- 无标题文档
查看论文信息

论文中文题名:

 过充锂离子电池热失控火灾安全特性研究    

姓名:

 袁雪颖    

学号:

 21220089039    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 锂离子电池火灾    

第一导师姓名:

 刘纪坤    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on thermal runaway fire safety characteristics of overcharged lithium-ion batteries    

论文中文关键词:

 锂离子电池 ; 火灾特性 ; 过充 ; 燃烧 ; 热失控仿真    

论文外文关键词:

 Lithium-ion battery ; Fire characteristics ; Overcharge ; Combustion ; Thermal runaway simulation    

论文中文摘要:

锂离子电池因其循环寿命长、能量密度高和自放电率低等优势,被广泛应用于电子产品、交通工具和电网系统等领域。然而,锂离子电池自身材料体系中包含大量易燃成分,滥用条件会引发电池热失控,导致燃烧、爆炸现象的发生,其中过充是导致电池热失控的主要原因之一。近年来,由过充锂离子电池热失控引发的火灾事故频发,严重阻碍了锂离子电池的推广应用。因此,亟需对过充锂离子电池热失控时的火灾安全特性进行研究,为锂离子电池安全使用、火灾预警与防控提供理论支撑。 本文开展了18650型LiNi0.5Co0.2Mn0.3O2(NCM523)过充锂离子电池热失控试验。利用充放电循环仪以不同的截止电压(4.2 V、4.5 V、4.8 V和5.1 V)、充电倍率(0.5 C、1 C、2 C)以及循环次数(1次、10次和20次)对锂离子电池进行过充处理,搭建了锂离子电池热失控试验平台,开展了过充锂离子电池热失控火灾试验。记录并分析过充电池热失控的燃烧现象、质量损失、电池表面温度、羽流温度、热失控节点时间和气体含量等特征参数,讨论截止电压、充电倍率以及循环次数对锂离子电池火灾特性的影响。试验结果表明:过充锂离子电池热失控过程分为被动加热阶段、安全阀破裂阶段、烟气阶段、燃爆阶段和熄灭阶段五个阶段;过充的截止电压越高、过充倍率越大、循环次数越多,锂离子电池热安全性越低,越容易发生热失控,且与热失控剧烈程度成正相关;过充的截止电压越高、过充倍率越大、循环次数越多,电池的表面最高温度越低,羽流最高温度越高;循环次数对电池安全性影响最大,过充循环20次后的电池热失控燃烧现象最剧烈、质量损失率最高,其与正常充电电池相比,热失控时间提前255 s,热失控温度降低69.5 ℃。 本文开展了过充锂离子电池热失控仿真模拟研究。基于COMSOL Multiphysics软件建立了过充锂离子电池热失控模型,模拟分析了不同截止电压(4.2 V、4.5 V、4.8 V和5.1 V)、充电倍率(0.5 C、1 C、2 C)、循环次数(1次、10次和20次)过充下的18650型NCM523锂离子电池高温热失控过程。结果表明:温度变化曲线与试验过程中温度变化曲线基本一致;热失控模拟过程中副反应的发生时间会随着过充截止电压、充电倍率、循环次数的增加而提前;副反应是引起电池热失控的直接因素,正极和电解液副反应的产热是电池热失控的主要热源。

论文外文摘要:

Lithium-ion batteries are widely used in electronic products, transportation and power grid systems due to their long cycle life, high energy density and low self-discharge rate. However, the lithium-ion battery itself contains a large number of flammable components in the material system, the battery is abused conditions will trigger thermal runaway, resulting in combustion, explosion phenomenon. Overcharging is one of the main causes of thermal runaway in batteries. In recent years, fire accidents caused by thermal runaway of overcharged lithium-ion batteries have occurred frequently, seriously hindering the popularization and application of lithium-ion batteries. Therefore, there is an urgent need to study the fire safety characteristics of overcharged lithium-ion battery thermal runaway, to provide theoretical support for the safe use of lithium-ion batteries, fire prevention and control. In this paper, thermal runaway test of 18650 type LiNi0.5Co0.2Mn0.3O2 (NCM523) overcharged lithium-ion battery was carried out. A charge-discharge cycler was utilized to overcharge lithium-ion batteries with different cut-off voltages (4.2 V, 4.5 V, 4.8 V and 5.1 V), charge multiplicities (0.5 C, 1 C, 2 C) and cycle times (1, 10 and 20 times). A thermal runaway test platform for lithium-ion batteries was set up, and a thermal runaway fire test for overcharged lithium-ion batteries was carried out. Characteristic parameters such as combustion phenomena, mass loss, cell surface temperature, plume temperature, thermal runaway node time, and gas content of thermal runaway in overcharged batteries were recorded and analyzed, and the effects of cutoff voltage, charge multiplication, and number of cycles on the fire characteristics of lithium-ion batteries were discussed. The test results show that: the thermal runaway process of overcharged lithium-ion battery is divided into five stages: passive heating stage, safety valve rupture stage, smoke stage, ignition stage and extinguishing stage; the higher the cut-off voltage of overcharging, the larger the overcharging multiplicity, and the higher the cycle times, the lower the thermal safety of lithium-ion battery, the more prone to thermal runaway, and it is positively correlated to the degree of thermal runaway; the higher the cut-off voltage of overcharging, the larger the overcharging multiplicity, and the higher the cycle times, the more likely to be thermal runaway of the battery. The higher the overcharge cut-off voltage, the higher the overcharge multiplier, the more cycles, the lower the maximum surface temperature of the battery, the higher the maximum temperature of the plume; the number of cycles has the greatest influence on the safety of the battery, and the thermal runaway combustion phenomenon is the most intense and the highest quality loss rate of the battery after 20 cycles of overcharge, and the time of thermal runaway is advanced by 255 s, and the temperature of the thermal runaway is lowered by 69.5 ℃ compared to that of the normal rechargeable batteries. In this paper, a simulation study of thermal runaway of overcharged lithium-ion batteries was carried out. Based on COMSOL Multiphysics software, a thermal runaway model of overcharged lithium-ion batteries was established, and the high-temperature thermal runaway of 18650-type NCM523 lithium-ion batteries was simulated and analyzed under different cutoff voltages (4.2 V, 4.5 V, 4.8 V, 5.1 V), charging multiplicities (0.5 C, 1 C, and 2 C), and the number of cycles (1, 10, and 20 times) of overcharge. process. The results show that: the temperature change curve is basically consistent with the temperature change curve during the test; the occurrence time of the side reaction in the thermal runaway simulation process will be advanced with the increase of the overcharge cut-off voltage, the charging multiplication rate, and the number of cycles; the side reaction is a direct factor causing the thermal runaway of the battery, and the heat generated by the side reaction of the negative electrode, positive electrode, and the electrolyte is the main source of heat in the battery thermal runaway.

参考文献:

[1]Zhang J, Zhang L, Sun F, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access, 2018, 6: 23848-23863.

[2]Dubarry M, Devie A. Battery durability and reliability under electric utility grid operations: Representative usage aging and calendar aging[J]. Journal of energy storage, 2018, 18: 185-195.

[3]Zhao R, Liu J, Gu J. Simulation and experimental study on lithium ion battery short circuit[J]. Applied Energy, 2016, 173: 29-39.

[4]Saw L H, Poon H. M, Chong W T, et al. Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles[J]. Energy Procedia, 2019, 158: 2750-2755.

[5]Qian K, Li Y, He Y B, et al. Abuse tolerance behavior of layered oxide-based Li-ion battery during overcharge and over-discharge[J]. RSC advances, 2016, 6(80): 76897-76904.

[6]Zhang L, Ma Y, Cheng X, et al. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling[J]. Journal of Power Sources, 2016, 329: 255-261.

[7]Abada S, Petit M, Lecocq A, et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. Journal of Power Sources, 2018, 399: 264-273.

[8]Röder P, Stiaszny B, Ziegler J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell[J]. Journal of Power Sources, 2014, 268: 315-325.

[9]赵春朋. 镍钴锰酸锂电池热失控及燃爆危险性研究[D]. 合肥: 中国科学技术大学, 2023.

[10]刘家龙. 18650型三元锂离子电池微过充老化与安全性研究[D]. 合肥: 中国科学技术大学, 2021.

[11]Ouyang M, Ren D, Lu L, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+ LiyMn2O4 composite cathode[J]. Journal of power sources, 2015, 279: 626-635.

[12]Yuan Q F, Zhao F, Wang W, et al. Overcharge failure investigation of lithium-ion batteries[J]. Electrochimica Acta, 2015, 178: 682-688.

[13]Jiang L, Luo Z, Wu T, et al. Overcharge behavior and early warning analysis of LiNi0.5Co0.2Mn0.3O2/C lithium-ion battery with high capacity[J]. Journal of The Electrochemical Society, 2019, 166(6): A1055.

[14]Zhu Y, Wang C, Gao F, et al. Rupture and combustion characteristics of lithium-ion battery under overcharge[J]. Journal of Energy Storage, 2021, 38: 102571.

[15]何骁龙, 石晓龙, 王子阳等. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(01): 218-226.

[16]平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥: 中国科学技术大学, 2014.

[17]刘得星. 车载电池包集成灭火系统关键参数仿真研究[D]. 广州: 华南理工大学, 2019.

[18]付阳阳. 典型锂离子电池和电解液燃烧特性及航空运输环境对其影响机制研究[D]. 合肥: 中国科学技术大学, 2017.

[19]Chen M, Mei J, Liu H. Comparative experimental study on combustion characteristics of typical combustible components for lithium‐ion battery[J]. International Journal of Energy Research, 2020, 44(1): 218-228.

[20]刘术敬, 朱鹏, 汪东东, 等. 基于锥形量热仪的锂离子电池电解液火灾危险性研究[J]. 消防科学与技术, 2020, 39(10): 1459-1461.

[21]Mao B, Liu C, Yang K, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717.

[22]Zou K, Chen X, Ding Z, et al. Jet behavior of prismatic lithium-ion batteries during thermal runaway[J]. Applied Thermal Engineering, 2020, 179: 115745.

[23]Xie S, Sun J, Chen X, et al. Thermal runaway behavior of lithium‐ion batteries in different charging states under low pressure[J]. International Journal of Energy Research, 2021, 45(4): 5795-5805.

[24]Huang P, Wang Q, Li K, et al. The combustion behavior of large scale lithium titanate battery[J]. Scientific reports, 2015, 5(1): 7788.

[25]Fu Y, Lu S, Li K, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222.

[26]朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(01): 201-210.

[27]黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018.

[28]王文和, 何腾飞, 米红甫, 等. 18650型锂离子电池燃烧特性及火灾危险性评估[J]. 安全与环境学报, 2019, 19(03): 729-736.

[29]关雪祺. 典型锂离子电池火灾特性研究[D]. 长沙: 中南大学, 2022.

[30]Yan H, Marr K C, Ezekoye O A. Towards Fire Forensic Characteristics of Failed Cylindrical Format Lithium-Ion Cells and Batteries[J]. Fire Technology, 2021, 57: 1723-1752.

[31]周天念, 吴传平, 陈宝辉. 加热引发三元18650型锂离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(02): 558-564.

[32]Ouyang D, Chen M, Wang J. Fire behaviors study on 18650 batteries pack using a cone-calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136: 2281-2294.

[33]He X, Restuccia F, Zhang Y, et al. Experimental study of self-heating ignition of lithium-ion batteries during storage: effect of the number of cells[J]. Fire technology, 2020, 56: 2649-2669.

[34]Chen M, Liu J, Ouyang D, et al. A large-scale experimental study on the thermal failure propagation behaviors of primary lithium batteries[J]. Journal of Energy Storage, 2020, 31: 101657.

[35]Tao C, Li G, Zhao J, et al. The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances[J]. Journal of Thermal Analysis and Calorimetry, 2020, 142: 1523-1532.

[36]Niu H, Chen C, Ji D, et al. Thermal-runaway propagation over a linear cylindrical battery module[J]. Fire technology, 2020, 56: 2491-2507.

[37]Kong W, Li H, Huang X, et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 2005, 142(1-2): 285-291.

[38]Larsson F. Lithium-ion battery safety -assessment by abuse testing, fluoride gas emissions and fire propagation[D]. Göteborg, Sweden: Chalmers University of Technology, 2017.

[39]Liu X, Stoliarov S I, Denlinger M, et al. Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources, 2015, 280: 516-525.

[40]Larsson F, Bertilsson S, Furlani M, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of power sources, 2018, 373: 220-231.

[41]Peng Y, Yang L, Ju X, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of hazardous materials, 2020, 381: 120916.

[42]Hallaj S, Maleki H, Hong J S, et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources, 1999, 83(1/2):1-8.

[43]Kwon K H, Shin C B,Kang T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163(1): 151-157.

[44]李坤. 锂离子动力电池热-电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016.

[45]MacNeil D D, Dahn J R. Test of reaction kinetics using both differential scanning and accelerating rate calorimetries as applied to the reaction of LixCoO2 in non-aqueous electrolyte[J]. The Journal of Physical Chemistry A, 2001, 105(18): 4430-4439.

[46]Coman P T, Darcy E C, Veje C T, et al. Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway[J]. Applied Energy, 2017, 203: 189-200.

[47]Ren D, Feng X, Lu L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery[J]. Journal of power sources, 2017, 364: 328-340.

[48]徐晓明, 袁秋奇, 张扬军, 等. 极耳侧加热条件下锂离子电池热失控的数值分析[J]. 汽车安全与节能学报, 2020, 11(03): 388-396.

[49]Peng P, Jiang F. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests [J]. International Journal of Heat and Mass Transfer, 2015, 88: 411-423.

[50]Yuan C, Wang Q, Wang Y, et al. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module[J]. Applied thermal engineering, 2019, 153: 39-50.

[51]Wang L, Zhao Y, Quan Z, et al. Investigation of thermal management of lithium-ion battery based on micro heat pipe array[J]. Journal of energy storage, 2021, 39: 102624.

[52]杜光超. 三元锂离子电池高温热失控试验与仿真研究[D]. 青岛大学, 2020.

[53]刘力硕, 张明轩, 卢兰光等. 锂离子电池内短路机理与检测研究进展[J]. 储能科学与技术, 2018, 7(06): 1003-1015.

[54]Feng X, Ouyang M, Liu X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy storage materials, 2018, 10: 246-267.

[55]Wang Q, Mao B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.

[56]Semenov N N, Boudart M, Wise H. Some Problems in Chemical Kinetics and Reactivity[J]. Physics Today, 1959, 12(5): 44-44.

[57]许笑天. 电动汽车用锂离子电池三维热物理模型及其应用研究[D]. 北京: 清华大学, 2015

[58]Eshetu G G, Grugeon S, Laruelle S, et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical chemistry chemical physics, 2013, 15(23): 9145-9155.

[59]Yang H, Bang H, Amine K, et al. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway[J]. Journal of the Electrochemical Society, 2004, 152(1): A73.

[60]Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of power sources, 2003, 113(1): 81-100.

[61]黄倩. 锂离子电池的热效应及其安全性能的研究[D]. 上海: 复旦大学, 2007.

[62]Larsson F, Andersson P, Blomqvist P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420.

[63]崔志仙. 锂离子电池内短路诱发热失控机制研究[D]. 合肥: 中国科学技术大学, 2018.

[64]Wang W, Wu Y. An overview of recycling and treatment of spent LiFePO4 batteries in China[J]. Resources, Conservation and Recycling, 2017, 127: 233-243.

[65]Jiang X, Chen Y, Meng X, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries: A review[J]. Carbon, 2022, 191: 448-470.

[66]Feng X, Zheng S, He X, et al. Time sequence map for interpreting the thermal runaway mechanism of lithium-ion batteries with LiNixCoyMnzO2 cathode[J]. Frontiers in Energy Research, 2018, 6: 126.

[67]巩译泽, 谢松, 黎桂树. 过充截止电压对NCM523电池热安全的影响[J]. 电池, 2022, 52(04): 428-432.

[68]Xie S, Gong Y, Ping X, et al. Effect of overcharge on the electrochemical and thermal safety behaviors of LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion batteries[J]. Journal of Energy Storage, 2022, 46: 103829.

[69]Son K, Hwang S M, Woo S G, et al. Thermal and chemical characterization of the solid-electrolyte interphase in Li-ion batteries using a novel separator sampling method[J]. Journal of Power Sources, 2019, 440: 227083.

[70]Chen M, He Y, DE Zhou C, et al. Experimental study on the combustion characteristics of primary lithium batteries fire[J]. Fire Technology, 2014, 52(2): 365-385.

[71]Wang H, Tang A, Huang K. Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics[J]. Chinese Journal of Chemistry, 2011, 29(8): 1583-1588.

[72]Peng P, Sun Y, Jiang F. Thermal analyses of LiCoO2 lithium-ion battery during oven tests [J]. Heat & Mass Transfer, 2014, 50(10): 1405-1416.

[73]Kim G H, Pesaran A, Spotnitz R. A Three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2012, 170(2): 476-489.

中图分类号:

 X932    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式