=C of the aromatic ring decreases with the distance from the magma intrusion. The differences in thermal effects of low-temperature oxidation between metamorphic coal and raw coal were analyzed by C80 microcalorimetry test, and it was found that the characteristic temperature point of metamorphic coal was advanced under the condition of the same warming rate, the exothermic capacity was higher than that of raw coal by about 8.23%~352.3%, and the apparent activation energy was lower than that of raw coal by about 18.49%~82.41%; under the condition of different air supply, the exothermic capacity of metamorphic coal was higher than that of raw coal by about 1.72%~135.76% and the apparent activation energy was lower than that of raw coal by about 1.62%~69.02%. 135.76%, and the apparent activation energy is lower than that of the raw coal by about 1.62%~69.02%. The promotion effect of magma intrusion on the low-temperature oxidation of coal is mainly reflected in the region of strongly eroded coal, and the overall trend of exothermic capacity and oxidizing activity of metamorphic coal and the raw coal under the conditions of different warming rate and air supply is strongly eroded coal>weakly eroded coal> high rank coals of the same specular group >raw coal, but the strongly eroded coal is more drastically affected by air supply. However, the strongly eroded coal was more violently affected by the air volume, and the exothermic capacity was the highest when the air volume was 100 mL/min, and it was easier to react with oxygen and had a stronger exothermic capacity. The difference of gas products between metamorphic coal and raw coal was analyzed through the program heating experiment, and it was found that the metamorphic coal had more primary CO, CO2 and CH4 gases, and the initial temperatures of C2H6 and C2H4 were lower than those of raw coal, and the temperature required for the metamorphic coal to reach the intense oxidation stage was lower, and the rate of oxygen consumption as well as the rate of CO generation of the metamorphic coal was higher than that of the raw coal under the same experimental conditions, and the natural ignition risk of metamorphic coal was higher than that of the raw coal. Therefore, CO, C2H6, C2H4, R2, C2H6/CH4 were identified as the main prediction indicators for spontaneous combustion of coal in magma intrusion area, and R1, R3, C2H4/C2H6 were identified as auxiliary prediction indicators for spontaneous combustion of coal in magma intrusion area. |
参考文献: |
[1] 杨英明, 孙建东, 李全生. 我国能源结构优化研究现状及展望[J]. 煤炭工程, 2019, 51(2): 149-153. [2] 梁慧婷. 中国煤炭产业现状分析[J]. 农村经济与科技, 2019, 30(14): 113-114. [3] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[N]. 人民日报, 2024: (010). [4] 李小飞, 张渝, 张学庆, 等. 我国矿井火灾防治措施[J]. 中国矿业, 2015, 24(S2): 263-265. [5] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016, 44(10): 1-7. [6] 张嬿妮, 邓军, 罗振敏, 等. 煤自燃影响因素的热重分析[J]. 西安科技大学学报, 2008(2): 388-391. [7] 姬建虎, 谢强燕, 王长元. 煤自燃内在影响因素分析[J]. 矿业安全与环保, 2008(3): 24-26. [8] 邓军, 马蓉, 王秋红, 等. 变氧浓度条件下煤自燃特性参数实验测试[J]. 煤炭技术, 2014, 33(11):4-7. [9] 郝宇. 不同煤阶煤自燃特性的实验研究[J]. 煤矿安全, 2020, 51(6): 55-59. [10] 乔玲. 浸水煤的自燃特性研究[D]. 阜新: 辽宁工程技术大学, 2017. [11] 刘志荣, 高大猛, 路冰. 黄铁矿对煤自然氧化影响的实验研究[J]. 中国矿业, 2022, 31(03): 73-80. [12] 乔玲. 煤中金属化合物对煤自燃的催化机理及其惰化改性研究[D]. 阜新: 辽宁工程技术大学, 2020. [13] 胡自龙. 同忻煤矿岩浆岩侵入特征及其对煤层影响研究[J]. 山西煤炭, 2022, 42(3): 49-57. [14] 程金宏. 新安矿区岩浆岩侵入对煤层的破坏规律[J]. 黑龙江科技信息, 2004, (3): 149. [15] 肖富强, 桑树勋, 黄华州. 铁法矿区大兴井田煤储层含气量影响因素分析[J]. 中国煤层气, 2013, 10(3): 26-29. [16] 谢长仑, 严家平. 淮北涡阳矿区花沟西井田岩浆侵入及其对煤层的影响[J]. 中国煤炭地质, 2015, 27(8): 18-20. [17] 杜巧民. 双鸭山煤田煤质变化规律初探[J]. 煤炭技术, 2005(8): 86-87. [18] 陈启文. 双鸭山矿区煤的自燃特性及预防技术基础研究[D]. 阜新: 辽宁工程技术大学, 2009. [19] 马宏涛. 大同煤田火成岩的侵入特征及接触变质煤的煤岩学研究[D]. 太原: 太原理工大学, 2020. [20] 蒋静宇, 程远平. 淮北矿区岩浆岩侵入对煤储层微孔隙特征的影响[J]. 煤炭学报, 2012, 37(4): 634-640. [21] 王敏, 王永诗, 田淼, 等. 火成岩蚀变层段的有效储层识别及孔隙度定量表征——以滨南油田沙四段上亚段火成岩为例[J]. 油气地质与采收率, 2018, 25(4): 22-27. [22] 甘保平, 唐菊兴. 活动大陆边缘岩浆作用及构造演化——以敦煌地块为例[J]. 岩石学报, 2024, 40(3): 702-718. [23] 陈龙. 俯冲带辉石岩熔融: 对镁铁质弧岩浆成因的启示[J]. 中国科学:地球科学, 2023, 53(7): 1694-1698. [24] 刘少虹, 潘俊锋, 王书文, 等. 岩浆岩侵入区巨厚煤层掘进巷道冲击地压机制研究[J]. 岩石力学与工程学报, 2017, 36(11): 2699-2711. [25] 杨起, 潘治贵, 翁成敏, 等. 华北石炭、二叠纪煤变质特征与地质因素探讨[M]. 北京:地质出版社, 1988. [26] 杨起, 潘治贵, 翁成敏, 等. 区域岩浆热变质作用及其对我国煤质的影响[J]. 现代地质, 1987, (1): 123-130. [27] 韩德鑫. 中国煤岩学[M]. 徐州: 中国矿业大学出版社, 1995: 219-222. [28] 海连富. 宁夏卫宁北山地区金场子金矿床成因与找矿潜力评价[D]. 武汉: 中国地质大学, 2023. [32] 王飞, 程远平, 蒋静宇, 等. 大兴煤矿岩浆侵入对煤体性质的影响研究[J]. 煤炭科学技术, 2015, 43(12): 61-65+71. [35] 蒋静宇 .火成岩侵入对瓦斯赋存的控制作用及突出灾害防治 —以淮北矿区为例[D].徐州: 中国矿业大学, 2012. [36] 马良. 柳江盆地内岩浆侵入活动对煤层煤质的影响[J]. 煤炭科学技术, 2019, 47(8): 226-234. [38] 王红岩, 万天丰, 李景明, 等. 区域构造热事件对高煤阶煤层气富集的控制[J]. 地学前缘, 2008, 15(5): 364-369. [39] 杨起, 汤达祯. 华北煤变质作用对煤含气量和渗透率的影响[J]. 地球科学, 2000(3): 273-277+333. [40] 张振文, 蒋福兴, 王慧敏. 岩浆活动对煤层气的成藏作用[J]. 中国煤炭, 2002(8): 36-38+5. [41] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(1): 66-99. [42] 肖旸, 李树刚, 李明, 等. 煤自燃预测预报技术研究进展[J]. 陕西煤炭, 2010, 29(6): 4-7. [45] 吴阳阳, 穆朝民, 胡嘉伟, 等. 煤低温氧化标志性气体变化规律[J]. 矿业工程研究, 2014, 29(3): 52-57. [46] 芮国相, 王玉怀, 任建军, 等. 察哈素煤矿3号煤层自然发火标志性气体研究及其应用[J]. 华北科技学院学报, 2015, 12(2): 20-24. [47] 王彩萍, 王伟峰, 邓军. 不同煤种低温氧化过程指标气体变化规律研究[J]. 煤炭工程, 2013(2): 109-111+114. [48] 翟小伟. 煤氧化过程CO产生机理及安全指标研究[D]. 西安: 西安科技大学, 2012. [49] 吴兵, 苏赟, 王金贵, 等. 煤炭自然发火预报指标气体研究[J]. 中国安全生产科学技术, 2012, 8(11): 76-80. [50] 于树江, 杨成轶, 徐纪元, 等. 基于指标气体和红外探测技术的整合矿井火区划分[J]. 煤炭科学技术, 2014, 42(5): 55-57+61. [51] 张辛亥, 郑忠亚, 邓军, 等. 彬县下沟矿4#煤层自燃特性参数研究[J]. 煤炭工程, 2011(8): 108-110+113. [52] 吴宪, 齐庆杰, 徐长富, 等. 古山矿065-2煤层自燃特性与指标气体实验研究[J]. 矿业安全与环保, 2013, 40(5): 8-11. [54] 费金彪. 煤自燃阶段判定理论与分级预警方法研究[D]. 西安: 西安科技大学, 2019. [61] 陈龙. 煤低温氧化热效应影响规律研究[D]. 西安: 西安科技大学, 2020. [62] 贾廷贵, 李璕, 曲国娜, 等. 不同变质程度煤样化学结构特征FTIR表征[J]. 光谱学与光谱分析, 2021, 41(11): 3363-3369. [63] 周剑林. 低阶煤含氧官能团的赋存状态及其脱除研究[D]. 北京: 中国矿业大学, 2014. [64] 韩峰, 张衍国, 蒙爱红, 等. 云南褐煤结构的FTIR分析[J]. 煤炭学报, 2014, 39(11): 2293-2299. [65] 许涛, 辛海会, 王德明. 加热作用对褐煤自燃过程影响的红外光谱研究[J]. 煤炭工程, 2012(3): 87-89. [66] 张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安: 西安科技大学, 2012. [67] 王亚超,魏子淇,王彩萍,等.黄铁矿对煤氧化表面官能团的影响[J]. 西安科技大学学报, 2018, 38(4): 585-591. [69] 王庭焱. 水浸干燥烟煤活性基团及自燃特征温度变化规律研究[D]. 西安: 西安科技大学, 2018. [70] 赵继尧. 安徽省淮北闸河矿区煤的岩浆热变质作用的几个问题[J]. 煤炭学报, 1986(4): 19-27+97. [72] 毕强. 大兴矿火成岩侵入条件下煤自燃特性及防治技术研究[D]. 阜新: 辽宁工程技术大学, 2017. [75] 刘飞. 岩浆岩床下伏煤层采空区煤自燃致灾机制与防治对策[D]. 徐州: 中国矿业大学, 2018. [76] 李登云. 火成岩侵入煤层的煤自燃标志气体优选[J]. 能源技术与管理, 2016, 41(1): 126-128. [77] 朱令起, 周艺婷, 王鑫源, 等. 火成岩影响区CO异常涌出机理及预测研究[J]. 煤炭科学技术, 2019, 47(8): 152-157. [78] 王宪光, 刘勇, 龚邦军, 等. 综采工作面火成岩影响复杂区域煤层自然发火防治[J]. 内蒙古煤炭经济, 2016(Z2): 86-89. [79] 闫浩. 东周窑矿硅化煤低温氧化特性研究[D]. 西安: 西安科技大学, 2020. [80] 罗陨飞, 陈亚飞, 姜英. 煤炭分类国际标准与中国标准异同之比较[J]. 煤质技术, 2007, (1): 22-24. [83] 陈健, 李洋, 刘文中, 等. 岩浆侵入对煤结构的影响评述[J]. 煤炭科学技术, 2021, 49(6): 170-178. [84] 郭勇义, 高亚斌, 曹敬, 等. 基于修正压汞法的不同瓦斯含量煤样孔隙结构及分形特征研究[J]. 中国矿业大学学报, 2023, 52(6): 1075-1083. [85] 秦雷, 王平, 翟成, 等. 基于氮气吸附法和压汞法低温液氮冻结煤体分形特征研究[J]. 采矿与安全工程学报, 2023, 40(1): 184-193+203. [87] 梁虎珍, 王传格, 曾凡桂, 等. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014, 42(2): 129-137. [88] 田泽奇, 王志勇, 姚建国, 等. 岩浆接触带高变质煤化学结构FTIR定量表征[J]. 光谱学与光谱分析, 2023, 43(9): 2747-2754. [90] 邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(1): 304-312. [91] 杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安: 西安科技大学, 2015. [92] 郝天轩, 张龙龙, 李帆, 等. 基于主成分分析的煤自燃标志气体优选[J]. 煤炭技术, 2023, 42(10): 176-181. [93] 赵婧昱, 卢世平, 宋佳佳, 等. 基于微观结构和气体产物特征的风化煤与氧化煤自燃差异研究[J]. 煤矿安全, 2022, 53(6): 26-36. [94] 张开仲. 构造煤微观结构精细定量表征及瓦斯分形输运特性研究[D]. 徐州: 中国矿业大学, 2020. [95] 董小明, 武瑞龙, 周明, 等. 突出矿井近距离煤层群煤自燃预警与防控方法[J]. 煤矿安全, 2022, 53(9): 106-112. [96] 邓军, 李贝, 李珍宝, 等. 预报煤自燃的气体指标优选试验研究[J]. 煤炭科学技术, 2014, 42(1): 55-59+79. |
中图分类号: | TD752 |
开放日期: | 2026-06-17 |