- 无标题文档
查看论文信息

论文中文题名:

 时变原煤流下多机械臂煤矸分拣策略优化方法研究    

姓名:

 乔欢乐    

学号:

 19205016031    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械电子工程    

研究方向:

 机器人技术    

第一导师姓名:

 曹现刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-29    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Study on optimization method of coal and gangue sorting strategy with Multi-manipulator under time-varying raw coal flow    

论文中文关键词:

 多机械臂 ; 多任务分配 ; 煤矸分拣机器人 ; 效益矩阵    

论文外文关键词:

 Multi-arm ; Multi-task Allocation ; Coal Gangue Sorting Robot ; Efficiency Matrix     

论文中文摘要:

原煤流的过煤量和含矸率随时间变化,导致多机械臂煤矸分拣机器人机械臂利用率低、拣矸率和拣矸质量比失衡。针对该问题,本文通过构建一种多机械臂多任务分配模型,实现时变原煤流下多机械臂煤矸分拣机器人多任务最优分配。论文的主要研究工作如下:

针对原煤含矸率时变导致拣矸率和拣矸质量比失衡问题,对煤矸分拣机器人多任务分配问题进行了描述与分析,给出该问题的任务类型,得到固定过矸量和时变过矸量的两种原煤流特性规律。综合考虑矸石质量、识别置信度、机械臂分拣时间等因素,通过给定假设条件、约束条件、输入参数及评价指标,构建基于效益矩阵的多机械臂多任务分配模型。为后文求解不同过矸量特征的多任务分配问题奠定基础。

针对固定原煤流的最优分配问题,提出基于最大效益优先的多机械臂多任务分配策略。分析矸石质量、识别置信度、机械臂分拣时间之间的相互关系,利用熵权法求解效益矩阵的参量权重。在不同过矸量模式下,对FCFS、SJF和MBP策略进行对比分析,得到分配策略与过矸量模式间的匹配关系。最终确定MBP策略为最优策略。

针对时变原煤流的最优分配问题,提出基于阈值的多机械臂多任务自适应分配方法。该方法首先通过分配策略与过矸量模式间的匹配关系设定过矸量阈值,根据阈值选择效益矩阵权重。采用贪婪算法对时变原煤流进行权重寻优,得到符合时变原煤流工况的MBP策略最优权重解,最终获得多机械臂多任务分配最优结果。最后,进行时变原煤流下多机械臂多任务分配实验,验证了自适应分配策略能有效提高拣矸率及拣矸质量比。

为了提高多机械臂煤矸分拣机器人分拣效率,提出了基于效益矩阵的多机械臂多任务分配模型,并对不同原煤流分配策略进行求解和优化。实验结果表明,本文提出的自适应分配策略能够适应固定原煤流、时变原煤流的任务分配,并提高了拣矸率和拣矸质量比,具有一定的应用价值。

论文外文摘要:

The coal passing quantity and gangue rate of raw coal flow change with time, resulting in low utilization rate of multi-manipulator  coal-gangue sorting robot, and imbalance of gangue sorting rate and gangue sorting quality ratio. To solve this problem, this paper constructed a multi-manipulator arms multi-task allocation model to achieve the optimal multi-task assignment of coal-gangue sorting robot under time-varying raw coal flow. The main research work of this paper is as follows:

Aiming at the problem of the imbalance between the sorting rate and the quality ratio caused by the time-varying raw coal gangue rate, this paper describes and analyzes the multi-task assignment problem of the coal -gangue sorting robot, gives the task type of this problem, and gets two kinds of raw coal flow characteristics of fixed gangue quantity and time-varying gangue quantity. Considering the quality of gangue, recognition confidence, arms sorting time and other factors comprehensively, a multi-manipulator arm multi-task allocation model based on efficiency matrix was established by given assumptions, constraints, input parameters and evaluation indexes. It lays a foundation for solving the multi-task assignmentallocation problem with different characteristics of gangue quantity in the following paper.

Aiming at the problem of optimal allocation of fixed raw coal flow, a multi-manipulator multi-task allocation strategy based on maximum benefit priority was proposed. The correlation among gangue quality, recognition confidence and sorting time of manipulator arm was analyzed, and the parameter weights of efficiency matrix were solved by entropy weight method. FCFS, SJF and MBP strategies were compared and analyzed under different models of excess gangue quantity, and the matching relationship between allocation strategy and excess gangue quantity pattern was obtained. Finally, the MBP strategy is determined as the optimal strategy.

Aiming at the optimal allocation of time-varying raw coal flow, a threshold-based multi-manipulator multi-task adaptive allocation method is proposed.Firstly, the value of excess gangue quantity threshold is set through the matching relationship between allocation strategy and excess gangue quantity mode, and the weight of benefit matrix is selected according to the threshold value. The greedy algorithm was used to optimize the weight of time-varying raw coal flow, and the optimal weight solution of MBP strategy was obtained in accordance with the condition of time-varying raw coal flow. Finally, the optimal result of multi-manipulator multi-task allocation was obtained. Finally, the multi-manipulator multi-task assignment experiment of time-varying raw coal flow is carried out to verify that the adaptive allocation strategy can effectively improve the rate of gangue sorting and the quality ratio of gangue sorting.

In order to improve the sorting efficiency of multi-arm coal and gangue sorting robot, a multi-manipulator multi-task allocation model based on benefit matrix was proposed, and different raw coal flow allocation strategies were solved and optimized. The experimental results show that the adaptive allocation strategy proposed in this paper can adapt to the task allocation of fixed raw coal flow and time-varying raw coal flow, and improve the rate and quality ratio of sorting gangue, which has certain application value.

参考文献:

[1]本刊讯.国家发改委、国家能源局下发《能源技术革命创新行动计划(2016-2030年)》和《能源技术革命重点创新行动路线图》[J]. 电力与能源, 2016,37(05): 609.

[2]中国煤炭工业协会[R]. 2020年煤炭行业发展年度报告,2021.3

[3]Gui X, Liu J, Cao Y, et al. Coal preparation technology:Status and development

in China[J]. Energy & Environment, 2015, 26(6-7): 997-1013.

[4]朱冉, 赵跃民, 赵鹏飞, 骆振福, 王厚坤, 何录红, 谭明兵, 王辉, 张玉飞. 空气重介质流化床中细粒煤的流化与分选特性[J]. 煤炭学报, 2016, 41(03): 727-734.

[5]邓建军, 匡亚莉, 赵建章, 孙小路, 王传真. 重介旋流器分选过程智能控制策略研究与实现[J]. 中国矿业大学学报, 2019, 48(03): 624-632.

[6]王卫东, 靳立章. 细粒煤超声同步浮选的试验研究[J]. 煤炭学报, 2020, 45(08): 2949-2955.

[7]Surowiak A. Evaluation of the results of coal jigging process[C]//E3S Web of Conferences. EDP Sciences, 2017, 18: 01030.

[8]TANG Ligang, Chen Hui, LI Ming, et al. Coal Preparationg Technique with Heavy Medium Recovery System Jointly Applied to Lump Coal and Fine Coal[J].Coal Science & Technology, 2014, 42(12): 117-119+74.

[9]刘学雷. 我国选煤技术发展现状及趋势分析[J]. 选煤技术, 2018(06): 12-15.

[10]邹威, 赵树果, 张亚伦, 李守余. 我国洗选煤现状及节能对策[J]. 现代矿业, 2016, 32(08): 91-93+96.

[11]Napier-Munn T. The dense medium cyclone-past, present and future[J]. Minerals

Engineering, 2018, 116: 107-113.

[12]赵跃民, 李功民, 骆振福, 张博, 董良. 模块式干法重介质流化床选煤理论与工业应用[J]. 煤炭学报, 2014, 39(08): 1566-1571.DOI:10.13225/j.cnki.jccs.2014.9036.

[13]陈建中, 沈丽娟, 刘才金, 隋占峰. 振动螺旋干法分选机运动特性研究[J]. 中国矿业大学学报, 2015, 44(01): 125-131.

[14]Zhang Y R, Yoon N, Holuszko M E. Assessment of coal sortability and

washability using dual energy X-ray transmission system[J]. International Journal

of Coal Preparation and Utilization, 2021: 1-13.

[15]Mijał W, Tora B. Development of dry coal gravity separation techniques[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 427(1): 012003.

[16]Baic I, Blaschke W, Szafarczyk J. Dry coal cleaning technology[J]. Inżynieria

Mineralna, 2014, 15.

[17]王天然. 概述机器人技术的进步[J]. Engineering, 2018, 4(04): 11-14.

[18]王国法, 刘峰, 庞义辉, 任怀伟, 马英. 煤矿智能化——煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报, 2019, 44(02): 349-357.DOI:10.13225/j.cnki.jccs.2018.2041.

[19]Gui X, Liu J, Cao Y, et al. Coal preparation technology: Status and

developmentin China[J]. Energy & Environment, 2015, 26(6-7): 997-1013.

[20]葛世荣, 胡而已, 裴文良. 煤矿机器人体系及关键技术[J]. 煤炭学报, 2020, 45(1): 455-463.

[21]张小艳, 朱圣凯, 杨鑫磊. 采煤工作面煤层三维地质建模[J]. 科学技术与工程, 2020,20(10): 4049-4055

[22]刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1-15.

[23]王卫东,张晨,马中良,曹春晓,王彤彤,张璐琪,任春醒,梁静.煤矸光电分选系统设计[J].工矿自动化,2013,39(12):5-8.

[24] 卢熠昌,于中山.煤矸光电分选系统及抗干扰技术研究[J].矿业研究与开发,2020,40

(01):144-147.DOI:10.13827/j.cnki.kyyk.2020.01.028.

[25]刘刚.GDRT煤矸智能分选系统在新维煤业公司的应用[J].煤炭加工与综合利用,2020(01):47-48+52.DOI:10.16200/j.cnki.11-2627/td.2020.01.014.

[26] 杨慧刚,乔志敏.基于X射线和机器视觉的煤与矸石分选系统设计[J].工矿自动化,2017,43(03):85-89.DOI:10.13272/j.issn.1671-251x.2017.03.020.

[27]商德勇,章林,牛艳奇,范迅.煤矸分拣机器人设计与关键技术分析[J].煤炭科学技术,2022,50(03):232-238.DOI:10.13199/j.cnki.cst.ZN20-040.

[28]王冠军,苏婷婷,刘文博,钱智平,李佳泽.基于EAIDK的智能煤矸分拣系统设计[J].工矿自动化,2020,46(01):105-108.DOI:10.13272/j.issn.1671-251x.2019050019.

[29]SEENU, N., KUPPAN CHETTY, R. M., RAMYA, M. M., et al. Review on state-of-the-art dynamic task allocation strategies for multiple-robot systems[J]. IndustrialRobot, 2020, 47(6): 929-942.

[30]Fang, B., Zhang, Q., Wang, H. and Yuan, X. (2018),“Personality driven task allocation for emotional robot team”, International Journal of Machine Learning and Cybernetics, Vol. 9 No. 12, pp. 1955-1962

[31]梅志慧, 魏利胜, 王家才. 基于图论的网络控制系统动态调度策略研究[J]. 安徽工程大学学报, 2014,29(03): 41-44.

[32]郑红星, 刘保利, 匡海波, 闫叙. 考虑实时预倒箱的出口箱堆场多场桥调度优化[J]. 中国管理学, 2018, 26(09): 85-96.DOI:10.16381/j.cnki.issn1003-207x.2018.09.009.

[33]周惠成, 彭勇, 王国利. 基于图论的水库群洪水预报调度系统集成研究[J]. 大连理工大学学报, 2005(06): 871-876.

[34]Ruixin Wang,Qifei Yang. Research on Neural Network of Enterprise Raw materialproduction and Transportation based on Multi-objective programming[J]. Academic

Journal of Business & Management,2021,3.0(12.0).

[35]任爽, 韩冰. 带有不确定性的公共租赁自行车的管理优化研究[J]. 控制与决策, 2019, 34(11): 2469-2478.DOI:10.13195/j.kzyjc.2018.0226.

[36]张菁芳, 任家顺, 陈渝, 黄春基, 薛晓, 向前, 袁小山. 医学应急救援任务优化调度策略研究[J]. 医疗卫生装备, 2015, 36(09): 41-43.

[37]孙健, 廖丹, 李可, 巩玉, 孙罡. 基于排队论的异构数据中心性能及能源管理策略[J]电子科技大学学报, 2018, 47(02): 161-168.

[38]李长乐, 张云锋, 张尧, 毛国强, 贾存兴. 面向自动协同驾驶的多车编队任务分配策略[J]. 电子与信息学报, 2020, 42(01): 65-73.

[39]孙文娟, 宫华, 许可, 刘鹏. 带有交货期的比例流水车间调度问题的合作博弈[J]. 控制与决策, 2022,37(03): 712-720.DOI:10.13195/j.kzyjc.2020.1355.

[40]李珣, 南恺恺, 赵征凡, 王晓华, 景军锋. 多智能体博弈的纺织车间搬运机器人任务分配[J]. 纺织学报, 2020, 41(07): 78-87.DOI:10.13475/j.fzxb.20190800210.

[41]范思遐, 周奇才, 熊肖磊, 赵炯. 一种动态博弈的多agent合作机制模型[J]. 东北大学学报(自然科学版), 2015, 36(01): 114-118+147.

[42]朱建文, 赵长见, 李小平, 包为民. 基于强化学习的集群多目标分配与智能决策方法[J]. 兵工学报, 2021, 42(09): 2040-2048.

[43]Kalashnikov D, Varley J, Chebotar Y, et al. Mt-opt: Continuous multi-task robotic reinforcement learning at scale[J]. arXiv preprint arXiv:2104.08212, 2021.

[44]付光远, 李源, 付文宇, 王湘瑶. 改进合同网在多机器人围捕任务分配中的应用[J].兵器装备工程学报, 2019, 40(03): 98-102+216.

[45]姜来浩, 戴学丰, 蔡标, 陈泽涛. 基于改进捆绑拍卖多机器人任务分配研究[J]. 齐齐哈尔大学学报(自然科学版), 2014, 30(06): 5-9.

[46]Zhong Qiubo,Fang Baofu,Guo Xiaoping,Zheng Caiming. Task Allocation for Affective Robots Based on Willingness[J]. IEEE ACCESS, 2021, 9.

[47]孙博寒, 王浩, 方宝富, 凌兆龙, 林杰华. 基于自组织算法的情感机器人追捕任务分配[J]. 机器人, 2017, 39(05): 680-687.DOI:10.13973/j.cnki.robot.2017.0680.

[48]岳程斐, 薛正华, 姚蔚然, 曹喜滨. 机群关系特征的多机协同作战任务分配[J/OL]. 系统工程与电子技术: 1-12[2022-03-22].

[49]刘洪涛, 岳鹏, 杨娟, 邱玉辉. MDLP—线性异构网络中多个可划分任务的资源分配策略[J]. 计算机科学, 2007(02): 41-42+61.

[50]温攀, 王社伟, 徐明仁. 基于Memetic算法的多无人机任务分配研究[J]. 计算机仿真,2013, 30(5): 82-85.

[51]Giordani S, Lujak M, Martinelli F. A distributed algorithm for the multi-robot task allocation problem[C]//International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems. Springer-Verlag, 2010: 721-730

[52]Nayar N, Ahuja S, Jain S. Swarm intelligence for feature selection: a review of literature and reflection on future challenges[M]//Advances in Data and Information Sciences. Springer, Singapore, 2019: 211-221.

[53]Jia Z, Yu J, Ai X, et al. Cooperative multiple task assignment problem with

stochastic velocities and time windows for heterogeneous unmanned aerial vehicles

using a genetic algorithm[J]. Aerospace Science and Technology, 2018, 76:112-125.

[54]王庆贺, 万刚, 柴峥, 李登峰. 基于改进遗传算法的多机协同多目标分配方法[J]. 计算机应用研究, 2018, 35(09): 2597-2601.

[55]范媛, 李文锋, 贺利军. 基于改进遗传算法的智能仓储多移动机器人协同调度[J]. 武汉理工大学学报(信息与管理工程版), 2019, 41(03): 293-298+311.

[56]Deng W, Xu J, Zhao H. An improved ant colony optimization algorithm based onhybrid strategies for scheduling problem[J]. IEEE access, 2019, 7: 20281-20292.

[57]杨惠珍, 王强. 基于动态蚁群劳动分工模型的多AUV任务分配方法[J]. 控制与决策,2021, 36(08): 1911-1919.

[58]Hamid Reza BOVEIRI. 基于渐进式蚁群优化的多处理器任务分配(英文)[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(04): 498-511.

[59]Li J,Tan Y.A Comprehensive Review of the Fireworks Algorithm[J].ACM

Computing Surveys (CSUR), 2019, 52(6): 1-28.

[60]邹适宇, 李复名, 谢爱平, 周涛, 刘鹏. 基于改进烟花算法的资源分配[J]. 航空学报,2021, 42(12): 264-272.

[61]曹现刚, 费佳浩, 王鹏, 李宁, 苏玲玲. 基于多机械臂协同的煤矸分拣方法研究[J].煤炭科学技术, 2019, 47(04): 7-12.DOI:10.13199/j.cnki.cst.2019.04.002.

[62]曹现刚, 李宁, 王鹏, 薛祯也, 费佳浩, 吴旭东.基于比例导引法的机械臂拣矸过程轨迹规划方法研究[J]. 煤炭工程, 2019,51(05):154-158.

[63]Gerkey B P, Matarić M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. The International journal of robotics research, 2004, 23(9):

939-954.

[64]曹现刚, 吴旭东, 王鹏, 李莹, 刘思颖, 张国祯, 夏护国. 面向煤矸分拣机器人的多机械臂协同策略[J]. 煤炭学报, 2019, 44(S2): 763-774.DOI:10.13225/j.cnki.jccs.2019.0734.

[65]黄炳香, 刘长友, 程庆迎. 低位综放开采顶煤放出率与含矸率的关系[J]. 煤炭学报, 2007(08): 789-793.

[66]冯晓海. 多机器人任务分配适应度模型算法研究[D]. 西北大学,2013

[67]刘怀玲, 陈青. 基于排队论的进程调度算法分析[J]. 微计算机应用, 2009, 30(02):1-3.

[68]常玉林, 陈志超, 孙超, 张鹏. 基于G/G/c/FCFS排队模型的城市停车流量分配模型[J]. 交通运输系统工程息, 2019, 19(05): 205-211

[69]朱雪, 徐俊康, 吴莉莉, 朱雷. 基于Floyd、FCFS和SJF算法的机场智能调度[J]. 现代信息科技, 2018, 2(06): 135-136+139.

[70]Huang Da, Han Mei. Research on Evaluation Method of Freight Transportation

Environmmental Sustainability[J]. Sustainability, 2021, 13(5).

[71]Lim Hyunjin, Kim Sunkuk, Kim Yonggu, Son Seunghyun. Relative ImportanceAnalysis of Safety Climate Evaluation Factors Using AnalyticalHierarchical Process(AHP)[J]. Sustainability,2021,13(8).

[72]Zhu Y, Tian D, Yan F. Effectiveness of entropy weight method in decision-making[J]. Mathematical Problems in Engineering, 2020, 2020.

中图分类号:

 TD242.2    

开放日期:

 2022-06-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式