- 无标题文档
查看论文信息

论文中文题名:

 基于串联谐振两级式隔离逆变电源的研究与优化设计    

姓名:

 仪家安    

学号:

 20206227116    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电力电子与电力传动    

研究方向:

 功率变换技术及应用    

第一导师姓名:

 王党树    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research and optimization design of two-stage isolated inverter based on series resonance    

论文中文关键词:

 SRC推挽 ; 准PR控制 ; 调制波重构 ; 逆变电源 ; 参数优化    

论文外文关键词:

 SRC push-pull circuit ; Quasi-PR control ; Modulated wave reconstruction ; Inverter power supply ; parameter optimization    

论文中文摘要:

随着近年来可持续发展战略政策的提出,国家大力支持发展可再生能源使用技术以及实现化石能源的清洁使用进而减小对传统一次能源过度消费所导致的环境污染等问题。逆变器是可再生能源和化石能源转换为电力资源不可或缺的核心环节,在光伏发电、风力发电、新能源电动汽车、UPS电源、储能等领域有广泛的应用场景。为了提高逆变电源效率和输出电能质量,本文设计了一款串联谐振两级式隔离逆变电源,并展开如下研究工作:

由于谐振回路中谐振元件的存在,谐振变换器的输出特性往往具有较强的非线性,谐振元件参数的设计一直是研究的重点。本文对SRC推挽电路在DCM、CCM1以及CCM2模式分别进行时域分析,得出谐振电压电流表达式,根据功率守恒计算得出工作在CRM1和CRM2工作模式一种新的谐振元件参数优化设计方法,并对谐振回路特性进行分析,阐明了电路品质因数及工作频率与谐振频率比对系统的影响,所设计出来的SRC推挽升压电路降低了电源损耗,提高了电源功率密度。对两级电路母线二倍工频纹波产生的原因及危害进行研究,提出一种调制波重构非线性前馈控制策略来降低母线二倍工频纹波对输出电压THD的影响,并对比分析了PI控制和PR控制应用于逆变电路存在的问题,并设计出一种适用于逆变电路场合的准PR控制器,对控制器的参数进行了详细计算,该控制器对逆变电源输出电能质量的提高存在明显优势。

根据技术指标设计了基于串联谐振两级式隔离逆变电源实验样机并搭建了相应的实验平台,实验结果表明:本文所提出谐振参数设计方法所设计的推挽升压电路可以实现较好的软开关效果,电源峰值效率可提升5%,由于实现软开关而去除厚重散热片可降低电源40%的体积,极大地提高了电源功率密度。本文所提出的调制波重构非线性前馈控制策略在500W负载测试中相比于传统控制策略输出THD降低了0.6%,可有效提高输出电能质量,验证了理论分析的正确性及控制策略的有效性。

论文外文摘要:

With the proposal of sustainable development strategy and policy in recent years, the state strongly supports the development of renewable energy use technology and the realization of clean use of fossil energy to reduce environmental pollution caused by excessive consumption of traditional primary energy. Inverters are an indispensable core link in the conversion of renewable and fossil energy into electricity resources, and have a wide range of application scenarios in fields such as photovoltaic power generation, wind power generation, new energy electric vehicles, UPS power supply, energy storage, etc. In order to improve the efficiency and output power quality of the inverter power supply, this paper designs a series resonant two-stage isolated inverter power supply and conducts the following research work:

Due to the presence of resonant components in the resonant circuit, the output characteristics of resonant converters often have strong nonlinearity, and the design of resonant component parameters has always been a focus of research. This article conducts time-domain analysis on the SRC push-pull circuit in DCM, CCM1, and CCM2 modes, and obtains the expression of resonant voltage and current. Based on power conservation calculation, a new optimization design method for resonant component parameters operating in CRM1 and CRM2 operating modes is obtained. The characteristics of the resonant circuit are analyzed, and the influence of circuit quality factor and the ratio of operating frequency to resonant frequency on the system is elucidated, The designed SRC push-pull boost circuit reduces power loss and improves power density. A study was conducted on the causes and hazards of double power frequency ripple on the bus of two-stage circuits. A modulation wave reconstruction nonlinear feedforward control strategy was proposed to reduce the impact of double power frequency ripple on the output voltage THD. The problems of PI control and PR control applied to inverter circuits were compared and analyzed. A quasi PR controller suitable for inverter circuit applications was designed, and the parameters of the controller were calculated in detail, This controller has obvious advantages in improving the output power quality of the inverter power supply.

Finally, an experimental prototype of a two-stage isolation inverter power supply based on series resonance was designed according to the technical specifications and a corresponding experimental platform was built. The experimental results showed that the push-pull boost circuit designed using the resonance parameter design method proposed in this article can achieve good soft switching effects, resulting in a 5% increase in power efficiency. By implementing soft switching and removing thick heat dissipation fins, the volume of the power supply can be reduced by 40%, Greatly improves the power density of the power supply. The modulation wave reconstruction nonlinear feedforward control strategy proposed in this paper reduces the output THD by 0.6% compared with the traditional control strategy in the 500W load testing, which can effectively improve the output power quality, and verifies the correctness of the theoretical analysis and the effectiveness of the control strategy.

参考文献:

[1] Ping Z, Cai H, Zhao H, et al. Line-Interactive UPS for Low-Voltage Microgrids[J]. Journal of Power Electronics, 2015, 15(6): 1628-1639.

[2] Kwon O, Kim J S, Kwon J M, et al. Bidirectional Grid-connected Single-power-conversion Converter with Low Input Battery Voltage[J]. IEEE Transactions on Industrial Electronics, 2018(4): 65.

[3] Kummari N, Chakraborty S, Chattopadhyay S. An Isolated High-frequency Link Microinverter Operated with Secondary-Side-Modulation for Efficiency Improvement[J].IEEE Transactions on Power Electronics, 2018, 33(3): 2187-2200.

[4] Wang M, Guo S, Huang Q, et al. An Isolated Bidirectional Single-Stage DC–AC Converter Using Wide-Band-Gap Devices With a Novel Carrier-Based Unipolar Modulation Technique Under Synchronous Rectification[J]. IEEE Transactions on Power Electronics, 2016:1832-1843.

[5] Guo S, Su J, Lai J, et al. Analysis and Design of a Wide-Range Soft Switching High-Efficiency High-Frequency-Link Inverter With Dual-Phase-Shift Modulation[J]. IEEE Transactions on Power Electronics, 2017: 1-1.

[6] Everts J, Krismer F, Jeroen V D K, et al. Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC-DC Converters[J]. IEEE Transactions on Power Electronics, 2014, 29(8):3954-3970.

[7] Vaishnav S N, Krishnaswami H. Single-stage isolated bi-directional converter topology using high frequency AC link for charging and V2G applications of PHEV[C]. Vehicle Power & Propulsion Conference. IEEE, 2011.

[8] 戴卫力,张方华,王慧贞.一种带有变压器辅助绕组的推挽正激软开关电路[J].南京航空航天大学学报,2004(03):338-342.

[9] Yin Z, Chen M, Li K, et al. A new ZCS PWM full-bridge converter of buck-type for applications with very high input voltage[C]. IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2015.

[10] 张禹.推挽正激变换器ZVS与磁通平衡技术的研究应用[D].长沙:中南大学,2014.

[11] 黄美妮.基于宽输入大功率航空静止变流器DC-DC的研究[D].西安:西安电子科技大学,2019.

[12] 史春玉.软开关推挽正激变换器及其并联均衡策略研究[D].哈尔滨:哈尔滨工业大学,2016.

[13] Wu Q, Yuan Y. One zero-voltage-switching three-transistor push-pull converter[J]. Power Electronics Iet, 2013, 6(7):1270-1278.

[14] 袁义生,伍群芳.并联LC网络的软开关三管推挽式直流变换器[J].中国电机工程学报,2013,33(24):42-51.

[15] 田立丰.倍流整流ZVS三管推挽直流变换器的研究[D].南京:南京航空航天大学,2017.

[16] 马运东,周林泉,阮新波.零电压开关脉宽调制推挽三电平变换器[J].中国电机工程学报,2006(23):36-41.

[17] 伍群芳. 推挽变换器关键技术及其应用研究[D].南京:南京航空航天大学,2018.

[18] Vishwanathan N, Ramanarayanan V. Average Current Mode Control of High Voltage DC Power Supply for Pulsed Load Application[C]. Industry Applications Conference, 2002. 37th IAS Annual Meeting. Conference Record of the. IEEE, 2002.

[19] Lin W, Wang J, Liu Z, et al. Analysis and Design of LC Series Converter Considering Effect of Parasitic Components[C].International Conference on Computer Distributed Control & Intelligent Enviromental Monitoring. IEEE, 2012.

[20] Huang M S, Chen P H, Lin F J, et al. A novel small signal modeling of series resonant converter based on peak value of resonant current[C].IEEE International Conference on Industrial Technology. IEEE, 2016.

[21] Zhang X, Cai T, Duan S, et al. A Control Strategy for Efficiency Optimization and Wide ZVS Operation Range in Bidirectional Inductive Power Transfer System[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 5958-5969.

[22] Berger A, Agostinelli M, Vesti S, et al. A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6338-6348.

[23] 魏冬.140kHz的串联谐振型无线输能电源的研制[D].成都:西华大学,2021.

[24] Petersen M, Fuchs F W. Load dependent power control in series-series compensated electric vehicle inductive power transfer systems[C].European Conference on Power Electronics & Applications. IEEE, 2014.

[25] Liu N, Habetler T G. Design of a Universal Inductive Charger for Multiple Electric Vehicle Models[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6378-6390.

[26] 钟鸣.基于多相移的全桥串联谐振DC-DC变换器优化控制方法研究[D].成都:西南交通大学,2021.

[27] 罗书聪.列车电力电子变压器中双桥串联谐振变换器的优化控制研究[D].成都:西南交通大学,2020.

[28] Jin-Yong, ChoiSeung-Won, ChoiJun-Young, et al. Hybrid PWM DC/DC converter for EV on-board charger with single transformer[J]. Epe Journal, 2018.

[29] Shafiei N, Ordonez M, Craciun M, et al. Burst Mode Elimination in High Power LLC Resonant Battery Charger for Electric Vehicles[J]. IEEE Transactions on Power Electronics, 2015, 31(2):1173-1188.

[30] Sun X, Shen Y, Zhu Y, et al. Interleaved Boost-Integrated LLC Resonant Converter With Fixed-Frequency PWM Control for Renewable Energy Generation Applications[J]. Power Electronics IEEE Transactions, 2015, 30(8):4312-4326.

[31] 杨立新.双向全桥串联谐振DC/DC变换器的效率优化方法研究[D].武汉:华中科技大学,2021.

[32] 刘延伟.基于串联谐振型双主动全桥DC-DC变换器的直流变压器控制策略研究[D].南京:南京师范大学,2020.

[33] 李强.宽增益谐振型双向DC-DC变换器研究[D].天津:天津理工大学,2020.

[34] Dujic D, Steinke G, Bianda E, et al. Characterization of a 6.5kV IGBT for medium-voltage high-power resonant DC-DC converter[C].Applied Power Electronics Conference & Exposition. IEEE, 2013.

[35] Adamowicz M, Szewczyk J. SiC-Based Power Electronic Traction Transformer (PETT) for 3kV DC Rail Traction[J]. Energies, 2020, 13(21):5573-5580.

[36] Mohammed M S, Vural R A. Evolutionary Design Automation of High Efficiency Series Resonant Converter for Photovoltaic Systems[J]. IEEE Transactions on Power Electronics, 2020, 35(11):11332-11343.

[37] Yang J, Wu X, Muhammad F, et al. External Magnetic Field Minimization for the Integrated Magnetics in Series Resonant Converter[J]. IEEE Transactions on Power Electronics, 2022, 37(1).

[38] Kim J W, Barbosa P. PWM-Controlled Series Resonant Converter for Universal Electric Vehicle Charger[J]. IEEE Transactions on Power Electronics, 2021, 36(12).

[39] 吴俊娟,程亚伟,燕祥伟.串联谐振型三相双有源桥变换器损耗分析[J].太阳能学报,2022,43(02):149-156.

[40] 赵峰,甘延奇,陈小强.基于频域分析的双有源桥串联谐振变换器的设计与闭环控制[J].高电压技术,2022,48(11):4557-4567.

[41] 黄毅正.串联谐振变换器的建模和分析[D].南宁:广西大学,2018.

[42] 张治国,谢运祥,袁兆梅.并联谐振变换器的电路特性分析[J].华南理工大学学报(自然科学版),2013,41(04):33-38.

[43] 刘军,石健将,张仲超.具有最小电流峰值的电容滤波高频高压并联谐振变流器[J].电工技术学报,2009,24(11):83-88

[44] GüCIN T N, Muhammet B, Bekir F. Constant frequency operation of parallel resonant converter for constant-current constant-voltage battery charger applications[J]. Journal of Modern Power Systems and Clean Energy, 2019,1(1):186-199.

[45] Chen Y, Xu J, Sha J,et al. An Improved Fundamental Harmonic Approximation to Describe Filter Inductor Influence on Steady State Performance of Parallel Type Resonant Converter[J]. IEEE Transactions on Power Electronics, 2018, 28(47):1-11.

[46] Moradi M, Castilla M , Momeneh A, et al. Frequency Modulation Control of a DC/DC Current-Source Parallel-Resonant Converter[J].IEEE Transactions on Industrial Electronics, 2017, 1(7):5392-5402.

[47] 李全,苏建徽,赖纪东.LC并联谐振全桥直流变换器的研究[J].电力电子技术,2020,54(10):90-93+98.

[48] 张忠成,梁喆.高效全桥LLC谐振变换器混合控制研究[J].邵阳学院学报(自然科学版),2021,18(04):24-33.

[49] 赵梓羽.基于交错并联PFC及全桥LLC谐振变换器的通信电源设计[D].上海:上海应用技术大学,2021.

[50] Amiri P, Botting C, Craciun M, et al. Analytic-Adaptive LLC Resonant Converter Synchronous Rectifier Control[J]. IEEE Transactions on Power Electronics, 2020, PP(99):1-1.

[51] 孙前刚,潘李云,刘刚.适用于宽电压恒流输出的半桥LLC谐振变换器研究[J].机电工程技术,2021,50(10):111-116.

[52] 张国超,刘桂礼.半桥LLC谐振变换器参数设计与验证[J].科技创新与应用,2021,11(25):28-31.

[53] 谷雨.碳化硅MOSFET在半桥LLC谐振变换器中的应用研究[D].石家庄:河北科技大学,2021.

[54] 王付胜,江冯林,汪学胜.半桥三电平LLC谐振变换器的轻载控制策略[J].电器与能效管理技术,2019(16):28-32.

[55] 彭秋雨,赵葵银,周惠芳.全桥三电平LLC谐振变换器的控制研究[J].机电工程技术,2020,49(03):5-8.

[56] 袁义生,张钟艺,梅相龙.三电平LLC谐振变换器关断损耗的优化设计[J].电力自动化设备,2020,40(02):28-37.

[57] 冯兴田,王世豪,周广睿.基于移相控制的三相交错并联LLC谐振变换器均流控制策略[J].电力自动化设备,2021,41(12):166-171.

[58] 孙加祥,吴红飞,汤欣喜.基于整流侧辅助调控的交错并联LLC谐振变换器[J].电工技术学报,2021,36(10):2072-2080.

[59] 董汉菁,谢小高.基于单辅助绕组构造虚拟受控电压源的两相交错并联LLC谐振变换器均流策略[J].中国电机工程学报,2023,43(04):1556-1569.

[60] 孙孝峰,申彦峰,朱云娥.一种Boost型宽电压范围输入LLC谐振变换器[J].中国电机工程学报,2015,35(15):3895-3903.

[61] 李小双,田钦元,王正仕.基于变频与副边移相控制的双向LLC谐振变换器[J].电工技术,2021(21):83-86+96.

[62] 崔智忠,曾国辉,黄勃.基于鲸鱼优化算法的双向LLC谐振变换器控制参数优化[J].制造业自动化,2021,43(09):83-86+92.

[63] 陶文栋,王玉斌,张丰一.双向LLC谐振变换器的变频-移相控制方法[J].电工技术学报,2018,33(24):5856-5863.

[64] 陈一鸣.宽范围软开关LCC谐振变换器电路及控制策略研究[D].成都:西南交通大学,2018.

[65] Gao Z, Zhang J, Guo F, et al. Analysis and optimal design of LCC resonant converter for anode power supply in ECRH[J]. Fusion Engineering and Design, 2021, 168:112695.

[66] Song S H, Cho C G, Park S M, et al. Design and analysis of an LCC resonant converter for xenon flash lamp simmer circuit[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2):484-491.

[67] 李文.基于DSP车载逆变电源的研究与设计[D].西安:西安科技大学,2019.

[68] 王立鹏. 500W正弦波车载逆变电源研究[D].青岛:山东科技大学,2018.

[69] 任士康.500W车载逆变电源的研究与设计[D].兰州:兰州理工大学,2014.

[70] 邹轶.车载逆变电源的设计与开发[D].长沙:湖南大学,2014.

[71] 魏巍.单相正弦车载逆变电源的设计[D].成都:电子科技大学,2013.

[72] 袁素红.车载逆变电源设计[D].北京:北京交通大学,2019.

[73] 康猛.单相双级型隔离逆变电源研究[D].北京:北京交通大学,2018.

[74] 史方圆.基于宽禁带器件的高频隔离逆变器研究[D].上海:上海交通大学,2020.

[75] 郑东坡.高频隔离型单相逆变器及其软开关技术研究[D].秦皇岛:燕山大学,2020.

[76] Kouro S, Angulo M, Rodriguez J, et al. Multicarrier PWM With DC-Link Ripple Feedforward for Multilevel Inverters[C]International Power Electronics & Motion Control Conference. IEEE, 2009.

[77] 王吉彪,陈启宏,张立炎.基于内模原理的并网逆变器双模PI控制[J].电工技术学报,2018,33(23):5484-5495.

[78] Hassan M. S, Asano Tanemasa, Shoyama Masahito, Dousoky Gamal M. Performance Investigation of Power Inverter Components Submersed in Subcooled Liquid Nitrogen for Electric Aircraft[J]. Electronics, 2022, 11(5):141-149.

中图分类号:

 TM46    

开放日期:

 2024-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式