- 无标题文档
查看论文信息

论文中文题名:

 基于水循环算法的天线设计和阵列综合方法研究    

姓名:

 王东云    

学号:

 21207035010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080904    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 电磁场与微波技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子科学与技术    

研究方向:

 天线设计和阵列综合    

第一导师姓名:

 徐艳红    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Research on Antenna Design and Array Synthesis Method Based on Water Cycle Algorithm    

论文中文关键词:

 水循环算法 ; MATLAB-HFSS联合仿真 ; 磁电偶极子 ; 低峰值旁瓣 ; 宽零点    

论文外文关键词:

 Water Cycle Algorithm (WCA) ; MATLAB-HFSS co-simulation ; magneto-electric (ME) dipole ; low peak sidelobe (PSLL) ; wide-nulling    

论文中文摘要:

       天线作为通信系统的最前端,其性能影响着整个通信系统的质量。传统的天线设计方法具有依赖天线设计者经验,设计时间长和效率低下的缺点。实际应用中不可避免存在的误差会影响阵列天线的波束性能,如旁瓣电平抬高、零点移位或者零点电平抬高。针对上述问题,本文将寻优效果更好、收敛速度更快,稳定性更强的水循环算法引入天线设计和存在阵列误差情况下的阵列综合问题中,具体工作总结如下:

(1)基于水循环算法的天线设计。构建了基于水循环算法的MATLAB-HFSS联合仿真天线设计方法,并基于该方法设计优化了三款典型天线,以验证所提方法的有效性。1)E型贴片天线:基于所提方法优化后的E型贴片天线工作在4.62GHz-6.15GHz,实现了28.41%(S11≤-10dB)的相对带宽,与灰狼算法、差分进化算法、自适应差分进化算法、风驱动算法、鲸鱼优化算法的优化结果相比,工作带宽分别提升了6.3%,38.3%,40.8%,42.1%和38.5%。2)传统磁电偶极子天线:基于所提方法优化后的传统磁电偶极子天线工作在1.51GHz-3.56GHz,实现了80.9%(VSWR≤1.5)的相对带宽。与传统的天线设计方法优化结果相比,工作带宽提升了84.7%,且尺寸有效地减小了25.9%。与灰狼算法优化结果相比,尺寸有效地减小了31.6%。3)宽带磁电偶极子天线:设计的宽带磁电偶子天线基于所提方法优化后工作在1.41GHz-3.83GHz,实现了92.4%(VSWR≤2)的相对带宽。

(2)基于水循环算法的阵列综合。存在阵列误差情况下,提出了一种基于水循环算法的低峰值旁瓣方向图综合和宽零点方向图综合方法。首先,将不可避免的阵列误差归结为幅相响应误差,并建立广义阵列误差信号模型。采用统计均值的方法对存在阵列误差情况下的旁瓣区域协方差矩阵进行精确计算,通过水循环算法优化阵列激励电流的幅度和相位,分别找出阵列误差存在情况下实现低峰值旁瓣方向图综合和宽零点方向图综合的最优权。采用信号处理技术与电磁仿真技术相结合的方式,验证以存在10%的阵列误差为例所得最优权的有效性。MATLAB仿真软件实验结果表明水循环算法具有快速寻优能力,能够在20次迭代内收敛。在固定阵元间距物理尺寸的前提下,以7GHz、8GHz、9GHz和10GHz四个频点为例:采用所求低旁瓣最优权时,波束的峰值旁瓣电平均能降至-21dB;采用宽零点最优权时,产生波束均能在目标角度范围形成期望的零点。在Ansoft HFSS仿真软件中,建立与MATLAB仿真对应的8阵元宽带线性磁电偶极子天线阵列以验证所得最优权在强互耦效应下的有效性:应用低峰值旁瓣最优权时,峰值旁瓣电平分别降低了6.6dB、4.4dB、7.2dB和5.0dB;应用宽零点最优权时,在期望角度区域内均生成了可接受的宽零点,峰值旁瓣电平分别降低了2.4dB、3.0dB、2.1dB和4.6dB。

论文外文摘要:

As the forefront of the communication system, the performance of the antenna affects the quality of the entire communication system. The traditional antenna design method has the disadvantages of relying on the experience of antenna designers, long design time and low efficiency. The inevitable errors in practical applications will affect the beampattern performance of the array antenna, such as sidelobe level elevation, nulls shift or nulls level elevation. In view of the above problems, this thesis introduces the Water Cycle Algorithm (WCA) with better optimization effect, faster convergence speed and stronger stability into antenna design and array synthesis in the presence of array errors. The specific works are summarized as follows:

(1) Antenna design based on WCA. WCA-based antenna design via joint HFSS-MATLAB method is constructed, and three typical antennas are designed and optimized based on this method to verify the effectiveness of the proposed method. 1) E-shaped patch antenna: the optimized E-shaped patch antenna based on the proposed method operates from 4.62GHz to 6.15GHz and achieves 28.41% (S11≤-10dB) relative bandwidth. Compared with the optimization results of Grey Wolf Optimizer (GWO), Differential Evolution Algorithm (DE), Self-adaptive Differential Evolution Algorithm (SaDE), Wind Driven Optimization (WDO) and Whale Optimization Algorithm (WOA), the bandwidth of the E-shaped patch antenna optimized is increased by 6.3%, 38.3%, 40.8%, 42.1% and 38.5%, respectively. 2) Traditional Magneto-Electric (ME) dipole antenna: the traditional ME dipole antenna optimized based on the proposed method operates from 1.51GHz to 3.56GHz and achieves 80.9% (VSWR≤1.5) relative bandwidth. Compared with the optimization results of the traditional antenna design method, the working bandwidth is increased by 84.7%, and the size is effectively reduced by 25.9%. Compared with the optimization results of GWO, the size is effectively reduced by 31.6%. 3) Bandwidth-enhanced ME dipole antenna: the optimized bandwidth-enhanced ME dipole antenna with simple structure based on the proposed method works from 1.41GHz to3.83GHz, and achieves 92.4% (VSWR≤2) relative bandwidth.

(2) Array synthesis based on WCA. In the presence of array errors, a WCA-based low peak sidelobe level (PSLL) and wide-nulling beampattern synthesis method is proposed. Firstly, the inevitable array errors are attributed to the amplitude and phase response errors, and the generalized array error signal model is established. The statistical mean method is used to accurately calculate the covariance matrix of sidelobe region (CMSR) in the presence of array errors. The amplitude and phase of the array excitation current are optimized by the WCA, and the optimal weight vectors for low-PSLL and wide-nulling beampattern synthesis are found in the presence of array errors respectively. The combination of signal processing technology and electromagnetic simulation technology is used to verify the effectiveness of the optimal weights obtained by taking the existence of 10% array errors. The experimental results of MATLAB simulation software show that the WCA has fast optimization ability and can converge within 20 iterations. Under the premise of fixing the physical size of the array element spacing, taking the four frequency points of 7GHz, 8GHz, 9GHz and 10GHz as examples: when the low-PSLL optimal weight vectors are applied, the PSLLs of the beampattern can be reduced to −21dB. When the wide-nulling optimal weight vectors are adopted, the generated beampattern can form the desired null(s) in the target angle range. In Ansoft HFSS simulation software, an 8-element broadband linear ME dipole antenna array corresponding to MATLAB simulation is established to verify the effectiveness of the obtained optimal weights under strong mutual coupling effect: when the low-PSLL optimal weight vectors are applied, the PSLLs are reduced by 6.6dB, 4.4dB, 7.2dB and 5.0dB, respectively. When the wide-nulling optimal weight vectors are used, acceptable wide-nulling(s) are generated in the desired angle region, and the PSLLs are reduced by 2.4dB, 3.0dB, 2.1dB and 4.6dB, respectively.

参考文献:

[1] 李小刚,金荣洪,梁仙灵,等. Ka频段宽带圆极化微带天线[J]. 电波科学学报, 2022, 37(6): 1073-1079.

[2] 鲁加国,张洪涛,汪伟,等. 一种双频多极化共口径波导天线阵列[J]. 西安电子科技大学学报(自然科学版), 2022, 49(2): 29-35.

[3] 杨浩楠,曹祥玉,高军,等. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列[J]. 物理学报, 2021, 70(1): 266-273.

[4] 张民,瞿培华,阳松. 演化算法在微带天线优化中的应用[J]. 电波科学学报, 2014, 29(3): 571-575.

[5] J. M. Johnson and V. Rahmat-Samii. Genetic algorithms in engineering electromagnetics[J]. IEEE Antennas and Propagation Magazine, 1997,39(4): 7-21.

[6] 曲恒. 使用HFSS-MATLAB-API设计天线的研究[D]. 浙江:杭州电子科技大学, 2012.

[7] S. K. Goudos, K. Siakavara and J. N. Sahalos. Novel Spiral Antenna Design Using Artificial Bee Colony Optimization for UHF RFID Applications[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 528-531.

[8] J. Dong, Q. Li and L. Deng. Design of fragment-type antenna structure using an improved BPSO[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 564-571.

[9] 李帆. 宽带双频段电磁偶极子天线的设计与联合仿真优化[D]. 安徽:安徽大学, 2019.

[10] A. Aldhafeeri and Y. Rahmat-Samii. Brain storm optimization for electromagnetic applications: continuous and discrete[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2710-2722.

[11] Y. Ji, L. X. Yang and X. Zhou. Optimal design of a printed patch antenna using Water Cycle Algorithm[C]// 2019 International Applied Computational Electromagnetics Society Symposium China (ACES), 2019, 1:1-2.

[12] K. M. Luk. and H. Wong. A new wideband unidirectional antenna element[J]. International Journal of Microwave Optical Technology, 2006, 1: 35–44.

[13] X. Li and K. M. Luk. The Grey Wolf Optimizer and Its Applications in Electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2186-2197.

[14] 刘汉,康国钦,李凯. 基于差分进化算法设计的MIMO超宽带天线[J]. 华南理工大学学报(自然科学版), 2020, 48(3):24-31.

[15] Z. Shao, L. F. Qiu and Y. P. Zhang. Design of wideband differentially fed multilayer stacked patch antennas based on bat algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1172-1176.

[16] 姚钦海,项铁铭,孙斌. 基于改进灰狼算法的天线设计优化[J]. 杭州电子科技大学学报, 2021, 41(1):31-37.

[17] A. D. Boursianis, M. S. Papadopoulou, J. Pierezan, et al. Multiband Patch Antenna Design Using Nature-Inspired Optimization Method[J]. IEEE Open Journal of Antennas and Propagation, 2021, 2: 151-162.

[18] X. X. Xu, P. Y. Xu, Y. Wang, et al. Intelligent design of reconfigurable microstrip antenna based on adaptive immune annealing algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.

[19] Y. He, J. Huang, W. Li, et al. Hybrid Method of Artificial Neural Network and Simulated Annealing Algorithm for Optimizing Wideband Patch Antennas[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(1): 944-949.

[20] A. Koretz and B. Rafaely. Dolph–Chebyshev Beampattern Design for Spherical Arrays[J]. in IEEE Transactions on Signal Processing, 2009, 57(6): 2417-2420.

[21] A. F. Morabito. Synthesis of Maximum-Efficiency Beam Arrays via Convex Programming and Compressive Sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2404-2407.

[22] C. Cui, W. T. Li, X. T. Ye, et al. Hybrid genetic algorithm and modified iterative Fourier transform algorithm for large thinned array synthesis[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2150-2154.

[23] 王安义,黄笑,徐艳红. 基于伍德沃德-劳森抽样方法的阵列平顶波束综合[J]. 科学技术与工程, 2022, 22(31): 13794-13800.

[24] 孙建邦,李建兵,王鼎,等. 基于遗传模型改进蜂群算法的稀疏阵列优化[J]. 强激光与粒子束, 2021, 33(12): 39-46.

[25] J. M. Johnson and Y. Rahmat-Samii. Genetic algorithm optimization and its application to antenna design[C]// Antennas and Propagation Society International Symposium, 1994, 1: 326-329.

[26] M. M. Khodier and C. G. Christodoulou. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(8): 2674-2679.

[27] A. Darvish and A. Ebrahimzadeh. Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 1756-1766.

[28] 周后英. 基于水循环算法的阵列天线方向图综合[D]. 陕西:西安电子科技大学,2018.

[29] D. Prabhakar and M. Satyanarayana. Side lobe pattern synthesis using hybrid SSWOA algorithm for conformal antenna array[J]. Engineering Science and Technology, an International Journal, 2019, 22(6): 1169-1174.

[30] 孙翠珍,丁君,郭陈江. 一种改进的引力搜索算法及其波束赋形[J]. 西安电子科技大学学报(自然科学版), 2020, 47(2): 83-90.

[31] Q. K. Liang, B. Chen, H. N. Wu, et al. A Novel Modified Sparrow Search Algorithm with Application in Side Lobe Level Reduction of Linear Antenna Array[J]. Wireless Communications and Mobile Computing, 2021, 1-25.

[32] 路复宇,童宁宁,冯为可,等. 自适应杂交退火粒子群优化算法[J]. 系统工程与电子技术, 2022, 44(11): 3470-3476.

[33] Y. H. Xu, A. Y. Wang, and J. W. Xu. Range-angle transceiver beamforming based on semicircular FDA scheme[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 834-843.

[34] P. Angeletti, L. Berretti, S. Maddio, et al. Phase-only synthesis for large planar arrays via zernike polynomials and invasive weed optimization[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1954-1964.

[35] 国强,刘从业,王亚妮,等. 改进算术优化算法用于稀布平面阵列综合[J]. 西安电子科技大学学报(自然科学版), 2023, 50(3): 202-212.

[36] N. Anselmi, L. Manica, P. Rocca, et al. Tolerance Analysis of Antenna Arrays Through Interval Arithmetic[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(11): 5496-5507.

[37] P. Rocca, N. Anselmi and A. Massa. Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3603-3612.

[38] G. L. He, X. Gao and H. Zhou. Matrix-based interval arithmetic for linear array tolerance analysis with excitation amplitude errors[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3516-3520.

[39] 杨垠. 阵列天线波束赋形方向图综合技术研究[D]. 江苏:南京理工大学,2018.

[40] X. Li, J. Z. Zhou, B. Y. Duan, et al. Performance of Planar Arrays for Microwave Power Transmission with Position Errors[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1794-1797.

[41] F. Guo, Z. Y. Liu, G. D. Sa, et al. A position error representation method for planar arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 109-113.

[42] 崔伟,张冰,余岚. 一种局部优化的粒子群低副瓣波束形成方法[J]. 现代电子技术, 2021, 44(5): 57-60.

[43] Y. H. Xu, X. W. Shi, A. Y. Wang, et al. Design of sum and difference patterns with common nulls and low SLLs simultaneously in the presence of array errors[J]. IEEE Transactions on Antennas and Propagation, 2018, 67(2): 934-944.

[44] H. Eskandar, A. Sadollah, A Bahreininejad, et al. Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers & Structures, 2012, 110–111: 151-166.

[45] M. Nasir, A. Sadollah, Y. H. Choi, et al. A comprehensive review on water cycle algorithm and its applications[J]. Neural Computing and Applications, 2020, 32: 17433-17488.

[46] S. Goudos, K. Siakavera, T. Samaras, et al. Self-adaptive differential evolution applied to real valued antenna and microwave design problems[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1286-1298.

[47] Z. Bayraktar, M. Komurcu, J. A. Bossard, et al. The wind driven optimization technique and its application in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2745-2757.

[48] S. Mirjalili and A. Lewis. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.

[49] X. Zhang, Y. C. Jiao, Z. B. Weng, et al. Wideband Magneto-electric Dipole Antenna with a Claw Shaped Reflector for 5G Communication Systems[J]. Microwave and Optical Technology Letters, 2019, 61(9): 2098-2104.

[50] H. W. Lai, K. K. So, H. Wong, et al. Magnetoelectric Dipole Antennas with Dual Open-ended Slot Excitation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3338-3346.

[51] X. W. Cui, F. Yang, M. Gao, et al. A wideband magnetoelectric dipole antenna with microstrip line aperture-coupled excitation[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7350-7354.

[52] J. Zeng and K. M. Luk. A simple wideband magnetoelectric dipole antenna with a defected ground structure[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(8): 1497-1500.

[53] 于鑫,陈星. 新型超宽带磁电偶极子天线[J]. 信息技术与信息化, 2022, (2): 165-168.

中图分类号:

 TN820.1    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式