- 无标题文档
查看论文信息

论文中文题名:

 热辐射环境下消防员皮肤烧伤CFD仿真模拟研究    

姓名:

 张珊珊    

学号:

 20220089034    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 人体热防护    

第一导师姓名:

 杨杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-01    

论文外文题名:

 CFD Simulation Study of Firefighter Skin Burns in A Thermal Radiation Environment    

论文中文关键词:

 个体防护 ; CFD仿真模拟 ; 数值假人 ; 对流换热系数 ; 皮肤烧伤    

论文外文关键词:

 Personal protection ; CFD simulation ; Numerical manikin model ; Convective heat transfer coefficient ; Skin burns    

论文中文摘要:

消防员在作业时常暴露于高温热环境中,热辐射容易引起人体皮肤发生不同程度的烧伤,合理评估高温热辐射环境中消防员热反应是保障消防人员生命安全的重要手段。本研究考虑人体整体及局部与环境之间的换热影响以及消防员皮肤烧伤预测,主要工作和研究成果如下:

将暖体假人进行三维激光扫描得到数值假人,并按照人体生理构造划分为20区块;此外,依据逆向工程软件Geomagic将人体模型进行后处理,生成了具有简化的均匀空气层构造(空气层6.35 mm)的服装数值人体模型。通过CFD(Computational Fluid Dynamics)模拟方法计算了换热系数与皮肤温度,并根据已发表文献实验测量值和仿真结果进行验证。通过验证可知所建立的CFD模型精度较好,可用于人体与环境之间的换热模拟。随后,利用所提模型探讨不同风速(0.2-20 m/s)和风向(0-180°)下全身和局部部位传热的变化趋势,分析服装参数(发射率、厚度、种类)对皮肤烧伤的影响。

结果表明,风速的增加会促进人体与环境之间的热交换,当风速从0.2 m/s增加到20 m/s时,人体整体对流换热系数(hc)增加大约23倍;在风向为90°时,人体整体hc在五个风向条件下差异不超过8.5 W/m2·℃,但身体局部部位的最大差异达到52 W/m2·℃,在非对称风向(45°、90°、135°)下,人体hc呈现非对称式分布。服装发射率、服装厚度、服装种类以及风速对于皮肤温度的影响差异范围分别为6.6-13.3%、5.5-6.6%、5.7-10.1%和6.0-15.0%。总的来说,在火灾环境下应考虑火源的位置来采取适当的防护措施,防护服织物厚度的选取应平衡服装热防护性和热舒适性;降低服装发射率是提升防护性能的重要途径之一。

本研究生成hc与环境因素(风速、风向)之间的回归方程,为人体传热提供了关于单因素风速以及双因素风速与风向的hc数据库,以及对人体整体及局部开始发生烧伤情况进行预测,为高温热辐射环境下人体热生理参数预测、防护服精准防护性能的测试与研发提供基础数据。

论文外文摘要:

Firefighters are often exposed to high temperature environments while firefighting and may cause skin burn injuries due to thermal radiation. Reasonable assessment of firefighter thermal response in thermal radiation environments is an important tool for safeguarding the lives of firefighters. Therefore, this study considers the effects of heat transfer between the human body as a whole and between the local segment and the environment, as well as the prediction of skin burns in firefighters. The main work and research results are as follows:

A 20-zone computational thermal manikin was constructed using a three-dimensional body scanning technique according to the physiological structure of the human body. Then, the numerical manikin model was post-processed using reverse engineering software to produce a clothed manikin model with a simplified uniform air layer configuration (air layer 6.35 mm). The heat transfer coefficient and skin temperature were calculated by CFD simulations and validated against experimental measurements and simulation results from published literature. The validation shows that the established CFD model has good accuracy and can be used for the simulation of heat transfer between the human body and the environment. The proposed model was then used to explore the trends of heat transfer in the whole body and local segments at different wind speeds (0.2-20 m/s) and wind directions (0-180°) and to analyze the effects of clothing parameters (emissivity, thickness, type) on skin burns.

The results show that an increase in wind speed promotes heat exchange between the human body and the environment, the hc of the whole body increases approximately 23 times when the air velocity increases from 0.2 m/s to 20 m/s; the hc of the whole body varies by no more than 8.5 W/m2·℃ for the five wind conditions, but the maximum difference can be up to 52 W/m2·℃ for local body segments. Asymmetric wind direction (45°, 90°, 135°) causes the distribution of convective heat flux asymmetrically. At the end of the 4 s of thermal exposure, it can be found that the differences in the effects of clothing emissivity, clothing thickness, clothing type, and air velocity on skin temperature range from 6.6-13.3%, 5.5-6.6%, 5.7-10.1% and 6.0-15.0% respectively. Overall, the location of the fire source should be considered for appropriate protective measures in a fire environment, and the selection of protective clothing fabric thickness should balance the thermal protection and thermal comfort of the garment; reducing the emissivity of the garment is one important way to improve the protective performance.

The regression equations generated in this study between hc and environmental factors (wind speed and direction) provide a database of hc for human heat transfer with respect to single-factor wind speed and two-factor wind speed and direction, as well as predictions of the overall and local onset of burns in the human body to provide basic data for the prediction of human thermophysiological parameters and the testing and development of the accurate protective performance of protective clothing in high-temperature thermal radiation environments.

参考文献:

[1] 范维澄. 公共安全科学导论 [M]. 北京: 科学出版社, 2013.

[2] 应急管理部. 近10年全国居住场所火灾造成11634人遇难[EB/OL]. (2022-02-18) [20230505]. https://www.119.gov.cn/gk/sjtj/2022/27328.shtml

[3] 应急管理部. 2022年全国警情与火灾情况[EB/OL]. (2023-03-24) [20230505]. https://www.119.gov.cn/qmxfxw/xfyw/2023/36210.shtml

[4] 公安部消防局. 中国消防年鉴 [M]. 北京: 中国人事出版社, 2005.

[5] 四川凉山西昌“3·30”森林火灾事件调查结果公布消防界(电子版). 2021, 7(02): 27.

[6] 天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查报告公布[J]. 化工安全与环境. 2016, (8): 2-2.

[7] CAMPBELL R. United States Firefighter Injuries in 2019 [R], United States: National Fire Protection Association, 2020,

[8] 陶文铨. 数值传热学 [M]. 西安: 西安交通大学出版社, 2001.

[9] PARK H J, HOLLAND D. The effect of location of a convective heat source on displacement ventilation: CFD study [J]. Building and environment, 2001, 36(7): 883-889.

[10] GADGIL A J, LOBSCHEID C, ABADIE M O, et al. Indoor pollutant mixing time in an isothermal closed room: an investigation using CFD [J]. Atmospheric Environment, 2003, 37(39-40): 5577-5586.

[11] NIJEMEISLAND M, DIXON A G. Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed [J]. Chemical Engineering Journal, 2001, 82(1-3): 231-246.

[12] NIELSEN P V. Flow in air conditioned rooms: Model experiments and numerical solution of the flow equations [J]. 1974.

[13] ANSYS. Inc. ANSYS CFX help release 12.0 user’s guide, ANSYS Inc, Canonsburg, PA, 2018.

[14] ANSYS. Inc. AYSYS FLUENT theory guide, ANSYS Inc, Canonsburg, PA, 2018.

[15] DEAR R J, ARENS E, ZHANG H, et al. Convective and radiative heat transfer coefficients for individual human body segments [J]. International Journal of Biometeorology, 1997, 40(3): 141-156.

[16] ICHIHARA M. Measurement of convective and radiative hear transfer coefficients for the standing and sitting human body using a thermal manikin [J]. Journal of Architecture and Planning (Transactions of AIJ), 1997, 501(1): 45-51.

[17] WATANABE S, HORIKOSHI T, ISHII J, et al. Effect of wind velocities and wind directions on forced convective heat transfer coefficients for human body by using thermal manikin[J]. Journal of Environmental Engineering (Transaction of AIJ), 2008, 73(629): 887-893.

[18] OLIVEIRA A V M, GASPAR A R, FRANCISCO S C, et al. Analysis of natural and forced convection heat losses from a thermal manikin: Comparative assessment of the static and dynamic postures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132(9): 66-76.

[19] ONO T, MURAKAMI S, OOKA R, et al. Evaluation of mean convective heat transfer coefficient of a human body in outdoor environment Proposal of the formula for mean convective heat transfer coefficient of a human body by means of wind tunnel and CFD analysis [J]. Journal of Environmental Engineering (Transaction of AIJ), 2006(601): 9-14.

[20] LI C, ITO K. Numerical and experimental estimation of convective heat transfer coefficient of human body under strong forced convective flow [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126(3): 107-117.

[21] QUINTELA D, GASPAR A, BORGES C. Analysis of sensible heat exchanges from a thermal manikin [J]. European Journal of Applied Physiology, 2004, 92(6): 663-668.

[22] OGURO M, ARENS E, ZHANG H, et al. Convective heat transfer coefficients and clothing insulations for parts of the clothed human body under calm conditions [J]. Journal of Architecture and Planning (Transactions of AIJ), 2002, 67(561): 31-39.

[23] LUO N, WENG W G, FU M, et al. Experimental study of the effects of human movement on the convective heat transfer coefficient [J]. Experimental Thermal and Fluid Science, 2014, 57(9): 40-56.

[24] SORENSEN D N, VOIGT L K. Modelling flow and heat transfer around a seated human body by computational fluid dynamics [J]. Building and Environment, 2003, 38(6): 753-762.

[25] GAO S, OOKA R, OH W. Formulation of human body heat transfer coefficient under various ambient temperature, air speed and direction based on experiments and CFD [J]. Building and Environment, 2019, 160(8): 106168.

[26] ZHANG Y, NOVIETO D, JI Y. Human environmental heat transfer simulation with CFD-the advances and challenges [C] // Proceedings of the Eleventh International IBPSA Conference. Glasgow, Scotland, Building Simulation, 2009.

[27] XU J X, PSIKUTA A, LI J, et al. Evaluation of the convective heat transfer coefficient of human body and its effect on the human thermoregulation predictions [J]. Building and Environment, 2021, 196(7): 107778.

[28] ZHANG M Y, LI R, WU Y, et al. Numerical study of the convective heat transfer coefficient of the hand and the effect of wind [J]. Building and Environment, 2021, 188(1): 107482.

[29] SHIH S H, SHIH Y C, WANG L C, et al. The model development and case study for transient thermal response of the human body interacting with the coupled fabric-environment system [J]. Case Studies in Thermal Engineering, 2020, 18(2): 100592.

[30] CROPPER P C, YANG T, COOK M, et al. Coupling a model of human thermoregulation with computational fluid dynamics for predicting human–environment interaction [J]. Journal of Building Performance Simulation, 2010, 3(3): 233-243.

[31] 张昭华, 李俊. 着装舒适性模型及 CFD 模拟方法 [J]. 国际纺织导报, 2008 (11): 67-68.

[32] GAO N P, NIU J L. CFD study of the thermal environment around a human body: a review [J]. Indoor and Built Environment, 2005, 14(1): 5-16.

[33] LIU J, ZHU S, KIM M K, et al. A review of CFD analysis methods for personalized ventilation (PV) in indoor built environments [J]. Sustainability, 2019, 11(15): 4166.

[34] ISO 14505-3:2006. Ergonomics of the thermal environment-evaluation of thermal environments in vehicles-Part 3: Evaluation of thermal comfort using human subjects [S]. International Organization for Standardization, Geneva, Switzerland, 2006.

[35] CONCEICAO E Z E, GERALDO D R B, LUCIO M M J R. Application of computational fluid dynamics differential model coupled with human thermal comfort integral model in ventilated indoor spaces [C] // Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, Chambery, France, 2013.

[36] WANG Y, HUANG Z, LU Y, et al. Heat transfer properties of the numerical human body simulated from the thermal manikin [J]. Journal of the Textile Institute, 2013, 104(2): 178-187.

[37] CHOUDHARY B, WANG F, KE Y, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing [J]. International Journal of Heat and Mass Transfer, 2020, 147(2): 118973.

[38] SHEN H, AN Y, ZHANG H, et al. 3D numerical investigation of the heat and flow transfer through cold protective clothing based on CFD [J]. International Journal of Heat and Mass Transfer, 2021, 175(8): 121305.

[39] 苏云. 火灾高温蒸汽环境下消防服的热湿传递与皮肤烫伤预测[D]. 上海: 东华大学 2018.

[40] SONG G W, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing [J]. Textile Research Journal, 2011, 81(11): 1124-1138.

[41] HE H L, YU Z C, SONG G W. The effect of moisture and air gap on the Thermal protective performance evaluation of fire proof garment eliminating air gaps of fabric assemblies used by wildland firefighters [J]. The Journal of The Textile Institute, 2016, 107(8): 1030-1036.

[42] KIM D H, KO Y, CHOI J Y, et al. Thermal protective performance of firefighting gloves assessed via full-scale fire test [J]. Journal of The Korean Society of Living Environmental System, 2021, 28(2): 178-188.

[43] ASTM STP1427. Thermal Measurements for Fire Fighters’ Protective Clothing. In: Thermal Measurements: The Foundation of Fire Standards [S]. American Society for Testing and Materials, West Conshohocken, PA, 2000.

[44] CHANG Y, ZHAO X, WANG C, et al. Simulation of the velocity and temperature distribution of inhalation thermal injury in a human upper airway model by application of computational fluid dynamics [J]. Journal of Burn Care & Research, 2015, 36(4): 500-508.

[45] LI X H, WANG M, LI J. Thermal Protection Evaluation of Fire Fighter Ensembles Using a Flame Manikin Test System [J]. Advanced Materials Research, 2013, 821: 233-236.

[46] WANG F M, LI X, LI J. Correlation of bench scale and manikin testing of fire protective clothing with thermal shrinkage effect considered [J]. Fibers and Polymers, 2015, 16(6): 1370-1377.

[47] 王敏, 何佳臻, 李俊. 基于燃烧假人的民用防火服热防护性能测评[J]. 西南大学学报: 自然科学版, 2014, 36(2): 150-155.

[48] 李小辉. 防火服装热防护性能的测评及影响因素研究[D]. 上海, 东华大学, 2012.

[49] 卢业虎. 高温液体环境下热防护服装热湿传递与皮肤烧伤预测[D]. 上海,东华大学, 2013.

[50] WANG Z L, LI J, TIAN M. Thermal protective performance evaluation of fire proof garment eliminating air gaps effect based on computational fluid dynamics simulation [J]. Journal of Fire Sciences, 2015, 33(6): 445-458.

[51] TORVI D A, HADJISOPHOCLEOUS G V, HUM J K. A new method for estimating the effects of thermal radiation from fires on building occupants [C] // International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021, 200: 65-72.

[52] 朱方龙, 张渭源. 基于人体皮肤热模型的热防护服评价方法研究[J], 中国安全科学学报, 2007, 17(11): 7.

[53] JIANG S C, MA N, LI H J, et al. Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries [J]. Burns, 2002, 28(8): 713-717.

[54] RAJ P K. A review of the criteria for people exposure to radiant heat flux from fires [J]. Journal of hazardous materials, 2008, 159(1): 61-71.

[55] BAMFORD G J, BOYDELL W. ICARUS: a code for evaluating burn injuries [J]. Fire Technology, 1995, 31(4): 307-335.

[56] TIAN M, LI J. A method to predict burn injuries of firefighters considering heterogeneous skin thickness distribution based on the instrumented manikin system [J]. International Journal of Occupational Safety and Ergonomics, 2021, 27(4): 1166-1178.

[57] SU Y, LI J, ZHANG X. A coupled model for heat and moisture transport simulation in porous materials exposed to thermal radiation [J]. Transport in Porous Media, 2020, 131(2): 381-397.

[58] FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation [J], International Journal of Thermal Sciences, 2015, 96(10): 201-210.

[59] LEI Y, WANG F M, YANG J. An extended model for analyzing the heat transfer in the skin–microenvironment–fabric system during firefighting [J]. Materials, 2023, 16(2): 487.

[60] TANG Y, MAO Z, LI A, et al. Development and application of numerical model of thermal sensors for thermal protective clothing evaluation based on CFD simulation [J]. International Journal of Clothing Science and Technology, 2022, 1(9): 403-417.

[61] UDAYRAJ, WANG FM. A three-dimensional conjugate heat transfer model for thermal protective clothing [J]. International Journal of Thermal Sciences, 2018(8), 130: 28-46.

[62] UDAYRAJ, PRABAL T, Das A, et al. Numerical investigation of the effect of air gap orientations and heterogeneous air gap in thermal protective clothing on skin burn [J]. International Journal of Thermal Sciences, 2017, 121(6): 313-321.

[63] TALUKDAR P, TORVI D A, SIMONSON C J, et al. Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests [J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 526-539.

[64] YANG J, NI S, WENG W. Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model [J]. International Journal of Thermal Sciences, 2017, 120(10): 437-445.

[65] WANG Y, WANG Z, ZHANG X, et al. CFD simulation of naked flame manikin tests of fire proof garments [J]. Fire Safety Journal, 2015, 71: 187-193.

[66] JIANG Y Y, YANAI E, NISHIMURA K, et al. An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing [J]. Fire Safety Journal, 2010, 45(5): 314-326.

[67] HAN X F, WENG W G. Evaluation of thermal safety in fire using human thermal model and CFD simulation [C] // 2nd IEEE International Conference on Emergency Management and Management Sciences. BeiJing, China, 2011.

[68] TIAN M, LI J. Simulating the thermal response of the flame manikin with different materials exposed to flash fire by CFD [J]. Fire and Materials, 2017, 41(1): 40-53.

[69] TIAN M, WANG Z, LI J. 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD [J]. International Journal of Heat and Mass Transfer, 2016, 93(2): 314-321.

[70] LI J, TIAN M. Personal thermal protection simulation under diverse wind speeds based on life-size manikin exposed to flash fire [J]. Applied Thermal Engineering, 2016, 103(7): 1381-1389.

[71] TIAN M, LI J. 3D heat transfer modeling and parametric study of a human body wearing thermal protective clothing exposed to flash fire [J]. Fire and Materials, 2018, 42(6): 657-667.

[72] TIAN M, LI J. Heat transfer modeling within the microclimate between 3D human body and clothing: effects of ventilation openings and fire intensity [J]. International Journal of Clothing Science and Technology, 2021, 33(4): 542-561.

[73] XU C, SHEN S F, FU M, et al. A prediction method to evaluate thermal performance of protective clothing based on the correlation analysis of the bench scale and flame manikin tests[J]. International Journal of Clothing Science Technology, 2020, 32(4): 499-510.

[74] SONG G W, BARKER R L, HAMOUDA H, et al. Modeling the thermal protective performance of heat resistant garments in flash fire exposures [J], Textile Research Journal, 2004, 4(12): 1033-1040.

[75] MERT E, AGNES P, BUENO M A, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment[J]. International Journal of Biometeorology, 2015, 59(11): 1701-1710.

[76] GHAZY A. Influence of thermal shrinkage on protective clothing performance during fire exposure: numerical investigation [J], Mechanical Engineering research, 2014, 4(2): 1-15.

[77] SU Y, TIAN M, LI J, et al. Development of heat and moisture transfer model for predicting skin burn of firefighter in fire environments [J]. The Journal of The Textile Institute, 2021, 113(5): 1-8.

[78] WISSLER E H. Pennes’ 1948 paper revisited [J]. Journal of applied physiology, 1998, 85(1): 35-41.

[79] HENRIQUES J F C. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury [J]. Archives of pathology, 1947, 43(5): 489-502.

[80] STOLL A M, CHIANTA M A. A method and rating system for evaluation of thermal protection [R]. Naval Air Development Center Warminster Pa Aerospace Medical Research Dept, 1968.

[81] 王福军. 计算流体动力学分析:CFD软件原理与应用 [M]. 北京: 清华大学出版社, 2004.

[82] PATANKAR S V, SPALDING D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J]. International Journal of heat and mass transfer, 1972, 15(10): 1787-1806.

[83] DJENIDI L, ANTONIA R A. Riblet modelling using a second-moment closure [J]. Applied Scientific Research, 1995, 54(4): 249-266.

[84] LIM J, CHOI H, ROH EK. Assessment of airflow and microclimate for the running wear jacket with slits using CFD simulation [J]. Fashion and Textiles, 2015, 2(1):1-6.

[85] YANG J, NI S, WENG W. Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model [J]. International Journal of Thermal Sciences, 2017, 120(10): 437-445.

[86] 纪秀玲, 李国忠, 戴自祝. 模拟人体热损失来评价热环境的传感器设计[J]. 科技通报, 2003, 19(002): 142-145.

[87] GAO S, OOKA R, OH W. Formulation of human body heat transfer coefficient under various ambient temperature, air speed and direction based on experiments and CFD [J]. Building and Environment, 2019, 160(8): 106168.

[88] YANG T, CROPPER P C, COOK M, et al. A new simulation system to predict human-environment thermal interactions in naturally ventilated buildings [J]. 2007.

[89] XU J, PSIKUTA A, LI J, et al. Influence of human body geometry, posture and the surrounding environment on body heat loss based on a validated numerical model [J]. Building and Environment, 2019, 166(12): 106340.

[90] NIELSEN P V. The importance of a thermal manikin as source and obstacle in full-scale experiments [R]. Aalborg, Indoor Environmental Engineering, 1999.

[91] SREBRIC J, VUKOVIC V, HE G, et al. CFD boundary conditions for contaminant dispersion, heat transfer and airflow simulations around human occupants in indoor environments [J]. Building and Environment, 2008, 43(3): 294-303.

[92] 孙贺江, 何卫兵. 飞机客舱中人体辐射散热的实验与模拟[J]. 天津大学学报: 自然科学与工程技术版, 2016, 49(3): 231-238.

[93] 王刚, 辛岳芝, 胡松涛,等. 低气压条件下人体与环境对流和蒸发换热的实验研究[J]. 暖通空调, 2009, 39(2): 4.

[94] Sparrow E M, Eichhorn R, Gregg J L. Combined forced and free convection in a boundary layer flow [J]. Physics Fluids, 1959, 2(3): 319-328.

[95] XU J X, PSIKUTA A, LI J, et al. A numerical investigation of the influence of wind on convective heat transfer from the human body in a ventilated room [J]. Building and Environment, 2021, 188(1): 107427.

[96] CLARK R P, TOY N. Forced convection around the human head [J]. The Journal of Physiology, 1975, 244(2): 295-302.

[97] YU Y, LIU J L, CHAUHAN K, et al. Experimental study on convective heat transfer coefficients for the human body exposed to turbulent wind conditions [J]. Building and Environment, 2020, 169(2): 106533.

[98] ZOU J W, LIU J L, NIU J L, et al. Convective heat loss from computational thermal manikin subject to outdoor wind environments [J]. Building and Environment, 2021, 188(1): 107469.

[99] MORVAN D, HOFFMAN C, REGO F, et al. Numerical simulation of the interaction between two fire fronts in grassland and shrubland [J]. Fire Safety Journal, 2011, 46(8): 469-479.

[100] BEER T. The Speed of a fire front and its dependence on wind-speed [J]. International Journal of Wildland Fire, 1992, 3(4): 193-202.

中图分类号:

 X968    

开放日期:

 2024-09-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式