- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 高振    

学号:

 19220214115    

保密级别:

     

论文语种:

 chi    

学科代码:

 085224    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

     

第一导师姓名:

 肖鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Experimental study on fracture evolution and gas seepage law of coal micro-pore    

论文中文关键词:

 孔隙特征 ; 核磁共振 ; X-ray CT扫描 ; 裂隙演化 ; 孔裂隙三维重构 ; 渗流特性    

论文外文关键词:

 Pore characteristics ; Nuclear magnetic resonance ; X-ray CT scan ; Fracture evolution ; 3D reconstruction of pore and fissure ; Seepage characteristics    

论文中文摘要:
<p>线</p> <p>X-ray CT2.7X-ray CT线</p> <p></p> <p>X-ray CTAVIZOAVIZO</p>
论文外文摘要:
<p>With the continuous increase of coal mining depth, the stope stress of deep coal seam increases, and the spatial distribution is not uniform. The fracture of coal body presents a nonlinear development, and the permeability of coal seam changes, which leads to abnormal gas emission in the mining face and frequent gas concentration overrun, seriously affecting the efficient extraction of gas. The prevention and control of mine gas disaster accidents has become one of the key issues of coal and gas safety co-mining. The fracture propagation of coal body is a process from the microscopic structure change caused by stress to the microscopic structure development. It is a multi-scale pore fracture evolution process. The seepage mode of gas in different scale pore fractures is essentially different. Therefore, it is of certain guiding significance for scientific and reasonable prevention and control of gas disasters to clarify the evolution of micro-pore cracks in coal and the law of gas seepage.</p> <p>Through the mercury intrusion experiment, nuclear magnetic resonance experiment and X-ray CT scanning experiment, the pore characteristic parameters of coal body were obtained. It is concluded that the overall pore structure of the experimental coal body is developed, in which the micro pores are more developed, and the connectivity between the micro pores and the large pores is poor. Using fractal theory, the pore structure of coal is quantitatively characterized by the pore size section, and the complexity of pore structure in coal is analyzed. It is shown that the fractal dimension of coal pores is more than 2.7, and the overall complexity of pore structure is high and the heterogeneity is strong. Combined with mercury injection experiment, nuclear magnetic resonance experiment and X-ray CT scanning experiment, the full pore size distribution curve of coal pores was established, indicating that the development of micropores and macropores in coal pores is conducive to gas seepage.</p> <p>The evolution characteristics of surface cracks and internal damage during the loading process of coal samples were analyzed by optical speckle technology and acoustic emission technology. It is concluded that the surface displacement and deformation of coal samples decrease with the increase of loading rate, and the failure mode changes from tensile and shear failure to tensile and shear composite failure. The acoustic emission count and energy increase with the increase of loading rate. The spatial distribution of acoustic emission events can better reflect the evolution characteristics of cracks in coal body.</p> <p>X-ray CT was used to scan the coal specimen before and after fracture. The pore-fracture structure characteristics inside the coal were quantitatively characterized by AVIZO software. The three-dimensional visualization model before and after the fracture of the coal was reconstructed, and the equivalent pore network model was extracted. The equivalent pore radius, pore throat radius, coordination number, surface porosity and other parameters were counted, and the change characteristics of pore-fracture structure before and after the fracture of the coal were analyzed. The absolute permeability model in AVIZO software is used to simulate gas seepage. It is concluded that the greater the flow velocity of the seepage of the pore and fissure in the coal body, the smaller the seepage pressure, the more developed the pore and fissure of the coal body, and the better the permeability. On the contrary, the smaller the flow velocity of the seepage, the greater the seepage pressure, the pore and fissure of the coal body is not developed and the permeability is poor. Compared with the seepage of pores and fissures before and after coal fracture, the seepage velocity of pores and fissures after coal fracture is larger, the permeability is better, and the pores and fissures in coal are more developed, which is conducive to the seepage of gas. The research results provide a theoretical basis for exploring the law of coal seam gas seepage and formulating measures for preventing coal and gas mining accidents.</p>
参考文献:

[1] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019,44(05):1283-1305.

[2] 彭苏萍. 中国煤炭资源开发与环境保护[J]. 科技导报, 2009,27(17):3.

[3] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[R]. 2021

[4] 谢和平, 李存宝, 高明忠, 等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报, 2021,40(02):217-232.

[5] 中国工程院. 煤与瓦斯突出灾害及其科学防治[D]. 2016.

[6] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018,43(01):1-13.

[7] Karacan C Ö, Okandan E. Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging[J]. Fuel and Energy Abstracts, 2002,43(2):509-520.

[8] Karacan C Ö, Ruiz F A, Cotè M, et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International journal of coal geology, 2011,86(2):121-156.

[9] 刘见中, 孙海涛, 雷毅, 等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报, 2020,45(1):258-267.

[10] Gan H, Nandi S P, Walker P L. Nature of the porosity in American coals[J]. Fuel, 1972,51(4):272-277.

[11]Warren J E, Root P J. The Behavior of Naturally Fractured Reservoirs[J]. Society of Petroleum Engineers Journal, 1963,3(03):245-255.

[12] Clarkson C. The effect of pore structure and gas pressure upon the transport properties of coal a laboratory and modeling study[J]. Fuel, 1999,78(11):1333-1344.

[13] Pan Z, Connell L D, Camilleri M, et al. Effects of matrix moisture on gas diffusion and flow in coal[J]. Fuel (Guildford), 2010,89(11):3207-3217.

[14] Cai Y, Pan Z, Liu D, et al. Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery[J]. Energy exploration & exploitation, 2014,32(4):601-619.

[15] Pillalamarry M, Harpalani S, Liu S. Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs[J]. International journal of coal geology, 2011,86(4):342-348.

[16] 孙其诚, 金峰. 颗粒物质的多尺度结构及其研究框架[J]. 物理, 2009,38(4):225-232.

[17] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016,41(1):1-6.

[18] 张娜, 乔凤超, 张博, 等. 深部煤系沉积岩孔隙结构特征压汞试验研究[J]. 煤炭科学技术, 2016,44(10):155-160.

[19] 赵健光, 王猛, 马如英, 等. 基于压汞法对黔西青龙矿构造煤孔隙结构特征的研究 [J/OL]. 煤炭科学技术, http://kns.cnki.net/kcms/detail/11.2402.TD.20201207.1652.004.html.

[20] 王小垚, 曾联波, 周三栋, 等. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018,29(02):277-288.

[21] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022: 47(02):828-848.

[22] 刘佳佳, 胡建敏, 杨明, 等. 不同层理高阶煤孔隙特征的核磁共振试验[J]. 中国安全科学学报, 2021,31(09):83-89.

[23] Liu S, Sang S, Wang G, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017,148:21-31.

[24] Zhou S, Liu D, Cai Y, et al. 3D characterization and quantitative evaluation of pore-fracture networks of two Chinese coals using FIB-SEM tomography[J]. International Journal of Coal Geology, 2017,174:41-54.

[25] Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method[J]. International Journal of Coal Geology, 2018,189:35-49.

[26] Lu G, Wang J, Wei C, et al. Pore fractal model applicability and fractal characteristics of seepage and adsorption pores in middle rank tectonic deformed coals from the Huaibei coal field[J]. Journal of Petroleum Science and Engineering, 2018,171:808-817.

[27] 陈彦君, 苏雪峰, 王钧剑, 等. 基于X射线微米CT扫描技术的煤岩孔裂隙多尺度精细表征——以沁水盆地南部马必东区块为例[J]. 油气地质与采收率, 2019,26(05):66-72.

[28] 何凯凯. 基于CT表征煤中多尺度孔裂隙发育特征[D]. 河南理工大学, 2018.

[29] Zhentao Li D L Y C. Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT[J]. Fuel, 2017,209:43-53.

[30] Qin L, Li S, Zhai C, et al. Joint analysis of pores in low, intermediate, and high rank coals using mercury intrusion, nitrogen adsorption, and nuclear magnetic resonance[J]. Powder Technology, 2020,362:615-627.

[31] 汪明丰. 马必东区块煤储层多尺度数字岩心表征[D]. 中国地质大学(北京), 2020.

[32] 胡少斌. 多尺度裂隙煤体气固耦合行为及机制研究[D]. 中国矿业大学, 2015.

[33] 王玉丹, 杨玉双, 刘可禹, 等. 非常规油气储集孔隙多尺度连通性的定量显微CT研究[J]. 矿物岩石地球化学通报, 2015,34(01):86-92.

[34] 秦雷, 王平, 翟成, 等. 基于氮气吸附法和压汞法低温液氮冻结煤体分形特征研究[J]. 采矿与安全工程学报, 2022:1-12.

[35] 林海飞, 卜婧婷, 严敏, 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报, 2019,39(01):1-8.

[36] 赵洪宝, 王涛, 苏泊伊, 等. 局部荷载下煤样内部微结构及表面裂隙演化规律[J]. 中国矿业大学学报, 2020,49(02):227-237.

[37] Wang D, Zeng F, Wei J, et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of petroleum science & engineering, 2021,196:1-16.

[38] Skarżyński A, Marzec I, Tejchman J. Fracture evolution in concrete compressive fatigue experiments based on X-ray micro-CT images[J]. International journal of fatigue, 2019,122:256-272.

[39] Shi G, Yang X, Yu H, et al. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression[J]. Engineering fracture mechanics, 2019,210:13-28.

[40] Hurley R C, Pagan D C. An in-situ study of stress evolution and fracture growth during compression of concrete[J]. International journal of solids and structures, 2019,168:26-40.

[41] Zhu Q, Li D, Han Z, et al. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression[J]. International journal of rock mechanics and mining sciences, 2019,115:33-47.

[42] Ernest A H. Velocity of elastic waves and structure of the crust in the vicinity of Ottawa, Canada*[J]. GeoScience World, 1942,32(4):249-255.

[43] Jin J, Ping C, Yu C, et al. Influence of single flaw on the failure process and energy mechanics of rock-like material[J]. Computers and Geotechnics, 2017,86:150-162.

[44] Yan Z, Xia-Ting F, Chengxiang Y, et al. Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy[J]. International Journal of Rock Mechanics and Mining Sciences, 2019,117:150-161.

[45] Yongming Y, Yang J, Fengxia L, et al. The fractal characteristics and energy mechanism of crack propagation in tight reservoir sandstone subjected to triaxial stresses[J]. Journal of Natural Gas Science and Engineering, 2016,32:415-422.

[46] 李树刚, 成小雨, 刘超, 等. 单轴压缩岩石相似材料损伤特性及时空演化规律[J]. 煤炭学报, 2017,42(S1):104-111.

[47] 李部. 裂隙岩体的断裂损伤机理及其稳定性分析研究[D]. 成都理工大学, 2017.

[48] 赵程, 幸金权, 牛佳伦, 等. 水–力共同作用下预制裂隙类岩石试样裂纹扩展试验研究[J]. 岩石力学与工程学报, 2019,38(S1):2823-2830.

[49] 陈军涛, 杨飞, 张呈祥. 双轴加载下大尺寸岩石裂隙演化规律试验[J]. 湖南科技大学学报(自然科学版), 2017,32(04):16-22.

[50] 陈云娟, 敬艺, 尹福强, 等. 类岩石裂隙扩展多因素影响研究[J]. 山东建筑大学学报, 2019,34(04):32-37.

[51] 赵洪宝, 胡桂林, 李伟, 等. 预制裂隙岩石裂纹扩展规律的研究进展与思考[J]. 地下空间与工程学报, 2016,12(S2):899-906.

[52] 尚黎明, 李廷春, 陈伟, 等. 岩石三维内置裂隙的尺寸效应研究[J]. 武汉理工大学学报, 2015,37(08):72-77.

[53] 李江华, 薛成洲, 韩强. 不同热破裂温度下煤岩的孔裂隙演化特征研究[J]. 煤矿安全, 2020,51(01):22-25.

[54] 杨大方, 张丁元, 牛双建, 等. 预制裂隙细砂岩裂纹扩展过程及宏观破坏模式单轴压缩试验研究[J]. 采矿与安全工程学报, 2019,36(04):786-793.

[55] 蔡峰, 于鹏, 马衍坤, 等. 砂砾岩油气储层水力压裂强化增透裂隙扩展特性试验研究[J]. 岩土力学, 2019(06):1-8.

[56] 季晶晶, 李祥, 李鹏飞, 等. 脆性砂岩预制裂隙扩展破坏过程试验研究[J]. 河南科学, 2018,36(04):547-553.

[57] 王刚, 杨曙光, 张寿平, 等. 新疆煤矿区瓦斯抽采利用技术现状及展望[J]. 煤炭科学技术, 2020,48(03):154-161.

[58] 荣腾龙, 刘克柳, 周宏伟, 等. 采动应力下深部煤体渗透率演化规律研究[J/OL]. 岩土工程学报, 2021:1-9. http://kns.cnki.net/kcms/detail/32.1124.TU.20211223.1659.002.html.

[59] 田佳丽, 王惠民, 刘星星, 等. 考虑不同尺度孔隙压缩敏感性的砂岩渗透特性研究[J]. 岩土力学, 2022,43(02):405-415.

[60] 李瑞明, 周梓欣. 新疆煤层气产业发展现状与思考[J]. 煤田地质与勘探, 2022,50(03):23-29.

[61] 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展(A辑), 2003(04):419-426.

[62] 李培超, 李贤桂, 卢德唐. 饱和土体一维固结理论的修正——饱和多孔介质流固耦合渗流模型之应用[J]. 中国科学技术大学学报, 2010,40(12):1273-1278.

[63] 邓庆军, 朱维耀, 王小锋, 等. 多孔介质中微观力的作用及渗流模型[J]. 北京科技大学学报, 2014,36(04):415-423.

[64] 刘军文, 施安峰, 王晓宏, 等. 多孔介质结构对渗流惯性效应的影响规律研究[J]. 力学季刊, 2019,40(03):447-457.

[65] 褚卫江, 徐卫亚, 苏静波. 变形多孔介质流固耦合模型及数值模拟研究[J]. 工程力学, 2007(09):56-64.

[66] 赵建林, 姚军, 张磊, 等. 微裂缝对致密多孔介质中气体渗流的影响机制[J]. 中国石油大学学报(自然科学版), 2018,42(01):90-98.

[67] 孙可明, 梁冰, 朱月明. 考虑解吸扩散过程的煤层气流固耦合渗流研究[J]. 辽宁工程技术大学学报(自然科学版), 2001(04):548-549.

[68] 胡国忠, 许家林, 王宏图, 等. 低渗透煤与瓦斯的固-气动态耦合模型及数值模拟[J]. 中国矿业大学学报, 2011,40(01):1-6.

[69] 王旱祥, 兰文剑, 刘延鑫, 等. 煤储层含煤粉流体流固耦合渗流数学模型[J]. 天然气地球科学, 2013,24(04):667-670.

[70] 刘清泉, 程远平, 李伟, 等. 深部低透气性首采层煤与瓦斯气固耦合模型[J]. 岩石力学与工程学报, 2015,34(S1):2749-2758.

[71] 袁梅, 何明华, 王珍, 等. 含坚固性系数的应力-温度场中瓦斯渗流耦合模型初探[J]. 煤炭技术, 2012,31(07):214-216.

[72] 徐涛, 杨天鸿, 唐春安, 等. 含瓦斯煤岩破裂过程固气耦合数值模拟[J]. 东北大学学报, 2005(03):293-296.

[73] 张志刚, 程波. 含瓦斯煤体非线性渗流模型[J]. 中国矿业大学学报, 2015,44(03):453-459.

[74] Nan F, Jiren W, Cunbao D, et al. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering, 2020,81(prepublish).

[75] Gang W, Chenghao J, Junnan S, et al. Deformation and water transport behaviors study of heterogenous coal using CT-based 3D simulation[J]. International Journal of Coal Geology, 2019,211(C): 103204-103204.

[76] Xuan L, Yong-Feng Z, Bin G, et al. From molecular dynamics to lattice Boltzmann: a new approach for pore-scale modeling of multi-phase flow[J]. Petroleum Science, 2015,12(2):289-292.

[77] Huafeng S, Guo T, Sandra V, et al. Simulation of gas flow in organic-rich mudrocks using digital rock physics[J]. Journal of Natural Gas Science and Engineering, 2017,41:17-29.

[78] Yan-long Z, Zhi-ming W, Jian-ping Y, et al. Lattice Boltzmann simulation of gas flow and permeability prediction in coal fracture networks[J]. Journal of Natural Gas Science and Engineering, 2018,53:153-162.

[79] 王登科, 田晓瑞, 魏建平, 等. 基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性研究[J]. 采矿与安全工程学报, 2021,39(02):387-395

[80] 王登科, 张航, 魏建平, 等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报, 2021,46(11):3550-3564.

[81] 徐轶, 徐青. 基于COMSOL Multiphysics的渗流有限元分析[J]. 武汉大学学报(工学版), 2014,47(02):165-170.

[82] 高超, 钟振, 胡云进, 等. 岩体单裂隙渗透性尺寸效应的数值模拟研究[J]. 水利水电技术, 2018,49(12):148-153.

[83] 王述红, 王子和, 王凯毅, 等. 循环荷载下含双裂隙砂岩弹性模量的演化规律[J]. 东北大学学报(自然科学版), 2020,41(02):282-286.

[84] 李勇, 蔡卫兵, 朱维申, 等. 单轴压缩条件下平行双裂隙演化机理的颗粒流分析[J]. 中南大学学报(自然科学版), 2019,50(12):3035-3045.

[85] 黎秋生. 基于PFC~(2D)数值模拟的煤体裂隙演化规律研究[J]. 能源与环保, 2019,41(12):168-171.

[86] 巨峰, 宁湃, 何泽全, 等. 压实过程中煤矸石颗粒流细观演化规律研究[J]. 采矿与安全工程学报, 2020,37(01):183-191.

[87] 章统, 刘卫群, 查浩, 等. 岩石类材料振动裂隙扩展试验和数值分析[J]. 岩土力学, 2016,37(S2):761-768.

[88] 邵建立, 周斐, 薛彦超, 等. 岩体孔隙-裂隙双渗流数值模拟研究[J]. 煤矿安全, 2019,50(09):1-4.

[89] 田忠斌, 魏书宏, 王建青, 等 .沁水盆地中东部海陆过渡相页岩微观孔隙结构特征[J].煤炭学报,2017,42(07):1818-1827.

[90] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel (Guildford), 2013,103:258-268.

[91] 李明. 构造煤结构演化及成因机制[D].中国矿业大学,2013.

[92] 姚晋宝, 郝春生, 杨昌永. 基于压汞法的成庄井田3号煤孔隙特征研究[J]. 能源与环保, 2019, 41(07):1-6.

[93] Wei Li, Hongfu Liu, Xiaoxia Song. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. International Journal of Coal Geology. 2015,144-145:138-152.

[94] 陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013, 38(05):760-765.

[95] 谢松彬,姚艳斌,陈基瑜,等.煤储层微小孔孔隙结构的低场核磁共振研究[J].煤炭学报,2015,40(S1):170-176.

[96] 谢松彬. 低场核磁共振技术在煤储层物性及吸附性分析中的应用[D].中国地质大学(北京),2015.

[97] AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989,5(6):1431-1433.

[98] 卜婧婷. 新疆矿区中低阶煤全孔径孔隙结构特征的实验研究[D].西安科技大学,2019.

[99] 卢杰林. 不同煤阶煤孔径结构特征及全孔径拼接表征[D].中国矿业大学,2021.

中图分类号:

 TD712    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式