论文中文题名: | 热辐射环境下消防员皮肤烧伤CFD仿真模拟研究 |
姓名: | |
学号: | 20220089034 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人体热防护 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | CFD Simulation Study of Firefighter Skin Burns in A Thermal Radiation Environment |
论文中文关键词: | |
论文外文关键词: | Personal protection ; CFD simulation ; Numerical manikin model ; Convective heat transfer coefficient ; Skin burns |
论文中文摘要: |
消防员在作业时常暴露于高温热环境中,热辐射容易引起人体皮肤发生不同程度的烧伤,合理评估高温热辐射环境中消防员热反应是保障消防人员生命安全的重要手段。本研究考虑人体整体及局部与环境之间的换热影响以及消防员皮肤烧伤预测,主要工作和研究成果如下: 将暖体假人进行三维激光扫描得到数值假人,并按照人体生理构造划分为20区块;此外,依据逆向工程软件Geomagic将人体模型进行后处理,生成了具有简化的均匀空气层构造(空气层6.35 mm)的服装数值人体模型。通过CFD(Computational Fluid Dynamics)模拟方法计算了换热系数与皮肤温度,并根据已发表文献实验测量值和仿真结果进行验证。通过验证可知所建立的CFD模型精度较好,可用于人体与环境之间的换热模拟。随后,利用所提模型探讨不同风速(0.2-20 m/s)和风向(0-180°)下全身和局部部位传热的变化趋势,分析服装参数(发射率、厚度、种类)对皮肤烧伤的影响。 结果表明,风速的增加会促进人体与环境之间的热交换,当风速从0.2 m/s增加到20 m/s时,人体整体对流换热系数(hc)增加大约23倍;在风向为90°时,人体整体hc在五个风向条件下差异不超过8.5 W/m2·℃,但身体局部部位的最大差异达到52 W/m2·℃,在非对称风向(45°、90°、135°)下,人体hc呈现非对称式分布。服装发射率、服装厚度、服装种类以及风速对于皮肤温度的影响差异范围分别为6.6-13.3%、5.5-6.6%、5.7-10.1%和6.0-15.0%。总的来说,在火灾环境下应考虑火源的位置来采取适当的防护措施,防护服织物厚度的选取应平衡服装热防护性和热舒适性;降低服装发射率是提升防护性能的重要途径之一。 本研究生成hc与环境因素(风速、风向)之间的回归方程,为人体传热提供了关于单因素风速以及双因素风速与风向的hc数据库,以及对人体整体及局部开始发生烧伤情况进行预测,为高温热辐射环境下人体热生理参数预测、防护服精准防护性能的测试与研发提供基础数据。 |
论文外文摘要: |
Firefighters are often exposed to high temperature environments while firefighting and may cause skin burn injuries due to thermal radiation. Reasonable assessment of firefighter thermal response in thermal radiation environments is an important tool for safeguarding the lives of firefighters. Therefore, this study considers the effects of heat transfer between the human body as a whole and between the local segment and the environment, as well as the prediction of skin burns in firefighters. The main work and research results are as follows: A 20-zone computational thermal manikin was constructed using a three-dimensional body scanning technique according to the physiological structure of the human body. Then, the numerical manikin model was post-processed using reverse engineering software to produce a clothed manikin model with a simplified uniform air layer configuration (air layer 6.35 mm). The heat transfer coefficient and skin temperature were calculated by CFD simulations and validated against experimental measurements and simulation results from published literature. The validation shows that the established CFD model has good accuracy and can be used for the simulation of heat transfer between the human body and the environment. The proposed model was then used to explore the trends of heat transfer in the whole body and local segments at different wind speeds (0.2-20 m/s) and wind directions (0-180°) and to analyze the effects of clothing parameters (emissivity, thickness, type) on skin burns. The results show that an increase in wind speed promotes heat exchange between the human body and the environment, the hc of the whole body increases approximately 23 times when the air velocity increases from 0.2 m/s to 20 m/s; the hc of the whole body varies by no more than 8.5 W/m2·℃ for the five wind conditions, but the maximum difference can be up to 52 W/m2·℃ for local body segments. Asymmetric wind direction (45°, 90°, 135°) causes the distribution of convective heat flux asymmetrically. At the end of the 4 s of thermal exposure, it can be found that the differences in the effects of clothing emissivity, clothing thickness, clothing type, and air velocity on skin temperature range from 6.6-13.3%, 5.5-6.6%, 5.7-10.1% and 6.0-15.0% respectively. Overall, the location of the fire source should be considered for appropriate protective measures in a fire environment, and the selection of protective clothing fabric thickness should balance the thermal protection and thermal comfort of the garment; reducing the emissivity of the garment is one important way to improve the protective performance. The regression equations generated in this study between hc and environmental factors (wind speed and direction) provide a database of hc for human heat transfer with respect to single-factor wind speed and two-factor wind speed and direction, as well as predictions of the overall and local onset of burns in the human body to provide basic data for the prediction of human thermophysiological parameters and the testing and development of the accurate protective performance of protective clothing in high-temperature thermal radiation environments. |
参考文献: |
[1] 范维澄. 公共安全科学导论 [M]. 北京: 科学出版社, 2013. [4] 公安部消防局. 中国消防年鉴 [M]. 北京: 中国人事出版社, 2005. [5] 四川凉山西昌“3·30”森林火灾事件调查结果公布消防界(电子版). 2021, 7(02): 27. [6] 天津港“8·12”瑞海公司危险品仓库特别重大火灾爆炸事故调查报告公布[J]. 化工安全与环境. 2016, (8): 2-2. [8] 陶文铨. 数值传热学 [M]. 西安: 西安交通大学出版社, 2001. [13] ANSYS. Inc. ANSYS CFX help release 12.0 user’s guide, ANSYS Inc, Canonsburg, PA, 2018. [14] ANSYS. Inc. AYSYS FLUENT theory guide, ANSYS Inc, Canonsburg, PA, 2018. [31] 张昭华, 李俊. 着装舒适性模型及 CFD 模拟方法 [J]. 国际纺织导报, 2008 (11): 67-68. [39] 苏云. 火灾高温蒸汽环境下消防服的热湿传递与皮肤烫伤预测[D]. 上海: 东华大学 2018. [47] 王敏, 何佳臻, 李俊. 基于燃烧假人的民用防火服热防护性能测评[J]. 西南大学学报: 自然科学版, 2014, 36(2): 150-155. [48] 李小辉. 防火服装热防护性能的测评及影响因素研究[D]. 上海, 东华大学, 2012. [49] 卢业虎. 高温液体环境下热防护服装热湿传递与皮肤烧伤预测[D]. 上海,东华大学, 2013. [52] 朱方龙, 张渭源. 基于人体皮肤热模型的热防护服评价方法研究[J], 中国安全科学学报, 2007, 17(11): 7. [81] 王福军. 计算流体动力学分析:CFD软件原理与应用 [M]. 北京: 清华大学出版社, 2004. [86] 纪秀玲, 李国忠, 戴自祝. 模拟人体热损失来评价热环境的传感器设计[J]. 科技通报, 2003, 19(002): 142-145. [92] 孙贺江, 何卫兵. 飞机客舱中人体辐射散热的实验与模拟[J]. 天津大学学报: 自然科学与工程技术版, 2016, 49(3): 231-238. [93] 王刚, 辛岳芝, 胡松涛,等. 低气压条件下人体与环境对流和蒸发换热的实验研究[J]. 暖通空调, 2009, 39(2): 4. |
中图分类号: | X968 |
开放日期: | 2024-09-14 |