题名: |
固定式插座插头电气故障发热特性及熔痕特征研究
|
作者: |
纪晓涵
|
学号: |
21220089057
|
保密级别: |
保密(2年后开放)
|
语种: |
chi
|
学科代码: |
083700
|
学科: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位: |
工学硕士
|
学位年度: |
2024
|
学校: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
消防科学与工程
|
导师姓名: |
王伟峰
|
导师单位: |
西安科技大学
|
提交日期: |
2024-06-15
|
答辩日期: |
2024-06-02
|
外文题名: |
Research on the Heating Characteristics and Molten Trace Characteristics of Electrical Faults in Fixed Socket Plugs
|
关键词: |
插座插头 ; 过负荷 ; 接触不良 ; 燃烧行为 ; 熔痕特征
|
外文关键词: |
Socket plug ; Overload ; Poor contact ; Burning behavior ; Melt mark characteristics
|
摘要: |
︿
目前,我国正处于“碳达峰、碳中和”关键时期,电力资源供给正在发生革命性变革,各类电气设备被广泛应用于社会各个领域,电气火灾形势严峻。部分电气故障引发的火灾需要通过实验室的鉴定来确定起火原因,且不同电气故障产生的发热特性、温升规律、宏观组织、微观形态等方面都存在一定差异。因此,本文采用电气火灾故障模拟装置,以不同故障下插座插头的发热过程与温升规律为出发点,结合不同热辐射强度下故障熔痕特征变化规律,对固定式插座插头在过负荷、接触不良故障下,温度变化、燃烧特性、金属凝固痕迹的差异性进行实验研究与分析,研究结论可为电气火灾物物证鉴定与调查提供基础数据支撑。
首先,模拟了插座插头过电流、接触不良故障,分析插座插头的发热变化过程、最高温度及温升规律。结果表明:插座插头在不同故障下受高温产生熔融、发热、燃烧等行为,接线导线绝缘层会发生发烟、鼓泡、脱落、炭化、线芯发红等现象。此外,通电电流越大,插座插头的温度升高越明显,当通电电流≤3Ie时,因过电流故障引发火灾的可能性较小;当通电电流≥3.5Ie时,不同插座插头最终受损被破坏时的温度相似,约为260~280℃,符合大部分可燃物燃点,引发火灾的可能性较大;当电流与电阻同时增大时,插座插头温升速率明显增大,温度可达290~350℃,极易引发火灾。
其次,分析总结故障前后插座插头在不同热辐射强度下的引燃时间、热释放速率、烟气浓度等燃烧特征参数的变化规律。结果表明:随着热辐射强度的增加,插座插头的热释放速率呈逐渐上升趋势,总热释放速率逐渐增加,燃烧产生峰值的速度变快,CO2的浓度变化均呈现先减小后增大的趋势。在35 kW/m2热辐射强度下,过电流故障插座插头总热释放速率为60.32 MJ/m2,接触不良插座插头总热释放速率达到115.52 MJ/m2;在50 kW/m2热辐射强度下,过电流故障插座插头总热释放速率为181.14 MJ/m2,接触不良插座插头总热释放速率达到132.69 MJ/m2,两者差值较大,相同时间内插座插头受热面热量传递加快,导致热解速率升高。
最后,插座静片、插头插片的熔化痕迹以及绝缘层残渣是判别火灾发生原因的最有效物证,本文定量分析了故障前后插座插头熔痕的宏观结构、金相组织及微观特征规律。结果表明:在相同热辐射强度下,过电流故障插片熔痕与接触不良故障熔痕均呈现α+β两相结构,但过电流故障插片熔痕呈现不规则多边形、等轴晶结构,而接触不良故障熔痕前期仅呈现树枝晶结构。绝缘层宏观特征差异较大,外侧孔洞粗大,表面附着颗粒状杂质,绝缘层横截面呈分散状,截面相对较为平整,细小孔洞较多。在35 kW/m2热辐射强度下,接触不良故障插片熔痕的平均晶粒尺寸范围为11~17μm2,是过电流故障熔痕的4~5倍,16A三极插片熔痕的最大晶粒面积为37.58μm2,是过电流故障熔痕的1.5倍左右。插座静片熔痕孔洞内壁主要元素为Cu、Ni,熔痕表面孔洞存在少量C和Al。
﹀
|
外文摘要: |
︿
At present, China is in the critical period of "peak carbon dioxide emissions, carbon neutrality", and the supply of power resources is undergoing revolutionary changes. All kinds of electrical equipment are widely used in various fields of society, and the situation of electrical fire is grim. The fire caused by some electrical faults needs to be identified by the laboratory, and there are some differences in heating characteristics, temperature rise law, macro-structure and micro-morphology caused by different electrical faults. Therefore, this paper uses the electrical fire fault simulator, starting from the heating process and temperature rise law of socket plugs under different faults, and combining with the change law of fault melting mark characteristics under different thermal radiation intensities, carries out experimental research and analysis on the differences of temperature change, combustion characteristics and metal solidification marks of fixed socket plugs under overload and poor contact faults. The research conclusions can provide basic data support for the identification and investigation of electrical fire material evidence.
Firstly, the over-current and poor contact faults of socket plug are simulated, and the heating change process, maximum temperature and temperature rise law of socket plug are analyzed. The results show that the socket plug will be melted, heated and burned by high temperature under different faults, and the insulation layer of the connecting wire will be smoked, bubbled, peeled off, carbonized and the wire core will be red. In addition, the greater the current, the more obvious the temperature rise of the socket plug. When the current is ≤3Ie, the possibility of fire caused by overcurrent fault is less. When the current is more than or equal to ≥3.5Ie, the temperature of different sockets when they are finally damaged is similar, which is about 260~280℃, which is in line with the ignition point of most combustible materials and is likely to cause fire. When the current and resistance increase at the same time, the temperature rise rate of socket plug increases obviously, and the temperature can reach 290~350℃, which is easy to cause fire.
Secondly, the changing rules of combustion characteristic parameters such as ignition time, heat release rate and smoke concentration of socket plug under different thermal radiation intensity before and after the fault are analyzed and summarized. The results show that, with the increase of thermal radiation intensity, the heat release rate of socket and plug is gradually increasing, the total heat release rate is gradually increasing, the speed of combustion peak is faster, and the change of CO2 concentration is first decreasing and then increasing. Under the thermal radiation intensity of 35 kW/m2, the total heat release rate of over-current fault socket plug is 60.32 MJ/m2, and the total heat release rate of poor contact socket plug reaches 115.52 MJ/m2. Under the thermal radiation intensity of 50 kW/m2, the total heat release rate of over-current fault socket plug is 181.14 MJ/m2, and that of poor contact socket plug is 132.69 MJ/m2, which is quite different. In the same time, the heat transfer of socket plug heating surface is accelerated, which leads to the increase of pyrolysis rate.
Finally, the melting trace of socket static piece, plug insert and insulation residue are the most effective evidence to judge the cause of fire. This paper quantitatively analyzes the macro-structure, metallographic structure and micro-characteristics of the melting trace of socket plug before and after the fault. The results show that, under the same thermal radiation intensity, both the overcurrent fault insert weld and the poor contact fault weld show α+β two-phase structure, but the overcurrent fault insert weld shows irregular polygon and equiaxed crystal structure, while the poor contact fault weld only shows dendrite structure in the early stage. The macro characteristics of insulation layer are quite different, with large holes on the outside and granular impurities attached to the surface. The cross section of insulation layer is dispersed, relatively flat and many small holes. Under the thermal radiation intensity of 35 kW/m2, the average grain size range of the weld mark of the fault insert with poor contact is 11~17μm2, which is 4~5times of the weld mark of the overcurrent fault, and the maximum grain area of the weld mark of the 16A triode insert is 37.58μm2, which is about 1.5 times of the weld mark of the overcurrent fault. The main elements in the inner wall of the weld mark hole of the socket stator are Cu and Ni, and a small amount of C and Al exist in the weld mark surface hole.
﹀
|
参考文献: |
︿
[1] 应急管理部消防救援局. 2010-2023年全国火灾情况分析[R]. https://www.119.gov.cn/, 2023. [2] 公安部消防局. 中国消防救援年鉴[M]. 北京: 应急管理出版社, 2020. [3] 于深源. 对一起因电源插头和插座接触不良引发火灾的现场勘查认定[C]//中国消防协会火灾原因调查专业委员会四届二次会议暨学术研讨会论文集. 2007:107-109. [4] 许军, 谢曙. 从两起普通住宅火灾事故谈住宅电源插座消防安全设计[C]//中国消防协会电气防火专业委员会2006年学术论文集. 2006: 124-125. [5] 吴一羊. 电气火灾故障电弧探测技术研究进展[J]. 建筑电气, 2015, 34 (07): 52-55. [6] 吴达妍, 刘一乐, 王洪波. 插线板引起火灾的原因及勘验要点剖析[J]. 武警学院学报, 2013(2):3. [7] 徐翰文. 火灾后中空夹层高强钢管混凝土压弯力学性能研究[D]. 沈阳大学, 2020. [8] 赵维敏. 一起住宅插线板电气线路过负荷火灾事故的调查与分析[C]//中国消防协会学术工作委员会消防科技论文集. 新疆乌鲁木齐市消防救援支队, 2022: 6. [9] 梁闰生. 排插火灾事故的调查和认定[C]//中国消防协会科学技术年会论文集. 2013: 511-513. [10] Fire Rescue Bureau of Emergency Management Department. Fire situation in China[C]// 2021: 13-17. [11] National Fire Protection Association. NFPA921: Guide For Fire and Explosion Investigations[M]. America: Standards Council, 2017: 257-298. [12] Richard B. Campbell. Home electrical fires: supporting tables[M]. National Fire Protection Association, 2019: 129-142. [13] Babrauskas V. SFPE Handbook of Fire Protection Engineering (Fifth Edition): Electrical Fires [M]. Dordrecht, Heidelberg, London, New York: Springer, 2016, 47-63. [14] Babrauskas V. Research on Electrical Fires: The State of the Art[C]//Fire Safety Science-Proceedings of the Ninth International Symposium, USA, 2008: 3-18. [15] Dwyer N P. Fires involving overcurrent: Inspection should include evaluation of conductors, loads and circuit protection[J]. Fire findings, 2009, 17(4): 1-3. [16] Kim K C, Kim D H, Kim S C. Analysis of Thermal Characteristics and Insulation Resistance based on Usage Environment and Current Value of Electrical Socket Outlet[J]. Journal of the Korean Society of Safety, 2019, 34(5): 22-30. [17] Zhang J, Huo J, Wen Y, et al. Fire Risk Analysis of Plug and Receptacle in Case of Overload[C]//国际安全科学与技术学术研讨会(沈阳). 2006: 305-308. [18] Mashrapov B, Talipov O, Mashrapova R. Overcurrent protection scheme utilising reed switches instead of current transformers[C]//International Ural Conference on Electrical Power Engineering (Ural Con). IEEE, 2020: 291-295. [19] Fisher R P. An Analysis of Thermally Induced Arcing Failure of Electrical Cable [J]. Dissertations & Theses-Gradworks, 2013: 47-50. [20] 蔡永华, 孙伟华, 徐鹏. 建筑电气设计安装对插座过载能力需求分析[J]. 建筑电气, 2018, 37(06): 55-57. [21] 沈达兴, 王允. 家用插座过载的火灾危险性分析[C]//2017中国消防协会科学技术年会论文集.2017:234-237. [22] 张金专, 刘珠峰, 李旭航.过负荷情况下插座插头升温情况研究[J]. 消防技术与产品信息, 2007(03): 44-46. [23] 钟建军, 彭蕾. 电源插座过载火灾危险性分析[J]. 武警学院学报, 2010, 26(04): 47-50. [24] 司永轩, 刘玲, 金南江, 李阳. 中美过电流火灾物证鉴定技术研究综述[J]. 消防科学与技术, 2018, 37(03): 419-422. [25] 宋明, 刘文成. 电气线路过负荷火灾原因分析[C]//中国消防协会火灾原因调查专业委员会五届一次年会论文集. 2010:101-104. [26] M. Benfer, D. Gottuk. Development and analysis of electrical receptacle fires[R]. Report of National Criminal Justice Reference Service, 2013: 5-16. [27] Nedzad Hadziefendic, Jovan Trifunovic, Miomir Kostic. Effects of a reduced torque on heating of electrical contacts in plugs and receptacles[J]. IEEE Trans Compon Packag Manuf Technology, 2018, 8(11): 1905-1913. [28] Nedzad Hadziefendic, Nemanja Kostic, Jovan Trifunovic, et al. Detection of poor contacts in low-voltage electrical installations[J]. IEEE Trans Compon Packag Manuf Technology, 2018, 9(1): 129-137. [29] J.L.Ferrino-McAllister, Richard J.Roby, J.A.Milke. Heating at electrical contacts: characterizing the effects of torque, contact area,and movement on the temperature of residential receptacles[J]. Fire Technology, 2006, 42(1): 49-74. [30] T. Matsuzaki, H. Tamura. Fundamental study on the contact portion overheating caused by screw loosening[R]. Report of National Research Institute of Fire and Disaster of Japan, 2018(125): 1-10. [31] Xin Zhou, Thomas Schoepf. Characteristics of overheated electrical joints due to loose connection[C]// Proceedings of the 57th Holm Conference on Electrical Contacts. IEEE, Holm, 2011: 1-7. [32] Volker Behrens, Edgar Siegle, Jonas Schreiber, et al. Effect of ambient temperature and contact force on contact resistance and overtemperature behaviour for power engineering contacts[C]// Proceedings of the 58th Holm Conference on Electrical Contacts. IEEE, Holm, 2012: 1-6. [33] Romaric Landfried, Thierry Leblanc, Richard Andlauer, etal. Temperature measurement of copper contact surfaces[C]// Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. IEEE, 2010: 1-5. [34] Kimberly L.Beach, Vincent C.Pasucci. Contact stress relaxation and resistance change relationships in accelerated heat age testing[J]. Electrical Contacts, 2000: 314-325. [35] 严元生. 电气触点接触不良初探[J]. 电子世界, 2018(22): 44+46. [36] 周在中. 温度应力下电连接器间歇故障机理研究[D].国防科技大学, 2017. [37] 刘向禹. 电连接器失效形式分析[J]. 机电元件, 2017, 37(01): 53-54+63. [38] 张金专, 姜新, 胡建国,等.插座插头在不同接触电阻时的火灾危险性[J]. 消防科学与技术, 2007(03): 267-269. [39] 张晓光, 吕绍国, 张莹莹. 插座插头在不同接触电阻下火灾危险性研究[J]. 消防技术与产品信息, 2011(01): 44-47. [40] 李雪清, 章继高. 镀金表面微孔腐蚀的电接触特点[J]. 电工技术学报, 2004(09): 51-56. [41] 郝权, 蒋曙光, 位爱竹, 等. 锥形量热仪在火灾科学研究中的应用[J]. 能源技术与管理, 2009(01): 72-75. [42] Schartel B, Hull T R .Development of fire‐retarded materials—Interpretation of cone calorimeter data[J].Fire and Materials, 2007, 31(5):327-354. [43] Zhang X, Zhang T , Li C, etal. Experimental study of commercial flame-retardant polycarbonate under external heat flux[J]. Journal of Thermal Analysis & Calorimetry, 2017, 131(2): 1-8. [44] Zhou W, Chen K, He W, et al. Flame Retardancy of Polysiloxane Solid Powder Combined with Organophosphate in Polycarbonate[C]//2016: 6-29. [45] 季经纬, 杨立中, 范维澄.外部热辐射对材料燃烧性能影响的实验研究[J]. 燃烧科学与技术, 2003(02): 139-143. [46] 王东辉, 刘全义, 李泽锟, 等. 不同热辐射强度下聚碳酸酯的燃烧性能研究[J]. 塑料科技, 2020, 342(10): 13-16. [47] 张沛, 党乐, 王学辉, 等. 飞机典型聚碳酸酯板材燃烧特性研究[J]. 消防科学与技术, 2019, 38(03): 335-338. [48] 刘全义, 朱倩, 史彦龙. 典型航空旅客行李聚碳酸酯板材的燃烧特性[J]. 塑料工业, 2022, 50(11): 112-117+130. [49] 舒中俊, 徐晓楠, 杨守生, 等. 基于锥形量热仪试验的聚合物材料火灾危险评价研究[J]. 高分子通报, 2006(05): 37-44+78. [50] Lee S H, Kim M H , Lee S, etal. Analysis of Combustion and Smoke Characteristics According to the Aging of Class 1E Cables in Nuclear Power Plants[J], 2021:87-94. [51] Zhang B, Zhang J , Xie H, etal. Fire Performance Analysis of PVC and Cabtyre Cables Based upon the Ignition Characteristics and Fire Growth Indexes[M], 2018: 12-18. [52] Kiah H M, Mustafa B , Andrews G E, etal. Particle size emissions from PVC electrical cable fires[C]//Cambridge Particles Meeting, 2017: 319-349. [53] Meinier R, Sonnier R, Zavaleta P, etal. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter[J]. Journal of Hazardous Materials, 2017: 306-316. [54] 陈英杰, 刘志鹏, 代培刚, 等. 家用插座和按钮开关的火灾风险分析 [J]. 科技创新与应用, 2013, (11): 70-71. [55] 李陈莹, 陈杰, 谭笑, 等. 电缆燃烧典型火源模拟方法综述[J]. 消防科学与技术, 2021, 40(03): 345-351. [56] 舒中俊, 冯俊峰, 陈南, 等. PVC电缆及其护套原料燃烧性能的对比[J]. 消防科学与技术, 2006(02): 247-249. [57] 邓飞云, 谢承利. 基于锥型量热仪的核级与非核级电缆燃烧性能对比实验[J]. 船海工程, 2020, 49(06): 24-27. [58] 王蔚, 张和平, 万玉田. 基于锥形量热仪的PVC电缆燃烧性能试验研究[J]. 安全与环境学报, 2008(02): 117-120. [59] 王之琦, 何豪, 朱家哲, 等.火场条件下常用电缆产烟特征及烟气毒性分析[J]. 安全与环境工程, 2023, 30(06): 17-22+54. [60] 王晓伟. 典型通电导线燃烧特性与烟颗粒形谱特征研究[D]. 中国科学技术大学, 2015. [61] 杨春梅. 金属粒子熔化的动力学研究[D]. 北京科技大学, 2024. [62] 吕亮, 段成, 汲胜昌, 等. 电线电缆引燃机理及燃烧特性研究综述[J]. 高电压技术, 2022, 48(02): 612-625. [63] 李阳, 火灾现场中新型导电金属构件熔化痕迹鉴别技术研究. 中国人民武装警察部队学院, 2018-05-15. [64] Wang L T. Extraction Method of Electrical Fire Material Evidence[J]. DEStech Publications, 2019, 12(03): 15-21. [65] Takaki A. On the effect of th1ermal histories upon the metallographic structure of electric wires[C]// Reports of the National Research Institute of Police Science, 1971, 24(02):48-56, 84-92. [66] Cai Z, Shi L. Experimental study on microstructure of overcurrent fault of copper conductor[C]// Journal of Physics: Conference Series. IOP Publishing, 2021, 1885(3): 032-062. [67] Wang L T, Meng Q S. Wall Socket Fire Analysis[J]. Advanced Materials Research, 2012, 591-593:2414-2417. [68] Dazhi. Study on the Characteristics of Electrothermal Corrosion Trace of Aluminium-Brass Connector[J]. IOP Conference Series Materials Science and Engineering, 2018, 422(1): 12-15. [69] 王连铁, 邸曼, 夏大维. 黄铜插片熔化性质的实验研究[J]. 消防技术与产品信息, 2010(3): 4. [70] 袁琳, 杨启东. 黄铜插片火烧熔痕金相组织分析研究[C]// 中国消防协会, 2014: 57-78. [71] 李阳. Zn含量对火场中黄铜短路熔痕金相组织的影响[J]. 消防科学与技术, 2015, 34(9): 4. [72] 覃诗舟. 热环境影响下的黄铜插片短路熔痕与火烧熔痕的金相组织对比研究[C]// 中中国消防协会, 2016: 90-104. [73] 王亮, 张文涛. 铜导线搭铁短路熔痕表面组成成分分析[J]. 消防科学与技术, 2020, (11): 1606-1608. [74] 王亮, 张文涛. 铜导线搭铁短路熔痕金相组织特征分析[J]. 消防科学与技术, 2019, 38(7): 1052-1054. [75] 叶海伦, 詹涌鑫, 李钊, 等. 不同接触方式的导线短路熔痕金相晶粒尺寸分析[J]. 科技通报, 2017, 33(6): 4. [76] 李九霖, 李阳, 刘义祥, 等. 火场中铝合金导线熔痕的定量金相分析[J]. 消防科学与技术, 2020, 39(4): 565-569. [77] 李欣, 张金专. 扫描电镜及其联用技术在火灾调查中的应用[J]. 消防技术与产品信息, 2018, 31(12): 4. [78] Yu Z, Chen S, Deng J, et al. Microstructural characteristics of arc beads with overcurrent fault in the fire scene[J]. Materials, 2020, 13(20): 4521. [79] Zi-Bo Q I, Man D I, Chang-Zheng Z, etal. Study in Plug-Socket Loose Contact Tests and Fire Trace Identification Technology Thereof[J]. Procedia Engineering, 2011, 11: 360-368. [80] Xu X, Yu Z, Y Li, et al. Microstructural Study of Arc Beads in Aluminum Alloy Wires with an Overcurrent Fault[J]. Materials, 2021, 14(15): 4133. [81] Kuan-Heng L, Yung-Hui S, Guo-Ju C, etal. Microstructural Study on Molten Marks of Fire-Causing, Copper Wires[J]. Materials, 2015, 8(6): 3776-3790. [82] 陈克. H62黄铜接插件熔痕特性及鉴定技术的研究[D]. 天津大学, 2024. [83] 陈晓坤, 陈言, 等. 单芯铜线过电流故障电弧熔痕的微观特征研究[J]. 中国安全生产科学技术, 2020, 16(12): 136-142. [84] 陈晓坤, 徐学岩, 等. 过电流故障演化过程及熔痕特征研究[J]. 西安科技大学学报, 2020, 40(03): 393-399. [85] 李欣, 张金专. 扫描电镜及其联用技术在火灾调查中的应用[J]. 消防技术与产品信息, 2018, 31(12): 4. [86] 张金宝, 向熠堃, 周广英, 等. 铝合金导线过电流熔痕微观形貌特征[J]. 消防科学与技术, 2021, 40(6): 932-935. [87] Incropera FP, Dewitt DP, Bergman TL,Lavine AS.Fundamentals of heat and mass transfer[M].New York:John Wiley Sons, 2011, 34(02): 69-89.
﹀
|
中图分类号: |
X946
|
开放日期: |
2026-06-18
|