论文中文题名: | 深度学习煤流量检测及皮带控速方法研究 |
姓名: | |
学号: | 19307205003 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 数字图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-10 |
论文外文题名: | Research on deep learning coal flow detection and belt speed control method |
论文中文关键词: | |
论文外文关键词: | Deep learning ; coal flow detection and recognition ; YOLOv5 ; attention mechanism |
论文中文摘要: |
在实际煤炭采集过程中,长时间在无煤或少煤情况下高速运转皮带运输机会造成大量电能损耗,因此根据煤量监测系统自动调控带式输送机速率以实现智能化采煤是一项重要研究工作。 为了节省井下传送皮带造成的损耗,本文提出一种改进的YOLOv5实时煤流量检测算法。通过引入Swin Transfomer注意力机制,用以改善传统卷积感受野受限问题,同时引入一种加权的拼接方法,对主干网络提取的特征进行加权拼接,使网络能够获取特征图的全局信息,有效提高检测能力。实验结果表明,与YOLOv5算法相比,煤流量检测mAP提升2.1%,且检测时间减少10.6%,能够快速准确的对传送带煤流量进行实时检测。 本文在煤流量智能检测技术和带式输送机自适应调速技术的基础上,设计实现了煤炭带式运输机自适应调速控制系统。 根据输送带煤流量与空载皮带的占比情况,分为(0~15%)慢速、(15%~50%)中速、(大于50%)快速三个等级,从而分档次调整皮带的运行速度。该系统可根据带式输送机中运输煤流量的大小变化自动调节带速,节能效果明显,适于煤矿生产需求。 |
论文外文摘要: |
During actual coal mining process, large power loss will be caused due to the operation of belt conveyor without coal or with little coal at a high speed for a long time. Therefore, it is important to study intelligent coal mining based on the automatic control of belt conveyor speed of coal quantity monitoring system. An improved YOLOv5 real-time coal flow detection algorithm was proposed in the paper to save the loss caused by conveyor belt under well. The Swin Transfomer attention mechanism was introduced to improve the limitation of traditional convolution receptive field. In addition, a weighted splicing method was introduced to splice the features extracted from the backbone network. In this way, the overall information of the feature picture was accessible to the network, which helped to effectively improve detection ability. The experiment results indicated that there was an increase of 2.1% in coal flow detection mAP and decline of 10.6% in detection time compared with YOLOv5 algorithm. The method can help to quickly and accurately detect the coal flow of the conveyor belt in real time. The adaptive speed regulation control system for coal belt conveyor was designed in the paper based on intelligent detection technology of coal flow and adaptive speed regulation technology of belt conveyor. The speed was classified into three grades regarding (0~15%) slow, (15%~50%) intermediate and (over 50%) fast according to the proportion of coal flow of conveyor belt and no-load belt so as to adjust the operation speed of belt by grade. The system, which allows adjusting belt speed automatically based on the change of coal flow in the belt conveyor, has a significant energy-saving effect. It is applicable to the needs of coal mine production. |
参考文献: |
[1]王福斌, 孙海洋, TU Paul. 边缘扩展的皮带撕裂支持向量机视觉检测[J]. 中国机械工程, 2019, 30(4):455-460. [2]杨祥, 田慕琴, 李璐,等. 带式输送机输送带故障检测技术研究[J]. 煤矿机械, 2019, 40(2):133-136. [3]朱立平, 蒋卫良. 适用于我国煤矿带式输送机典型机型的研究状[J]. 煤矿学报, 2010, (11): 1916-1920. [4]赵玉文. 带式输送机的现状和发展趋势[J]. 煤矿机械, 2004, 2. [5]宋伟刚, 王丹. 7.6km长距离带式输送机系统动力学的计算机仿真[J]. 煤炭学报, 2004, 29(2):249-253. [6]孙伟, 王慧, 杨海群. 带式输送机变频调速节能控制系统研究[J]. 工矿自动化, 2013, 39(4):98-101. [7]田原. 浅谈机器视觉技术在煤矿中的应用前景[J]. 工矿自动化, 2010, 36(5):30-32. [8]任中全, 王淼. 带式输送机节能调速控制系统设计[J]. 煤炭技术, 2016, 35(5):245-246. [9]丁秀明. 煤矿能耗调研分析和节能措施[J]. 煤炭技术, 2010, 29(3):243-245. [10]代伟, 赵杰, 杨春雨,等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报, 2017, 42(S2):547-555. [11]唐守锋, 史可, 仝光明,等. 一种矿井低照度图像增强算法[J]. 工矿自动化, 2021, 47(10):5. [12]孟凡芹, 王耀才. 煤矿井下带式输送机煤流图像识别方法的研究[J]. 煤炭学报, 2003, 28(1):23-24. [13]杨小彬, 周世禄, 李娜,等. 深度学习及其在煤矿安全领域的应用[J]. 煤矿安全, 2019, 50(1):261-264. [14]王森, 伍星, 张印辉,等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5):115-123. [17]崔维玉. 基于数据挖掘的水轮机异常预警方法研究[D]. 山东:山东大学, 2018. [18]韩慧. 基于深度学习的工业缺陷检测方法研究[D]. 重庆:重庆邮电大学,2019. [22]张铮, 王艳平, 薛桂香. 数字图像处理与机器视觉[M]. 北京: 人民邮电出版社, 2010:340-379. [23]余文勇, 石绘. 机器视觉自动检测技术[M]. 北京: 化学工业出版社, 2013:5-8. [26]赵永强, 饶元, 董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4):629-654. [28]周俊宇, 赵艳明. 卷积神经网络在图像分类和目标检测应用综述[J]. 计算机工程与应用, 2017, 53(13): 34-41. [38]Lindeberg T. Scale Invariant Feature Transform[M]. Scholarpedia,2012: 5. |
中图分类号: | TP391.4 |
开放日期: | 2022-06-22 |