- 无标题文档
查看论文信息

题名:

 改性蒙脱土/水滑石/硅橡胶泡沫阻燃抑烟性能及机理研究    

作者:

 冀贤    

学号:

 21220089035    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

导师姓名:

 刘博    

导师单位:

 西安科技大学    

提交日期:

 2024-06-16    

答辩日期:

 2024-06-05    

外文题名:

 Study on flame retardant and smoke suppression properties and mechanism of modified montmorillonite/ layered double hydroxides/silicone rubber foam    

关键词:

 硅橡胶泡沫 ; 蒙脱土 ; 水滑石 ; 阻燃抑烟 ; 协效阻燃    

外文关键词:

 Silicone rubber foam ; Montmorillonite ; Layered double hydroxide ; Flame retardant and smoke suppression ; Synergistic flame retardant    

摘要:

硅橡胶泡沫(SRF)具有较高热稳定性的同时也具有一定的燃烧性,暴露在明火中容易发生分解燃烧,且点燃后内部会产生孔洞结构,为气流的进入提供了条件,导致燃烧加剧并释放出大量的热量和烟雾,对人体和环境构成巨大威胁。蒙脱土(MMT)与水滑石(LDH)均是粘土类阻燃剂,已被应用到多种聚合物泡沫的阻燃研究中。但MMT与聚合物基体相容性差,通常采用表面改性技术来改善与基体的相容性。本文制备了有机改性MMT(OMMT)、无机改性MMT(IMMT)、有机-无机复合改性MMT(OIMMT),通过共沉淀法制备了两种LDHs(LDHs-1、LDHs-2),并通过XRD、FTIR对其结构特征进行表征,采用氧指数测试仪、锥形量热仪等测试了改性MMT与LDHs对SRF复合材料阻燃抑烟性能的影响,利用热重红外联用及扫描电镜分析了SRF复合材料的热分解过程、热解产物、残炭形貌,探究了OIMMT 与LDHs-2对SRF材料的阻燃抑烟机理。主要研究结论如下:

(1)制备的各类改性MMT的特征衍射峰均向小角方向移动,层间距扩大,IMMT在1000 cm-1处附近的峰面积增大,OMMT与OIMMT在1482 cm-1处出现了烷基伸缩振动峰;LDHs具有典型的水滑石结构,且在较低波数段813 cm-1至467 cm-1范围内出现层间氧晶格(Ni-O、Mg-O、Al-O、Zn-O)的振动吸收峰,说明改性MMT与LDHs均被成功制备。

(2)各类改性MMT与LDHs均能在一定范围内提高SRF复合材料的阻燃抑烟性能,其中复合改性MMT(OIMMT)与LDHs-2提升效果最优,最佳添加比例分别为2wt%、5wt%,氧指数最高分别达到了28.8%、28.3%,且热释放速率峰值(PHRR)分别为122.74  kW/m2、103.06 kW/m2,烟释放速率峰值(PSPR)、总产烟量(TSP)及CO2释放速率均有明显下降,最大烟密度(MSD)与烟密度等级(SDR)均为最低,火灾蔓延指数(FGI)降低,火安全性能提高。

(3)将优选出的OIMMT与LDHs-2按不同比例复配添加到SRF材料中,并对比分析OIMMT/LDHs-2/SRF复合材料的燃烧行为。结果表明:OIMMT与LDHs-2对SRF复合材料具有协同阻燃效果,当分别添加2wt%OIMMT与3wt%LDHs-2时,SRF复合材料的氧指数达到了28.9%,相较纯SRF提高了6.25%,热释放速率峰值为91.99 kW/m2,较纯SRF降低了47.24%,且到达热释放速率峰值的时间也有所延迟,烟释放速率峰值为0.017 m2/s,较纯SRF也有所降低。在上述添加比例下,SRF复合材料的断裂伸长率提高。

(4)对比纯SRF、2wt%OIMMT/SRF、3wt%LDHs-2/SRF与2wt%OIMMT/3wt%LDHs-2/SRF四个样品的残炭形貌与热解行为,结果表明OIMMT 与LDHs-2复配可以形成更为致密紧实的炭层,可以有效隔绝热量与氧气,且提高了SRF材料的热分解温度,提升SRF材料的热稳定性。OIMMT/LDHs-2/SRF复合材料高温条件下热解生成H2O和CO2等不可燃性气体,显著降低了SRF复合材料表面的可燃气体浓度,从而有效提高SRF材料的阻燃性能。

外文摘要:

Silicone rubber foam (SRF) has high thermal stability and also has a certain flammability, which is easy to decompose and burn when exposed to open flames, and will produce a cavity structure inside after ignition, which provides conditions for the entry of airflow, resulting in intensified combustion and the release of a large amount of heat and smoke, posing a huge threat to the human body and the environment. Montmorillonite (MMT) and layered double hydroxide (LDH) are clay-based flame retardants that have been applied to the flame retardant research of a variety of polymer foams. However, MMT has poor compatibility with polymer matrices, and surface modification technology is often used to improve compatibility with the matrix. In this paper, organically modified MMT (OMMT), inorganic modified MMT (IMMT) and organic-inorganic modified MMT (OIMMT) were prepared, and two LDHs (LDHs-1 and LDHs-2) were prepared by co-precipitation method, and their structural characteristics were characterized by XRD and FTIR. The effects of modified MMT and LDHs on the flame retardant and smoke inhibition properties of SRF composites were tested by oxygen index tester and cone calorimeter, and the thermal decomposition process, pyrolysis products and carbon residue morphology of SRF composites were analyzed by thermogravimetric-fourier transform infrared spectroscopy and scanning electron microscopy, and the flame retardant and smoke suppression mechanism of OIMMT and LDHs-2 on SRF materials was explored. The main conclusions of the study were as follows:

(1) The characteristic diffraction peaks of various modified MMT moved to the small angle direction, the layer spacing expanded, the peak area of IMMT near 1000 cm-1 increased, and the alkyl stretching vibration peak appeared at 1482 cm-1 between OMMT and OIMMT. LDHs had a typical hydrotalcite structure, and the vibrational absorption peaks of interlaminar oxygen lattice (Ni-O, Mg-O, Al-O, Zn-O) appeared in the lower wavenumber range from 813 cm-1 to 467 cm-1, indicating that both modified MMT and LDHs were successfully prepared.

(2) All kinds of modified MMT and LDHs could improve the flame retardant and smoke suppression properties of SRF composites within a certain range, among which the organic-inorganic modified montmorillonite (OIMMT) and LDHs-2 had the best improvement effect, the optimal addition ratio were 2wt% and 5wt%, the oxygen index reached the highest 28.8% and 28.3%, and the peak heat release rate (PHRR) were 122.74 kW/m2 and 103.06 kW/m2, respectively, and the peak smoke release rate (PSPR), total smoke production (TSP) and CO2 emission rate were significantly reduced, the maximum smoke density (MSD) and smoke density level (SDR) were the lowest, the fire spread index (FGI) was reduced, and the fire safety performance was improved.

(3) The optimized OIMMT and LDHs-2 were added to the SRF materials in different proportions, and the combustion behavior of the OIMMT/LDHs-2/SRF composites were compared and analyzed. When 2wt%OIMMT and 3wt%LDHs-2 were added, the oxygen index of SRF composites reached 28.9%, which was 6.25% higher than that of pure SRF, and the peak heat release rate was 91.99 kW/m2, which was 47.24% lower than that of pure SRF, and the time to reach the peak heat release rate was also delayed, and the peak smoke release rate was 0.017 m2/s, was also lower than that of pure SRF. Under the above addition ratio, the elongation at break of SRF composites increased.

(4) Comparing the carbon residue morphology, pyrolysis behavior of four typical samples: pure SRF, 2wt%OIMMT/SRF, 3wt%LDHs-2/SRF and 2wt%OIMMT/3wt%LDHs-2/SRF, the results showed that the combination of OIMMT and LDHs-2 can form a denser and more compact carbon layer, which could effectively play the role of heat insulation and oxygen insulation, and increased the thermal decomposition temperature and thermal stability of SRF materials. The pyrolysis of OIMMT/LDHs-2/SRF composites under high temperature conditions to generate non-flammable gases such as H2O and CO2 significantly reduced the concentration of combustible gases on the surface of SRF composites, thereby effectively improving the flame retardant properties of SRF materials..

参考文献:

[1] Wang X, Zhang P, Huang Z, et al. Effect of aluminum diethylphosphinate on the thermal stability and flame retardancy of flexible polyurethane foams[J]. Fire Safety Journal, 2019, 106(07): 72-79.

[2] Agrawal A, Kaur R, Walia R S. Flame retardancy of ceramic-based rigid polyurethane foam composites[J]. Journal of Applied Polymer Science, 2019, 136(48): 1-12.

[3] Theerthagiri J, Durai G, Tatarchuk T, et al. Synthesis of hierarchical structured rare earth metal-doped Co3O4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials[J]. Ionics, 2020, 26(04): 135-147.

[4] Kishore K, Ravindran K. Heat-transfer during polymer combustion[J]. Fire & Materials, 2010, 5(03): 128-130.

[5] Camino B, Camino G. The chemical kinetics of the polymer combustion allows for inherent fire retardant synergism[J]. Polymer Degradation & Stability, 2019, 160: 142-147.

[6] Song P, Zhang Y. Vertically aligned carbon nanotubes/graphene/cellulose nanofiber networks for enhancing electrical conductivity and piezoresistivity of silicone rubber composites[J]. Composites Science and Technology, 2022, 222-229.

[7] Han R J, Li Y L, Zhu Q S, et al. Research on the preparation and thermal stability of silicone rubber composites: A review[J]. Composites Part C: Open Access, 2022, 8: 100249-100259.

[8] 王天强, 闫宁, 周静, 等. 硅橡胶泡沫材料的研究进展[J]. 橡胶工业, 2017, 64(05): 315-319.

[9] 周冬杰. 室温硫化硅橡胶泡沫材料的研究进展[J]. 特种橡胶制品, 2018, 39(02): 61-64.

[10] 夏乔琦, 李扬, 曹承飞, 等. 硅橡胶泡沫复合材料的制备、性能与应用[J]. 中国材料进展, 2018, 37(03): 168-177.

[11] Vinod P, Babu M S, Kornhuber S, et al. Ageing impact on the surface condition of silicone rubber micro nanocomposites adopting AFM studies[J]. Journal of Polymer Research, 2022, 29(4): 1-16.

[12] 杨志国. 可瓷化阻燃耐火硅橡胶材料研究综述[J]. 当代化工, 2017, 46(08): 1655-1658.

[13] Yang Q, Yu H T, Song L X, et al. Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide[J]. Journal of Applied Polymer Science, 2017, 134(20): 1-9.

[14] Song J Q, Huang Z X, Qin Y, et al. Ceramifiable and mechanical properties of silicone rubber foam composite with frit and high silica glass fiber[J]. IOP Conference Series: Materials Science and Engineering, 2018, 423(01): 1-7.

[15] 高振昊, 任向征, 苗志伟. 磷系阻燃剂阻燃聚碳酸酯研究进展[J]. 化学通报, 2021, 84 (11): 1191-1199.

[16] 肖铭. 氢氧化镁阻燃剂应用研究进展[J]. 精细与专用化学品, 2022, 30(02): 31-33.

[17] 李智奇, 许苗军, 高健, 等. 高效阻燃硅橡胶材料的制备及性能研究[J]. 化学与粘合, 2020, 42(03): 188-191.

[18] 薛帅伟, 刘华夏, 周侃, 等. 硅橡胶阻燃开发研究进展[J]. 橡塑技术与装备, 2021, 47 (01): 14-17.

[19] 邓军, 李航, 康付如, 等. 硅橡胶复合材料阻燃研究进展[J]. 高分子通报, 2020(03): 1-8.

[20] 王文博, 张广鑫, 梁西良, 等. 阻燃涂料中阻燃剂的研究进展[J]. 化学与粘合, 2021, 43(04): 300-303.

[21] 周城, 刘鹏, 张海松, 等. 阻燃改性氢氧化镁/低密度聚乙烯的性能研究[J]. 绝缘材料, 2021, 54(03): 29-35.

[22] Ding Z M, Li Y C, He M Y, et al.The combination of expandable graphite, organic montmorillonite, and magnesium hydrate as fire‐retardant additives for ethylene-propylene-diene monomer/chloroprene rubber foams[J]. Journal of Applied Polymer Science, 2017, 134(23): 1-9.

[23] Khanal S, Lu Y H, Dang L, et al. Improving the flame retardancy of intumescent flame retardant/high‐density polyethylene composites using surfactant‐modified montmorillonite clay[J]. Journal of Applied Polymer Science, 2022, 139(15): 51940-51952.

[24] Lan J S, Li D S, Zhong W, et al. Bio-inspired iron-loaded polydopamine functionalized montmorillonite as an environmentally friendly flame retardant for epoxy resin[J]. Molecules, 2023, 28(14): 5354-5366.

[25] Yan D X, Wang J H, Li L R, et al. Effect of halogen-free flame retardants on the properties of flame-retardant HTV silicone rubber[J]. Silicone Material, 2019, 33(4): 262-266.

[26] 邓军, 成晨阳, 康付如. 含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J]. 中国安全生产科学技术, 2021, 17(12): 5-10.

[27] 鲍文亮, 赖学军, 李红强, 等. 低密度阻燃室温硫化硅橡胶的制备与性能研究[J]. 合成材料老化与应用, 2021, 50(05): 7-10.

[28] 王新古. 陶瓷化硅橡胶的介电与防火性能研究[D]. 山东理工大学, 2021.

[29] 李航. 改性硅系阻燃剂/硼酸锌/硅橡胶泡沫阻燃抑烟研究[D]. 西安科技大学, 2021.

[30] Pan Y, Liu L X, Cai W, et al. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam[J]. Applied clay science, 2019, 168(05): 230-236.

[31] Li W, Li S, Cheng Z, et al. The effect of flame retardant-modified sepiolite nanofibers on thermal degradation and fire retardancy of low-density polyethylene[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138: 1011-1019.

[32] Zhang C Y, Wang J C, Song S Q. Preparation of a novel type of flame retardant diatomite and its application in silicone rubber composites[J]. Advanced Powder Technology, 2019, 30(08): 1567-1575.

[33] 李智奇. 大分子磷-硅阻燃剂的合成及阻燃硅橡胶研究[D]. 东北林业大学, 2020.

[34] 谢超, 秦岩, 黄志雄, 等. 空心玻璃微珠对膨胀阻燃硅橡胶复合材料性能的影响[J]. 复合材料科学与工程, 2020(01): 95-100.

[35] 王林锋, 谢继凯, 郭家杏, 等. 氢氧化镁/氢氧化铝复配阻燃剂对可陶瓷化硅橡胶阻燃抗震性能的影响[J]. 中国塑料, 2023, 37(10): 125-130.

[36] 杜栩烨, 林健, 杨宕莎, 等. MOF-74(Ni)@聚磷酸铵的制备及对环氧树脂阻燃性能的影响[J]. 高分子材料科学与工程, 2023, 39(06): 64-70.

[37] Zhang Y, He J Y, Yang R. The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation properties of room temperature vulcanized silicone rubber insulating composites[J].Polymer Degradation and Stability, 2016, 125: 140-147.

[38] 邓军, 李航, 康付如. 硼酸锌和镁铝水滑石对硅橡胶泡沫性能的影响[J]. 高分子材料科学与工程, 2020, 36(12): 42-48.

[39] 胡勇辰, 潘健, 徐卫兵. 三氧化二锑协效MH阻燃EVA复合材料的研究[J]. 塑料工业, 2019, 47(03): 115-118.

[40] Chen P, Zhao Y L, Wang W, et al. Correlation of montmorillonite sheet thickness and flame retardant behavior of a chitosan-montmorillonite nanosheet membrane assembled on flexible polyurethane foam[J]. Polymers, 2019, 11(2): 213.

[41] 郑成志, 赵曙辉, 陈艳艳, 等. 蒙脱土纳米复合材料的制备及其在棉织物阻燃整理中的应用[J]. 东华大学学报(自然科学版), 2014, 40(04): 469-475.

[42] 徐志胜, 贾宏煜, 颜龙, 等. 三氧化钼与有机蒙脱土复配体系在膨胀阻燃环氧树脂中的应用[J]. 安全与环境学报, 2019, 19(03): 847-853.

[43] 刘正江, 郭沙沙, 张云婷, 等. 复合改性蒙脱土在污水处理中的应用研究进展[J]. 精细化工, 2022, 39(05): 873-881.

[44] 王楠. 无机铁盐与十八烷基三甲基氯化铵复合改性蒙脱土的制备与对水溶液中Cr(Ⅵ)吸附性能研究[D] .西北大学, 2021.

[45] Xu Z S, Jia H Y, Yan L, et al. Synergistic effects of organically modified montmorillonite in combination with metal oxides on the fire safety enhancement of intumescent flame-retarded epoxy resins[J]. Journal of Vinyl and Additive Technology, 2020, 27(1): 161-173.

[46] Yan L, Xu Z S, Jia H Y, et al. Combination effect of organically modified montmorillonite and nano-silica on reducing the fire hazards of intumescent flame-retarded epoxy resins[J]. Journal of Vinyl and Additive Technology, 2020, 26(4): 490-501.

[47] 卢焕青, 丁海燕, 范萍, 等. 蒙脱土复合阻燃剂改性酚醛泡沫的制备和性能研究[J]. 科技通报, 2016, 32(01): 1-4.

[48] Ma Z L, Zhang W Y, Liu X Y. Using PA6 as a charring agent in intumescent polypropylene formulations based on carboxylate polypropylene compatibilizer and nano-montmorillonite synergistic agent[J]. Journal of Applied Polymer Science, 2006, 101(1): 739-746.

[49] 陈笑. 氧化钼、蒙脱土、磷酸盐协同卤锑阻燃剂阻燃聚丙烯的研究[D]. 广西大学, 2014.

[50] 许卓, 张顺花. 有机蒙脱土改性阻燃聚酯的制备及其抗熔滴性能分析[J]. 浙江理工大学学报(自然科学), 2023, 49(02): 192-197.

[51] 秦维, 闵样, 陈超, 等. 聚磷酸酯膨胀阻燃剂复配有机蒙脱土阻燃改性环氧树脂[J]. 中国塑料, 2018, 32(12): 112-117.

[52] Zhang G, Zhang X, Meng Y, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 1-107.

[53] 鲍艳, 唐培, 刘超. 水滑石的制备及其阻燃性能研究进展[J]. 精细化工, 2022, 39(01): 24-33.

[54] 李冉冉, 徐冰, 温阳, 等. 聚磷酸铵掺杂类水滑石阻燃材料研究[J]. 消防科学与技术, 2017, 36(8): 1116-1118.

[55] Fang L, Chen T, Meng Y, et al. Size effect of CO2 adsorption onto Au cluster-functionalized monolayer ZnAl layered double hydroxides: Insights from first-principles computations[J]. Applied Surface Science, 2020, 525: 146612.

[56] Liu X X, Ma L, Sheng Y J, et al. Synergistic flame‐retardant effect of modified hydrotalcite and expandable graphite for silicone rubber foam[J]. Journal of Applied Polymer Science, 2023, 140(7): 53471.

[57] Liu Y L, Li B, Xu M J, et al. Highly efficient composite flame retardants for improving the flame retardancy, thermal stability, smoke suppression, and mechanical properties of EVA[J]. Materials, 2020, 13(5): 1-13.

[58] Jiang S Y, Liu L B, Yang X H, et al. Nickel-Aluminum hydrotalcite for improving flame retardancy and smoke suppression of intumescent flame retardant polypropylene: preparation, synergy, and mechanism study[J]. Macromolecular Materials and Engineering, 2023, 308(4): 1-10.

[59] 戴宇飞. 稀土类水滑石的制备及其在聚乳酸中阻燃、抑烟的应用研究[D]. 内蒙古大学, 2022.

[60] 金文德, 丰佳, 黄荣国, 等. 三氧化二锑/水滑石协效阻燃ABS应用研究[J]. 塑料科技, 2022, 50(01): 58-61.

[61] 刘平, 孟跃. SDBS插层水滑石改性环氧树脂的阻燃性能研究[J]. 新型建筑材料, 2022, 49(07): 144-147.

[62] Zhang Y, Zeng X, Li H, et al. Zirconium phosphate functionalized by hindered amine: A new strategy for effectively enhancing the flame retardancy of addition-cure liquid silicone rubber[J]. Materials Letters, 2016, 174(1):230-233.

[63] 陈豪森, 刘源, 袁华金, 等. 磷钨酸根插层LDHs的制备及其对环氧树脂的阻燃性能研究[J]. 化工新型材料, 2023, 51(05): 118-122.

[64] 吴唯, 胡焕波, 沈辉, 等. 4A沸石与钙镁铝水滑石对膨胀阻燃聚丙烯的双重协效阻燃作用与机理[J]. 中国塑料, 2022, 36(07): 1-7.

[65] Sudhakaran S, Abraham E V, Mahadevan H, et al. Crosslinked chitosan-montmorillonite biocomposite with Fe intercalation: Enhancing surface chemistry for improved phosphate adsorption[J]. Surfaces and Interfaces, 2021, 27: 468-458.

[66] 关文斌, 赵彬侠, 邱爽, 等. Cr(Ⅵ)在改性蒙脱土上吸附行为的研究[J]. 西北大学学报(自然科学版), 2016, 46(03): 375-380.

[67] Cottet L, Almeida C A P, Naidek N, et al. Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media[J]. Applied Clay Science, 2014, 95: 25-31.

[68] Yavuz A, Ozdemir N, Zengin H. Polypyrrole-coated tape electrode for flexible super capacitor applications[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18876-18887.

[69] 马砺, 刘西西, 刘志超, 等. 改性水滑石的制备及在硅橡胶泡沫阻燃抑烟中的应用[J]. 高分子材料科学与工程, 2020, 36(10): 55-62.

[70] Tang T F, Zeng L, Liang Y F, et al. Ni-Mn layered double hydroxide nanoarrays with high mass-loading prepared via a differentiated deposition strategy for high-performance supercapacitor electrode[J]. Journal of Energy Storage, 2023, 73, 1-12.

[71] 金娇, 刘墨晗, 刘帅, 等. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 30-36.

[72] Wang D, Chen C, Hu X, et al. Enhancing the properties of water-soluble copolymer nanocomposites by controlling the layer silicate load and exfoliated nanolayers adsorbed on polymer chains[J]. Polymers, 2023, 15(6): 1413.

[73] 谢洪学, 吴秀玲, 王小伟, 等. 离子液体辅助TiO2/蒙脱石材料的制备与性能研究[J]. 中国矿业大学学报, 2010, 39(01): 145-152.

[74] 吕宪俊, 王桂芳, 马少健, 等. 铝柱撑蒙脱石的热稳定性和微结构变化规律研究[J]. 中国矿业大学学报, 2011, 40(02): 252-258.

[75] 杨保俊, 薛中华, 王百年, 等. 类水滑石的制备与改性及其在聚丙烯阻燃中的应用[J]. 复合材料学报, 2014, 31(2): 353-361.

[76] 陈慧琴, 詹正坤. 钴镍铁水滑石的合成、表征及衍生复合氧化物酸碱催化活性研究[J]. 化学研究与应用, 2009, 3: 353-356.

[77] 张鸿凯. 蒙脱土层间化合物在聚合物中的阻燃作用研究[D]. 江苏大学, 2017.

[78] 丁率. 硅橡胶/蒙脱土纳米复合粉末的制备及其阻燃应用研究[D]. 北京理工大学, 2014.

[79] 邓军, 康付如, 吴长林, 等. 环保型硅胶泡沫阻燃抑烟及热分解特性[J]. 高分子材料科学与工程, 2018, 34(12): 90-94.

[80] 黎瑶, 沈文涛, 许苗军. 钠基蒙脱土协效阻燃、抑烟环氧树脂[J]. 塑料, 2023, 52 (01): 11-14.

[81] Wang L, Jiang J, Jiang P, et al. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber[J]. Journal of polymer research, 2010, 17: 891-902.

[82] 张军. 高层建筑楼梯井烟气流动特性和正压送风技术研究[D]. 中国科学技术大学, 2020.

[83] 鲍艳, 唐培, 刘超. 水滑石的制备及其阻燃性能研究进展[J]. 精细化工, 2022, 39(01): 24-33.

[84] 杨正芳, 张悦, 蔡金霄, 等. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.

[85] 孔庆红. 聚合物/铁蒙脱土纳米复合材料的制备及阻燃机理研究[D]. 中国科学技术大学, 2006.

[86] 汪聪颖. 耐火硅橡胶的成炭强化研究[D]. 上海大学, 2020.

[87] 祝海波. 阻燃、陶瓷化硅橡胶的制备及性能研究[D]. 天津理工大学, 2021.

[88] Kashiwagi T, Du F, Douglas J F, et al. Nanoparticle networks reduce the flammability of polymer nanocomposites[J]. Nature Materials, 2005, 4(12): 928-933.

[89] Wang H C, Ye C, Wu Y L, et al. Effects of polyhedral oligomeric silsesquioxane functionalized multi-walled carbon nanotubes on thermal oxidative stability of silicone rubber[J]. Science of Advanced Materials, 2014, 6(6): 1244-1254.

[90] 谢松明, 糜婧, 张广耀, 等. 硼酸锌与蒙脱土对阻燃聚氨酯硬泡抑烟作用的比较[J]. 聚氨酯工业, 2015, 30(04): 22-25.

中图分类号:

 TQ333.93    

开放日期:

 2027-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式