论文中文题名: | 基于LAD估计的时变方差下的均值变点的研究与应用 |
姓名: | |
学号: | 22201221061 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025200 |
学科名称: | 经济学 - 应用统计 |
学生类型: | 硕士 |
学位级别: | 经济学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 时间序列分析 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-19 |
论文答辩日期: | 2025-06-08 |
论文外文题名: | Research and Application of Mean Change Point Detection Under Time-Varying Variance Based on LAD Estimation |
论文中文关键词: | |
论文外文关键词: | Change point ; Time-varying variance ; LAD estimation ; Online monitoring |
论文中文摘要: |
随着数据时代的到来,基于高斯序列的检测方法已有局限,许多时间序列数据呈现厚尾和尖峰特征,需要探索更加鲁棒、高效的变点检验方法。尤其是在金融和经济数据中,现有方法基于弱相依性和条件异方差假设,未能考虑时变方差的影响。因此,时变方差波动下的相依序列的结构变点检测很有意义,选取最小绝对离差估计(LAD)方法,研究结构变点的线下检测和在线监测,具体内容如下: 在时变方差模型下,使用LAD估计的比值型统计量来检测均值变点。该统计量通过对数据减去样本中位数后的差值进行计算,消除了方差波动对统计量的影响,因此无需估计时变方差函数。在理论分析中,在原假设下证明了统计量渐近服从维纳过程的泛函,在备择假设下证明了该方法的一致性。在数值模拟中,验证了该统计量的临界值不受时变方差影响,其经验水平和经验功效均表现良好。基于LAD估计的比值型统计量相比Wild Bootstrap检验方法能够有效控制异常值的影响,提高变点检测的准确性。在实证分析中,基于一组股票数据和一组水文数据,验证了所提方法的有效性与实用价值。 数据规模的持续扩大使得传统线下变点检测方法面临挑战,尤其是在处理动态和实时数据时,线下检测方法无法及时反馈数据结构的变化。因此,针对实时变化数据的在线变点监测研究很有必要。在理论分析中,将线下变点的统计量与滑动窗口和带宽参数相结合,能够实时监测数据中的变点。在原假设下证明了统计量的渐近分布,在备择假设下证明该方法的相合性。在数值模拟中,验证了变点位置和样本容量对监测效果的影响,结果表明该方法在厚尾情形下更具鲁棒性,并且具有较短的平均运行长度,表现出较强的实时监测能力。在实证分析中,基于两组金融数据,验证了所提方法的有效性与实用价值。 |
论文外文摘要: |
With the advent of the era of big data, detection methods based on Gaussian sequences have limitations. Many time series data show thick tails and peak characteristics, and it is necessary to explore more robust and efficient change point detection methods. Especially in financial and economic data, existing methods are based on weak dependence and conditional heteroskedasticity assumptions and fail to consider the impact of time-varying variance. Therefore, it is very meaningful to detect structural change points in dependent sequences under time-varying variance fluctuations. The Least Absolute Deviations Estimation method, which is robust in thick-tailed sequences, is selected to study the offline detection and online monitoring of structural change points. The specific contents are as follows: Under the time-varying variance model, the ratio statistic of LAD estimation is used to detect mean change points. The statistic is calculated by subtracting the sample median from the data, eliminating the effect of variance instability on the statistic, so there is no need to estimate the time-varying variance function. Under the null hypothesis, it is proved that the statistic asymptotically obeys the functional of the Wiener process and is consistent under the alternative hypothesis. Through numerical simulation, it is verified that the critical value of the statistic is not affected by the time-varying variance, and its size and power are both good. In addition, for data with fat-tailed distribution, the ratio statistic based on LAD estimation can effectively control the influence of outliers and improve the accuracy of change point detection compared with the Wild Bootstrap test method. Finally, based on a set of stock data and a set of hydrological data, the effectiveness and practical value of the proposed method are verified through empirical research. With the continuous increase in the amount of data, offline change point detection methods face severe challenges, especially when dealing with dynamic and real-time data, offline detection methods cannot timely feedback the changes in data structure. Therefore, it is necessary to study online change point monitoring for real-time changing data. Combining the statistics of offline change points with sliding windows and bandwidth parameters can monitor the change points in data in real time. Under the null hypothesis, the limiting distribution of the statistics and the consistency under the alternative hypothesis are proved. Secondly, numerical simulation verifies the influence of change point location and sample size on the monitoring effect. The results show that the method is more robust in the case of fat tails and has a shorter average run length, showing a strong real-time monitoring ability. Finally, based on two sets of financial data, the effectiveness and practical value of the proposed method are verified through empirical research. |
参考文献: |
[1]Page E S. Continue inspection schemes[J]. Biometrika, 1954, 41(1): 100-115. [2]朱映秋, 郑畅, 张波. 金融时间序列的自适应贝叶斯在线变点检测[J]. 统计研究, 2025, 42(01): 145-160. [3]任东海. 股指期货对我国股票现货市场的长短期影响-基于变点检测和面板数据的实证研究[J]. 统计理论与实践, 2023, (06): 43-48. [4]贺娜娜, 赵航, 孙金芳, 等. 基于贝叶斯变点模型的COVID-19发病与死亡序列趋势[J]. 中华疾病控制杂志, 2022, 26(12): 1402-1406. [5]江净超, 刘军志. 基于似然函数的黄河降水-径流关系变点分析[J]. 人民黄河, 2018, 40(02): 10-13. [6]丁明月, 谭常春, 周嘉章. 基于面板数据分析的气象多变点研究[J]. 合肥工业大学学报(自然科学版), 2019, 42(04): 570-576. [7]朱映秋, 郑畅, 张波. 金融时间序列的自适应贝叶斯在线变点检测[J]. 统计研究, 2025, 42(1): 145-160. [8]杨银倩, 赵文芝. 厚尾相依面板序列均值变点的截尾CUSUM估计[J]. 西安工程大学学报, 2022, 36(2): 119-124. [9]郑冬雪, 魏岳嵩. 具有负相关误差均值渐变模型渐变变点估计[J]. 淮北师范大学学报(自然科学版), 2024, 45(2): 15-20. [11]白学, 金浩, 杨云锋, 等. 厚尾时间序列环境下持久性变点的稳健检验[J]. 应用概率统计, 2025, 41(01): 116-135. [12]石雅琳, 陈占寿. 自正则检验关于方差变点的稳健性分析[J]. 青海师范大学学报(自然科学版), 2023, 39(1): 37-47. [13]朱旭, 庞天晓. 长相依面板数据的斜率变点分析[J]. 高校应用数学学报, 2022, 37(4): 379-396. [14]张清杰, 黄领梅. 基于斜率单变点法的小理河流域退水规律分析[J]. 水电能源科学, 2022, 40(01): 21-24. [15]王爱民, 金浩, 宋雪丽. 基于Subsampling抽样的厚尾AR(p)序列趋势变点的Ratio检验[J]. 统计与决策, 2023, 39(10): 34-38. [16]成守尧, 陈占寿, 娘毛措, 等. 一类长记忆时间序列趋势项变点的Wilcoxon秩检验[J]. 浙江大学学报(理学版), 2022, 49(4): 427-434. [17]孙怡玮, 赵文芝. 基于MIC的线性回归模型系数及方差变点检验[J]. 湖北民族大学学报(自然科学版), 2022, 40(04): 432-436. [22]金浩, 李彩彩, 白会会. 时变方差相依序列均值变点的Ratio检验[J]. 统计与决策, 2022, 38(9): 46-51. [33]李拂晓, 田铮, 陈占寿. 随机系数自回归模型变均值点在线监测与应用[J]. 控制理论与应用, 2012, 29(04): 497-502. [34]薛义新, 赵文芝, 刘鑫. 基于Range检验的AR(p)模型参数变点的在线监测[J]. 纺织高校基础科学学报, 2018, 31(01):63-67. [35]秦瑞兵, 孙丽, 宋冠仪. 线性回归模型系数变点的在线监测[J]. 陕西科技大学学报, 2020, 38(01): 175-179. [37]娘毛措, 陈占寿, 成守尧, 等. 具有长记忆误差的线性回归模型参数变点的在线监测[J]. 山东大学学报(理学版), 2022, 57(04): 91-99. [38]贾伟亚, 魏岳嵩, 徐建中. RCA(1)时间序列模型均值变点的在线监测[J]. 淮北师范大学学报(自然科学版), 2023, 44(4):1-9. [42]Ploberger W, W. The CUSUM test with OLS residuals[J]. Econometric Society, 1992: 271–285. [45]邓新杰, 曹云辉, 吴吉林. 具有内生性与时变方差的线性模型参数稳定性检验[J]. 统计与决策, 2021, 37(18): 19-23. |
中图分类号: | O211.61 |
开放日期: | 2025-06-19 |