- 无标题文档
查看论文信息

论文中文题名:

 富油煤热解覆岩温度变化规律研究    

姓名:

 谢祖锋    

学号:

 20209226069    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境工程    

研究方向:

 地下水污染防治    

第一导师姓名:

 田华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Study on temperature variation law of overburden rock in pyrolysis of tar-rich coal    

论文中文关键词:

 富油煤 ; 热解 ; 覆岩温度 ; 相似模拟 ; 数值模拟    

论文外文关键词:

 Tar-rich coal ; Pyrolysis ; Temperature of overburden rock ; Similarity simulation ; Numerical simulation.    

论文中文摘要:

长期以来煤炭在我国能源生产和消费结构中占有主导地位,如何实现煤炭的清洁高效利用成为了目前的研究热点。富油煤作为一种储量丰富的特种油气资源,可通过原位热解转化为气体和液体燃料,从而实现清洁高效利用。然而,热解过程中覆岩温度变化特征是决定岩层稳定性以及地下环境污染的关键要素,研究其变化规律对地下环境保护与污染防治具有重要意义。本研究聚焦陕北地区富油煤开采利用中的现实问题,根据研究区地层结构及岩性资料,采用自主设计与加工的富油煤原位热解相似模拟装置,基于相似理论搭建富油煤原位热解试验模型,开展了富油煤原位热解覆岩温度变化规律及其影响因素研究,并进一步构建温度数值模型,预测不同热解温度对覆岩的影响范围。论文取得的主要研究成果如下:

(1)不同热解温度下覆岩温度均呈现上升趋势,距离热源越近升高速率越快,温度变化幅度越大。距热源8cm以内的岩层前期快速升温,待煤层开始热解后升温速率下降,热解完成后温度趋于稳定。8cm以上的岩体温度随煤层的热解而缓慢升高至不变。降温过程中煤层与泥岩层的降温速率明显高于远距离岩层,且随着热解温度的升高,降温所需时间增长,降温时间是升温时间的3-5倍。

(2)相似模拟结果表明,煤层及覆岩纵向温度呈现逐渐减小的规律。在煤层顶板3cm以内覆岩温度变化最大,该层温度超过300℃,3-6cm内覆岩温度超过200℃,16cm以上的岩层小于100℃。

(3)温度变化主要受热解温度和加热时间的影响,热解温度越高,各层升温越快,同时最大温度有所增长。当热解升温速率为5℃/min时,500-650℃四组实验下煤层的最大温度分别为448.9℃、482.4℃、531.4℃和586.3℃。泥岩层温度受热解温度影响最大,从600℃-650℃,温度增加77.3℃。2-13.5cm内的岩层温度随加热时间的增加而增大。当同时增加热解温度和时间,受影响的岩层范围也有所增加。当热解温度为650℃时,温度影响的范围最大,达到20cm。

(4)数值模拟预测结果表明,热解温度每升高50℃,相同加热时间下温度纵向扩散的范围增加2m。500℃与650℃下分别热解10h,温度传递的范围从40m增大至46m。

论文外文摘要:

For a long time, coal has occupied a dominant position in China 's energy production and consumption structure. How to realize the clean and efficient utilization of coal has become a research hotspot. As a special oil and gas resource with abundant reserves, tar-rich coal can be converted into gas and liquid fuel by in-situ pyrolysis, so as to realize clean and efficient utilization. However, the temperature variation characteristics of overlying strata during pyrolysis are the key factors that determine the stability of rock strata and underground environmental pollution. It is of great significance to study its variation law for underground environmental protection and pollution prevention. This study focuses on the practical problems in the exploitation and utilization of tar-rich coal in northern Shaanxi.According to the stratigraphic structure and lithology data of the study area, a self-designed and processed similar simulation device for in-situ pyrolysis of tar-rich coal was used to build an in-situ pyrolysis test model of tar-rich coal based on similarity theory. The temperature variation law and its influencing factors of in-situ pyrolysis overburden of tar-rich coal were studied, and the temperature numerical model was further constructed to predict the influence range of different pyrolysis temperatures on overburden. The main research results are as follows:

(1) The temperature of overlying rock shows an upward trend at different pyrolysis temperatures. The closer to the heat source, the faster the rate of increase and the greater the temperature change. The rock layer within 8 cm from the heat source rises rapidly in the early stage, and the heating rate decreases after the coal seam begins to pyrolysis, and the temperature tends to be stable after the pyrolysis is completed. The rock mass temperature above 8cm slowly rises to a constant with the pyrolysis of coal seam. During the cooling process, the cooling rate of coal seam and mudstone layer is significantly higher than that of long-distance rock layer, and with the increase of pyrolysis temperature, the time required for cooling increases, and the cooling time is 3-5 times of the heating time.

(2) The similar simulation results show that the longitudinal temperature of coal seam and overburden rock decreases gradually. The temperature of overlying strata within 3cm of coal seam roof changes the most, the temperature of this layer exceeds 300°C, the temperature of overlying strata within 3-6cm exceeds 200°C, and the temperature of overlying strata above 16cm is less than 100°C.

(3) The temperature change is mainly affected by the pyrolysis temperature and heating time. The higher the pyrolysis temperature, the faster the temperature rise of each layer, and the maximum temperature increases. When the pyrolysis heating rate is 5°C/min, the maximum temperature of the coal seam under the four groups of experiments at 500-650°C is 448.9°C, 482.4°C, 531.4°C and 586.3°C, respectively. The temperature of the mudstone layer is most affected by the pyrolysis temperature, from 600°C to 650°C, the temperature increases by 77.3°C. The rock temperature within 2-13.5 cm increases with the increase of heating time. When the pyrolysis temperature and time are increased at the same time, the affected rock layer range is also increased. When the pyrolysis temperature is 650°C, the temperature influence range is the largest, reaching 20 cm.

(4) The numerical simulation results show that the range of temperature longitudinal diffusion increases by 2 m for every 50°C increase in pyrolysis temperature. The temperature transfer range increased from 40 m to 46 m after pyrolysis at 500°C and 650°C for 10 h, respectively.

参考文献:

[1]王双明.对我国煤炭主体能源地位与绿色开采的思考[J].中国煤炭,2020,46(02):11-16.

[2]王双明,段中会,马丽等.西部煤炭绿色开发地质保障技术研究现状与发展趋势[J].煤炭科学技术,2019,47(2):1-6.

[3]许家林.煤矿绿色开采20年研究及进展[J].煤炭科学技术,2020,48(09):1-15.

[4]任世华,谢亚辰,焦小淼,等.煤炭开发过程碳排放特征及碳中和发展的技术途径[J].工程科学与技术,2022,54(01):60-68.

[5]Wu J H, Liu J Z, Yuan S, et al. Sulfur transformation during hydrothermal dewatering of low rank coal[J]. Energy Fuel, 2015, 29: 6586-6592.

[6]邵震杰,任文忠,陈家良.煤田地质学[M].北京:煤炭工业出版社,1993.

[7]申艳军,王旭,赵春虎,等.榆神府矿区富油煤多尺度孔隙结构特征[J].煤田地质与勘探,2021,49(03):33-41.

[8]王双明,师庆民,王生全,等.富油煤的油气资源属性与绿色低碳开发[J].煤炭学报,2021,46(05):1365-1377.

[9]矿产资源工业要求手册编委会.矿产资源工业要求手册(2014修订版)[M]. 北京:地质出版社,2014.

[10]赵洪宇.难选铁矿石促进富油煤热解及铁矿物回收技术研究[D].北京:中国矿业大学,2016.

[11]孙晔伟,唐跃刚,李正越,等. 中国特高挥发分特高油产率煤的分布及其特征[J]. 煤田地质与勘探,2017,45(5):6-12.

[12]马丽,拓宝生.陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[J]. 陕西煤炭,2020,39(1):220.

[13]王锐,夏玉成,马丽.榆神矿区富油煤赋存特征及其沉积环境研究[J].煤炭科学技术,2020,48(12):192-197.

[14]许婷,李宁,姚征,等.陕北榆神矿区富油煤分布规律及形成控制因素[J].煤炭科学技术,2022,50(03):161-168.

[15]宋立平.煤炭绿色生态开采理念及技术体系[J].陕西煤炭,2021,40(03):55-60+68.

[16]Hu S Y, Wu H, Liang X Y, et al. A preliminary study on the eco-evironmental geological issue of in-situ oil shale mining by a physical model[J]. Chemosphere, 2022, 287(P1).

[17]Besser H, Hamed Y. Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques[J]. Environ Pollut, 2019, 253: 412-423.

[18]Vaasma T, Loosaar J, Gyakwaa F, et al. Pb- 210 and Po-210 atmospheric releases via fly ash from oil shale fired power plants[J]. Environ Pollut, 2017, 222: 210-218.

[19]王双明,王虹,任世华,等.西部地区富油煤开发利用潜力分析和技术体系构想[J].中国工程科学,2022,24(03):49-57.

[20]Pan Y, Zhang X M, Liu S H, et al. A review on technologies for oil shale surface retort[J]. Journal of the Chemical Society of Pakistan, 2012, 6(34): 1331-1338.

[21]Neshumayev D, Pihu T, Siirde A, et al. Solid heat carrier oil shale retorting technology with integrated CFB technology[J]. Oil Shale, 2019, 36: 99-113.

[22]Kang Z Q, Zhao Y S, Yang D. Review of oil shale in-situ conversion technology[J]. Ap-plied Energy, 2020, 269: 115121.

[23]Wang G, Wang Y, Sun L L, et al. Study on the Low-Temperature Oxid ation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China[J]. Energies, 2018, 11(1): 174.

[24]Zhong N N, Dai N, Luo Q Y, et al.NUMERICAL SIMULATI OF IN SITU CONVER-SION OF CONTINENTAL OIL SHALE IN NORTHEAST CHINA[J]. Oil Shale, 2016, 33(1).

[25]Hu S Y, Xiao C L, Liang X J, et al. The influence of oil shale in situ mining on ground-water environment: A water-rock interaction study[J]. Chemosphere, 2019, 228: 384-389.

[26]Mahmud H B, Mahmud W M, Al-Rubaye A. Modeling Interaction Between CO2, Brine and Chalk Reservoir Rock Including Temperature Effect on Petrophysical Properties[J]. Energy Geoscience, 2021, 2(4): 337-344.

[27]Ramsay T S. Multiphysics simulation of phase field interface development and geome-chanical deformation in radio frequency heating of oil shale[J]. Finite Elements in Analy-sis and Design, 2021, 191(Sep): 1-19.

[28]Abdelsayed V, Shekhawat D, Smith, et al. Microwave-assisted pyrolysis of Mississip-picoal: A comparative study with conventional pyrolysis[J]. Fuel, 2018, 217(1): 656-667.

[29]Greg P. Underground coal gasification – Part I: Field demonstrations and process perfor-mance[J]. Progress in Energy and Combustion Science, 2018, 67(Jul): 158-187.

[30]吴财芳,蒋秀明.煤炭地下气化过程中温度场及其传热特征研究进展[J].煤炭科学技术,2022,50(01):275-285.

[31]梁杰,王喆,梁鲲,等.煤炭地下气化技术进展与工程科技[J].煤炭学报,2020,45(01):393-402.

[32]刘淑琴,张尚军,牛茂斐,等.煤炭地下气化技术及其应用前景[J].地学前缘,2016,23(03):97-102.

[33]杨甫,段中会,马东民,等.煤炭地下气化技术进展[J].科技导报,2020,38(20):71-85.

[34]Peng W, Du M, Gao F, et al. A New Analysis Model for Potential Conta mination of a Shallow Aquifer from a Hydraulically-Fractured Shale[J]. Energies, 2018, 11(11): 1-22.

[35]Chen M, Kang Y, Zhang T, et al. Methane adsorption behavior on shale matrix at in-situ pressure and temperature conditions: Measurement and modeling[J]. Fuel, 2018, 228: 39-49.

[36]He W T, Sun Y H, Guo W, et al. Controlling the in-situ conversion process of oil shale via geochemical methods:A case study on the Fuyu oil shale, China[J]. Fuel Processing Technology, 2021, 219.

[37]Lei W, Dong Y, Kang Z Q. Evolution of permeability and mesostructure of oil shale ex-posed to high-temperature water vapor[J]. Fuel, 2020, 290(Apr): 1-10.

[38]白奉田.局部化学法热解油页岩的理论与室内试验研究[D].吉林大学,2015.

[39]李学鑫.油页岩电加热法原位改性温度场数值模拟[D].东北石油大学,2021.

[40]Liu Z, Sun Y, Guo W, et al. Sealing effects of marginal gas injection on oil shale in situ py-rolysis exploitation[J]. Journal of Petroleum Science and Engineering, 2020, 106968.

[41]Zhu J, Yi L, Yang Z, et al. Numerical simulation on the in situ upgrading of oil shale reser-voir under microwave heating [J]. Fuel, 2021, 119553.

[42]张传文,孟庆强,唐玄.油页岩开采技术现状与展望[J].矿产勘查,2021,12(08):1798-1805.

[43]王海柱,李根生,刘欣,等.油页岩开发研究现状及发展趋势[J].中国基础科学,2020,22(05):1-8.

[44]赵帅,孙友宏,杨秦川,等.非稳态原位热解扶余油页岩热-流耦合模拟[J].东北大学学报(自然科学版),2019,40(06):896-902.

[45]Chen H, Li B, Zhang B. Effects of mineral matter on products and sulfur distributions in hydropyrolysis. Fuel, 1999, 78(6): 713-719.

[46]付德亮,段中会,杨甫,等.富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J/OL].煤炭学报:1-14[2022-11-16].

[47]唐颖,吴晓丹,李乐忠,等.富油煤原位热解地下加热技术及其高效工艺[J/OL].洁净煤技术:2023,1-10.

[48]邹卓,张莉,孙杰,等.富油煤热解技术及利用前景研究[J].中国煤炭地质,2022,34(11):31-34.

[49]郭威,刘召,孙友宏,等.富油煤原位热解开发地下体系封闭方法探讨[J].煤田地质与勘探,2023,51(01):107-114.

[50]董光顺,朱超凡,厉家宗,等.黄陵矿区富油煤对流加热原位转化开发效果数值模拟[J/OL].煤田地质与勘探:2023,1-13.

[51]Zhang H R, Li S H, Kerry E, et al. Underground in situ coal thermal treatment for syn-thetic fuels production[J]. Progress in Energy and Combustion Science, 2017, 62(Sep): 1-32.

[52]Chen H K, Li B Q, Yang J I, et al. Transformation of sulfur during pyrolysis and hydro-pyrolysis of coal[J]. Fuel, 1998, 77(6): 487-493.

[53]Shackley S, Mander S, Reiche A. Public perceptions of underground coal gasification in the United Kingdom[J]. Energy Policy, 2006, 34(18): 3423-33.

[54]Roddy D J, Younger P L. Underground coal gasification with CCS:a pathway to decar-bonising industry. Energy & Environmental Science, 2010, 3(4): 400-407.

[55]Shafirovich E, Varma A. Underground coal gasification: a brief review of current status. Industrial & Engineering Chemistry Research, 2009, 48(17): 7865-7875.

[56]师庆民,王双明,王生全,等.神府南部延安组富油煤多源判识规律[J].煤炭学报,2022,47(05):2057-2066.

[57]师庆民,米奕臣,王双明,等.富油煤热解流体滞留特征及其机制[J].煤炭学报,2022,47(03):1329-1337.

[58]李华兵,姚征,李宁,等.神府矿区5~(-2)煤层富油煤赋存特征及资源潜力评价[J].煤田地质与勘探,2021,49(03):26-32+41.

[59]姚征,罗乾周,李宁,等.陕北石炭–二叠纪富油煤赋存特征及影响因素[J].煤田地质与勘探,2021,49(03):50-61+68.

[60]黄鹏程,王力圆,王贝,等.宁夏红墩子矿区富油煤赋存特征及其沉积环境研究[J].中国煤炭地质,2021,33(10):65-70.

[61]高浩.陕北富油煤热解提油基础特性及煤焦油净化机理研究[D].西安科技大学,2021.

[62]马丽,王双明,段中会,等.陕西省富油煤资源潜力及开发建议[J].煤田地质与勘探,2022,50(02):1-8.

[63]田华,张晴,谢祖锋,等.富油煤热解产物在粉砂介质中的吸附行为研究[J].环境科学学报,2022,42(09):133-140.

[64]Ju Y, Zhu Y, Zhou H W, et al. Microwave pyrolysis and its applications to the in situ re-covery and conversion of oil from tar-rich coal: An overview on fundamentals, methods, and challenges[J]. Energy Reports, 2021(7): 523-536.

[65]Ju Y, Zhu Y, Xie H P, et al. Fluidized mining and in-situ transformat ion of deep under-ground coal resources: a novel approach to ensuring safe, environmentally friendly, low-carbon, and clean utilisation[J]. International Journal of Coal Science & Technology, 2019, 6(2): 184-196.

[66]毛崎森,刘嘉晔,王长安,等.不同布井模式下富油煤原位热解传热规律数值模拟[J/OL].煤炭转化:1-20[2022-11-17].

[67]毛崎森,王长安,侯育杰,等.富油煤原位热解对流加热过程传热规律数值模拟研究[J/OL].洁净煤技术:1-13[2022-11-17.

[68]Gneshin K W, Krumm R L, Eddings E G. Porosity and structure evolution during coal pyrolysis in large particles at very slow heating rates[J]. Energy Fuels, 2015, 29(Mar): 1574−1589.

[69]雷光伦,李姿,姚传进,等.油页岩注蒸汽原位开采数值模拟[J].中国石油大学学报(自然科学版),2017,41(2):100-107.

[70]赵阳升,梁卫国,冯子军,等.原位改性流体化采矿科学、技术与工程[J].煤炭学报,2021,46(1):25-35.

[71]孙友宏,郭威,邓孙华.油页岩地下原位转化与钻采技术现状及发展趋势[J].钻探工程,2021,48(1):57-6.

[72]王喆,周松,张晓春,等.煤炭地下气化区上覆岩层温度场演化规律研究[J].煤炭工程,2017,49(8):13-16.

[73]马建雄,薛林福,赵金岷,等.油页岩原位裂解开采温度场数值模拟与设计方案优化[J].科学技术与工程,2019,19(5):94-103.

[74]唐芙蓉,王连国,贺岩,等.煤炭地下气化场覆岩运动规律的数值模拟研究[J].煤炭工程,2013,45(05):79-82.

[75]唐芙蓉.煤炭地下气化燃空区覆岩裂隙演化及破断规律研究[D].中国矿业大学,2013.

[76]马然,张清.油页岩开采利用地下水有机污染物生物降解的研究[J].中国农学通报,2013,29(23):165-170.

[77]Michael A A, David R C. Unconventional Hydrocarbon Resources: Prospects and Prob-lems [J]. Elements, 2014, 10: 257-264.

[78]Jekaterina J, Natalya I, Janek R, et al. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: A long-term field study[J]. Science of The Total Envi-ronment, 2014, 481(15): 605-610.

[79]Campbell J H, Wang F T, Mead S W, et al. Groundwater quality near an underground coal gasification experiment[J]. Journal of Hydrology, 1979, 44(3/4): 241-266.

[80]张丽萍,曾荣树,徐文东,等.油页岩综合利用对周围环境的影响[J].中国煤田地质,2006,18(2):46-51.

[81]Lind H. Groundwater flow model of oil shale mining area[J]. Oil Shale, 2010, 27(3): 258-273.

[82]王德龙.油页岩原位热解的地表生态环境影响对策研究[D].长春:吉林大学,2013.

[83]张凤君,刘兆煐,李晨阳,等.油页岩原位开采的大气环境风险评估[J].科技导报,2013,31(26):44-47.

[84]姜雪,梁秀娟,危润初,等.油页岩原位开采对岩体结构影响分析[J].东北大学学报(自然科学版),2014a,35(3):452-456.

[85]张艳丽.大型地下工程三维可加载物理模拟实验方法研究[D].西安科技大学,2009.

[86]张彦宾,李德海,许国胜,等.采动影响下大型煤仓硐室围岩稳定性研究[J].煤炭科学技术,2013,41(10):1-4.

[87]晏先震.采动覆岩移动机理及防治水应用研究[D].中国矿业大学,2022.

[88]王拓.高应力巷道含层理围岩变形机理及应用研究[D].中国矿业大学,2021.

[89]刘振岭,郑忠亚.采空区煤体自燃温度场演变模拟试验研究[J].煤炭科学技术,2020,48(08):114-120.

[90]钱云云.三维模型采场覆岩变形分布式监测及其数据处理软件开发[D].西安科技大学,2017.

[91]柴敬,袁强,汪志力,等.物理模型试验方法的应用分析[J].西安科技大学学报,2013,33(05):505-511.

[92]Ferrero A M, Marini P. Experimental Studies on the Mechanical Behaviour of two Thermal Cracked Marbles[J]. Rock Mechanics and Rock Engineering, 2001, 34(1): 57-66.

[93]Hajpál M. Changes in sandstone of historical monuments exposed to fire or high tempera-ture[J]. Fire Technology, 2002, 38(4): 373-382.

[94]吴顺川,黄小庆,陈钒,等.岩体破裂矩张量反演方法及其应用[J].岩土力学,2016,37(S1):1-18.

[95]雷中岱,闫治国.工程岩体Ⅲ级围岩相似材料配比试验研究[J].地下空间与工程学报,2022,18(03):832-839+848.

[96]Drebenstedt C, Gusat D, Wang C. Numerical Modelling of Surface Impact of Coal Fires on Coal Fire Areas[A]. Latest Developments in Coal Fire Rrsearch-Bridging the Science, Economics, and Politics of a Global Dister[C]. Proceeding of Second International Con-ference on Coal Fire Research, Berlin, Germany, 2010, 244-248.

[97]高哲.矿井水害相似模拟材料研究[D].西安建筑科技大学,2012.

[98]汪雅婷.模拟含水地层相似材料的力学特性及配比试验研究[D].北京交通大学,2016.

[99]姚琦,冯涛,王卫军,等.矿山开采相似材料配比及力学试验研究[J].安全与环境学报,2017,17(06):2129-2134.

[100]蔡灿凡.煤田火灾温度场及应力场演化过程相似模拟实验研究[D].西安科技大学,2017.

[101]李斌.近距离煤层群覆岩采动导水裂隙发育规律分析[D].西安科技大学,2018.

[102]韩斐.矿井围岩传热相似模拟实验研究[D].西安科技大学,2018.

[103]赵鹏翔,康新朋,李树刚,等.煤层开采“固-气”耦合相似材料特性分析[J].西安科技大学学报,2020,40(04):580-588.

[104]张源,顾斌,周长冰,等.煤炭地下气化过程产气特征数值模拟研究[J].采矿与安全工程学报,2022,39(06):1169-1176.

[105]胡舒娅,孙兆霞,李晴宇,等.油页岩开采环境影响及其研究进展[J].油气田环境保护,2022,32(04):44-49+56.

[106]刘泽宇.油页岩原位开采耦合数值模拟研究[D].吉林大学,2019.

[107]Mackinnon R J, Carey G F. Moving - grid finite elementmodeling of thermal ablation and consolidation in porousmedia[J]. International Journal for Numericalmethods in Engineer-ing, 1993, 36(5): 717-744.

[108]Yang T, Thomas L. Structuralmechanics simulations associated with UC[D]. USA: The Graduate School of West Virginia University, 1978.

[109]杨兰和.煤炭地下气化干馏气渗流运动多场耦合数值模拟[J].西安交通大学学报,2002(07):752-756.

[110]Luo J A, Wang L G, Tang F R, et al. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.

[111]陆银龙,王连国,唐芙蓉,等.煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J].煤炭学报,2012,37(08):1292-1298.

[112]施卫平,郑欢,王冰清.水平井电加热油页岩过程的数值模拟[J].石油钻采工艺,2014,36(05):80-83.

[113]王祥虎.热力耦合下的煤田火区裂隙演化模拟研究[D].中国矿业大学,2015.

[114]林刚.地下气化导水裂缝带发育规律与地下水流场数值分析[D].中国矿业大学(北京),2016.

[115]赵明东,董东林,田康.煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J].矿业科学学报,2017,2(01):1-6.

[116]赵明东.煤炭地下气化覆岩温度和裂隙的试验与数值模拟研究[D].中国矿业大学(北京),2017.

[117]李姿.油页岩注蒸汽原位开采数值模拟研究[D].中国石油大学(华东),2017.

[118]王英英.油页岩原位裂解开采中受复杂裂隙影响的温度场数值模拟[D].吉林大学,2020.

[119]张文.油页岩原位热解多场耦合数值模拟研究[D].大连理工大学,2022.

[120]马文良.升温过程中油页岩结构和力学特征演化规律及数值模拟应用研究[D].吉林大学,2022.

[121]孙学阳,安孝会,苗霖田,等.煤矿井工开采对上覆反向滑坡扰动的模拟研究[J].西安科技大学学报,2017,37(01):71-77.

[122]孙学阳,刘亮东,李成,等.基于相似材料试验特厚煤层分层开采对断层影响研究[J].煤炭科学技术,2019,47(02):35-40.

[123]田华,谢祖锋.一种富油煤原位热解过程相似模拟试验装置[P].中国专利:CN216669802U,2022-06-03.

中图分类号:

 X523    

开放日期:

 2023-09-01    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式