- 无标题文档
查看论文信息

题名:

 受载含瓦斯煤体解吸渗流与变形特征的实验研究及应用    

作者:

 龙航    

学号:

 19120089025    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

导师姓名:

 林海飞    

导师单位:

 西安科技大学    

第二导师姓名:

 张铁岗    

提交日期:

 2023-01-06    

答辩日期:

 2022-12-07    

外文题名:

 Experimental study on desorption-seepage and deformation characteristics of CH4-containing coal under stress loading and its application    

关键词:

 受载煤体 ; 瓦斯抽采 ; 解吸渗流 ; 变形特征 ; 多场耦合    

外文关键词:

 Stress loaded coal ; Gas drainage ; Gas desorption and seepage ; Coal deformation characteristics ; Multi-field coupling    

摘要:

煤炭作为我国主体能源和兜底能源,是能源安全的“压舱石”。随着我国浅部煤炭资源日益枯竭,许多矿井进入深部开采阶段,煤层高瓦斯压力、高地温、高应力、低渗透特征更加显著,瓦斯灾害已成为制约矿井安全高效生产的主要因素之一。煤层瓦斯钻孔预抽是防治瓦斯灾害的主要方法之一,其中钻孔布置与受载煤体吸附解吸渗流及变形特性密切相关,是提高煤层瓦斯预抽效率的关键问题。本文运用理论分析、实验室实验、数值模拟、现场工业性试验等方法,研究了温度及有效应力作用下瓦斯吸附解吸渗流与煤体变形规律及特征,揭示了受载含瓦斯煤体解吸渗流与变形耦合机理,分析了考虑两者耦合效应的煤层瓦斯抽采规律。

论文研发了受载含瓦斯煤体解吸渗流与变形测试系统,主要由应力加载、瓦斯吸附解吸渗流、数据测试与采集控制等系统组成。选择典型高瓦斯矿井煤样,从煤体力学特性、瓦斯吸附解吸及煤体变形特性等方面对型煤与原煤试件进行对比,验证了采用型煤试件进行研究的合理性;得到了不同有效应力及温度作用下煤体孔隙度变化规律,发现随着实验温度及有效应力增大,煤体孔隙度呈线性减小趋势。

通过开展煤体瓦斯等温吸附实验,分析了受载煤体瓦斯吸附及变形特征参数与温度及有效应力之间的关系;研究了受载含瓦斯煤体解吸变形特征,量化了瓦斯解吸量及煤体变形量与解吸时间的变化规律,分析了温度及有效应力对受载含瓦斯煤体解吸率、解吸速率、动扩散系数及煤体变形等特征参数的影响。煤体瓦斯吸附及变形量均与气体压力之间呈Langmuir型变化规律,煤体瓦斯吸附量及变形量与温度之间呈负线性相关,与有效应力之间呈负指数相关,煤体变形量随瓦斯吸附量增加呈Langmuir型增大趋势。瓦斯解吸率随温度升高呈线性增大趋势,随有效应力升高呈对数函数增长关系,瓦斯最大解吸率达到47.1%;随着温度及有效应力升高,瓦斯解吸平衡状态煤体逐渐由残余变形转变为富余变形。

通过受载含瓦斯煤体渗流实验,得到了煤体渗透率随温度及有效应力的变化关系,明确了全应力应变过程煤体渗流演化特征,对比分析了温度作用下含瓦斯煤体力学参数变化规律。煤体瓦斯降压渗流过程中,受载含瓦斯煤体渗透率呈指数增大趋势,煤体变形量与瓦斯渗流压力之间呈指数变化规律;随温度及有效应力增大,煤体渗透率呈指数衰减趋势。受载煤体全应力应变过程中,煤体渗透率随轴向应力增大而逐渐降低,当达到应力峰值时渗透率会出现陡增现象;受载煤体峰值强度、弹性模量与温度之间呈负线性相关关系,而煤体泊松比随温度升高呈线性增大趋势。

在分析煤体瓦斯解吸渗流与变形特征基础上,运用固体力学、多孔介质流体动力学、渗流力学、损伤力学等理论,建立了受载含瓦斯煤体解吸渗流及变形耦合模型,揭示了两者之间的耦合机理。通过COMSOL Multiphysics数值模拟软件,研究了不同温度及有效应力作用下煤体瓦斯解吸渗流与变形特征,模拟结果与实验结果具有良好一致性。对比实验与数值模拟结果,煤体瓦斯解吸量最大标准差为0.208 cm3·g-1,最小标准差为0.002 cm3·g-1,煤体瓦斯渗透率最大标准差为0.705×10-3 μm2,最小标准差为0.002×10-3 μm2,验证了所建立的受载含瓦斯煤体解吸渗流及变形耦合模型的可靠性及合理性。

以陕西陕煤铜川矿业有限公司玉华煤矿1417工作面为工程背景,应用COMSOL Multiphysics数值模拟软件,分析了考虑煤体解吸渗流及变形耦合效应下钻孔直径、煤层瓦斯含量、抽采负压、煤体渗透率和抽采时间等因素对煤层瓦斯预抽效果的影响规律,并优化确定了现场煤层瓦斯预抽钻孔参数。随着钻孔直径增大,钻孔有效抽采半径呈增大趋势;随着煤层瓦斯含量及渗透率升高,钻孔有效抽采半径呈线性增大趋势;抽采负压对钻孔有效抽采半径的影响不明显;随着抽采时间增大,钻孔有效抽采半径呈指数增大趋势,并在抽采后期趋于稳定。结合玉华煤矿实际条件,得到钻孔有效抽采半径能够达到5.4 m,确定了瓦斯预抽钻孔直径为133 mm,抽采负压为22.55 kPa,钻孔间距为6 m。通过现场工程实践,分析了现场不同钻孔抽采时间下钻孔预抽参数的变化规律,验证了所得到的煤层瓦斯预抽钻孔布置参数的合理性,保证了工作面的安全生产,为进一步完善煤层瓦斯抽采多场耦合理论、实现煤层瓦斯精准抽采与防治提供了一定的理论依据和技术支持。

外文摘要:

As China’s main and sole source of energy, coal is the “ballast” of energy security. With the increasing depletion of shallow coal resources in China, many mines have entered the deep. The characteristics of high gas pressure, temperature, stress and low permeability in coal seams are more significant. Gas disasters have become one of the main factors restricting the safe and efficient production. The pre-drainage of coalbed methane (CBM) is one of the main methods to prevent and control gas disasters. The arrangement of drilling holes is closely related to the adsorption, desorption, seepage of gas and deformation of the loaded coal, which is the key problem to improve the pre-drainage efficiency of CBM. In this paper, theoretical analysis, laboratory experiment, numerical simulation and field test were used to study the characteristics of gas adsorption, desorption, seepage and coal deformation under the action of temperature and effective stress. The coupling mechanism of desorption-seepage and deformation of CH4-containing coal under stress loading was revealed, and the drainage of CBM considering the coupling effect was analyzed.

A testing system for gas desorption, seepage and coal deformation under stress loading was developed in this paper, which was mainly composed of stress loading, gas adsorption, desorption, seepage, data testing and acquisition control systems. The coal sample was selected from typical high gas mine, the characteristics of briquette and raw coal samples from the aspects of mechanical property, gas adsorption-desorption and coal deformation were compared, and the rationality of using briquette samples for research was verified. The change of coal porosity under different effective stress and temperature was obtained. It was found that the porosity of coal decreased linearly with the increase of temperature and effective stress.

The variation between gas adsorption and induced deformation in loaded coal under different temperature and effective stress was analyzed by carrying out gas isothermal adsorption experiment. The gas desorption and induced deformation in CH4-containing coal under stress loading was studied, and the change relationship between the gas desorption, coal deformation amount and desorption time was revealed. The influence of temperature and effective stress on the desorption ratio, desorption rate, dynamic diffusion coefficient and coal deformation of the loaded CH4-containing coal was analyzed. The gas adsorption and deformation amount of coal shown a Langmuir type with gas pressure. The gas adsorption and deformation amount of coal shown a negative linear correlation with increasing temperature, and a negative exponential correlation with elevated effective stress. The deformation amount of coal shown a Langmuir type trend with the increase of gas adsorption amount. The gas desorption ratio increased linearly with temperature and logarithmically with effective stress. The maximum gas desorption ratio reached 47.1%. With the increase of temperature and effective stress, the coal deformation in equilibrium state of gas desorption gradually changed from residual to surplus ones.

Through the seepage experiment of CH4-containing coal under load, the relationship between coal permeability and temperature and effective stress was obtained, and the evolution of gas seepage in the process of full stress and strain were clarified. The change of mechanical parameters of CH4-containing coal under the effect of temperature was compared and analyzed. In the process of gas seepage with reduced pressure, the permeability of the loaded CH4-containing coal increased exponentially, and there was an exponential relationship between coal deformation and gas pressure. With the increase of temperature and effective stress, the coal permeability decreased exponentially. During the full stress and strain process of the loaded coal, the permeability of the coal decreased gradually with the increase of the axial stress, and increased sharply when the peak stress was reached. The peak strength and elastic modulus of the loaded coal had a negative linear correlation with the temperature, while the Poisson's ratio of the coal increased linearly with the temperature.

On the basis of analyzing the characteristics of gas desorption, seepage and coal deformation, the coupling model of desorption-seepage and deformation of loaded CH4-containing coal was established by using the theories of solid mechanics, porous medium fluid dynamics, seepage mechanics, damage mechanics, and the coupling mechanism between them was revealed. Through COMSOL Multiphysics numerical simulation software, the gas desorption-seepage and coal deformation under different temperatures and effective stresses were studied. The simulation results were in good agreement with the experimental ones. Compared the experimental results with the numerical simulation, the maximum standard deviation of gas desorption was 0.208 cm3·g-1, and the minimum was 0.002 cm3·g-1. The maximum standard deviation of coal permeability was 0.705×10-3 μm2, and the minimum was 0.002×10-3 μm2. The reliability of the desorption-seepage and deformation coupling model of the loaded CH4-containing coal was verified.

Took the 1417 working face of Yuhua Coal Mine of Shaanxi Tongchuan Mining Co., Ltd. as the engineering background, used COMSOL Multiphysics numerical simulation software, and the influence of borehole diameter, CBM content, negative pressure of extraction, coal permeability and extraction time on the pre-drainage effect under the consideration of gas desorption-seepage and coal deformation coupling effect was analyzed in this paper. The on-site pre-drainage borehole parameter was optimized and determined. The effective extraction radius of the borehole tended to increase with the increase of the borehole diameter. With the increase of gas content and permeability of coal, the effective drainage radius increased linearly. The influence of negative pressure on the effective pumping radius was not obvious. With the increase of drainage time, the effective pumping radius of the borehole increased exponentially and tended to be stable in the late period. Combined with the actual conditions of Yuhua Coal Mine, the diameter of the gas pre drainage borehole was determined to 133 mm, the negative pressure of the drainage was 22.55 kPa, and the borehole spacing was 6 m. Through field test, the change of pre-drainage parameters under different drilling drainage time was analyzed, and the rationality of the obtained drilling hole layout parameters for pre-drainage was verified. The research ensured safe production of the working face, and provided certain theoretical basis and technical support for improving the multi field coupling theory of CBM drainage and realizing the accurate drainage and prevention of CBM.

参考文献:

[1]刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(1):1-15.

[2]国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[N]. 人民日报. 2022-3-1.

[3]武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6):1625-1636.

[4]Gao Zheng, Li Bobo, Li Jianhua, et al. Coal permeability related to matrix-fracture interaction at different temperatures and stresses[J]. Journal of Petroleum Science and Engineering, 2021, 200(5):108428.

[5]程远平, 刘洪永, 赵伟. 我国煤与瓦斯突出事故现状及防治对策[J]. 煤炭科学技术, 2014, 42(6):15-18.

[6]Karacan C. Özgen, Ruiz Felicia A., Cotè Michael, et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2-3): 121-156.

[7]林海飞, 季鹏飞, 孔祥国, 等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报, 2022, 47(3):1220-1234.

[8]Shi Guangshan, Wei Fengqing, Gao Zhiyang, et al. Gas desorption-diffusion behavior from coal particles with consideration of quasi-steady and unsteady crossflow mechanisms based on dual media concept model: Experiments and numerical modelling[J]. Fuel, 2021, 298:120729.

[9]尹金辉. 温度对煤样罐内煤体瓦斯解吸的影响[J]. 能源与环保, 2020, 42(8):19-22+ 32.

[10]严敏, 龙航, 白杨, 等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保, 2019, 46(3):6-10.

[11]李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(2):181-186+272.

[12]刘珊珊, 孟召平. 等温吸附过程中不同煤体结构煤能量变化规律[J]. 煤炭学报, 2015, 40(6):1422-1427.

[13]张遂安, 曹立虎, 杜彩霞. 煤层气井产气机理及排采控压控粉研究[J]. 煤炭学报, 2014, 39(9):1927-1931.

[14]马东民, 张遂安, 蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(3):477-480.

[15]马东民, 张遂安, 王鹏刚, 等. 煤层气解吸的温度效应[J]. 煤田地质与勘探, 2011, 39(1):20-23.

[16]Long Hang, Lin Haifei, Yan Min, et al. Molecular simulation of the competitive adsorption characteristics of CH4, CO2, N2, and multicomponent gases in coal[J]. Powder Technology, 2021, 385:348-356.

[17]林海飞, 蔚文斌, 李树刚, 等. 低阶煤孔隙结构对瓦斯吸附特性影响的试验研究[J]. 煤炭科学技术, 2016, 44(6):127-133.

[18]林海飞, 蔚文斌, 李树刚, 等. 多因素对煤样吸附瓦斯影响试验研究[J]. 中国安全科学学报, 2015, 25(9):121-126.

[19]唐明云, 张海路, 段三壮, 等. 基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J]. 煤炭科学技术, 2021, 49(5):182-189.

[20]李波波, 高政, 李建华, 等. 不同温度与压力下瓦斯的吸附-热力学特性研究[J]. 安全与环境学报, 2021, 21(6):2479-2488.

[21]解北京, 王广宇, 严正. 粉煤吸附甲烷温度变化规律试验研究[J]. 煤炭科学技术, 2019, 47(8):123-128.

[22]王刚, 程卫民, 潘刚. 温度对煤体吸附瓦斯性能影响的研究[J]. 安全与环境学报, 2012, 12(5):231-234.

[23]田宣, 温志辉, 于世洋. 颗粒煤和原煤瓦斯解吸特性差异实验研究[J]. 煤炭技术, 2016, 35(11):168-170.

[24]张遵国, 曹树刚, 洪林, 等. 突出危险型煤瓦斯等温解吸试验研究[J]. 中国安全科学学报, 2017, 27(7):115-120.

[25]张遵国, 曹树刚, 郭平, 等. 原煤和型煤吸附-解吸瓦斯变形特性对比研究[J]. 中国矿业大学学报, 2014, 43(3):388-394.

[26]王俊峰, 张力, 赵东. 温度及含水率对切削原煤吸附瓦斯特性的影响[J]. 煤炭学报, 2011, 36(12):2086-2091.

[27]吴迪, 孙可明. 不同温度条件下型煤吸附CH4/CO2混合气的实验研究[J]. 岩石力学与工程学报, 2013, 32(S2):3291-3296.

[28]吴迪, 孙可明, 肖晓春, 等. 块状型煤中甲烷的非等温吸附-解吸试验研究[J]. 中国安全科学学报, 2012, 22(12):122-126.

[29]白鑫, 王登科, 田富超, 等. 三轴应力加卸载作用下损伤煤岩渗透率模型研究[J]. 岩石力学与工程学报, 2021, 40(8):1536-1546.

[30]田虎楠, 唐巨鹏, 潘一山, 等. 平均有效应力对煤系页岩瓦斯微观吸附-解吸特性影响实验研究[J]. 岩土力学, 2022, 43(7):1803-1815.

[31]何满潮, 王春光, 李德建, 等. 单轴应力-温度作用下煤中吸附瓦斯解吸特征[J]. 岩石力学与工程学报, 2010, 29(5):865-872.

[32]王登科, 彭明, 魏建平, 等. 煤岩三轴蠕变-渗流-吸附解吸实验装置的研制及应用[J]. 煤炭学报, 2016, 41(3):644-652.

[33]唐巨鹏, 潘一山, 李成全, 等. 三维应力作用下煤层气吸附解吸特性实验[J]. 天然气工业, 2007, 7:35-38+133.

[34]魏建平, 温志辉, 苑永旺, 等. 应力对含瓦斯煤解吸特征影响的试验研究[J]. 煤炭科学技术, 2021, 49(5):35-43.

[35]李小春, 付旭, 方志明, 等. 有效应力对煤吸附特性影响的试验研究[J]. 岩土力学, 2013, 34(5):1247-1252.

[36]Hsieh Shantao, Duda J.L. Probing coal structure with organic vapour sorption[J], Fuel, 1987, 66(2):170-178.

[37]Crank J., Mcfarlane N.R., Newby J.C., et al. Macmillan Education UK[M]. London: Macmillan Education UK.

[38]杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 3:87-94.

[39]Nandi Satyendra P., Walker Jr. Philip-L. Activated diffusion of methane from coals at elevated pressures[J]. Fuel, 1975, 54(2):81-86.

[40]聂百胜, 张力, 马文芳. 煤层甲烷在煤孔隙中扩散的微观机理[J]. 煤田地质与勘探, 2000(6):20-22.

[41]何学秋, 聂百胜. 孔隙气体在煤层中扩散的机理[J]. 中国矿业大学学报, 2001, 1:3-6.

[42]聂百胜, 何学秋, 王恩元. 瓦斯气体在煤层中的扩散机理及模式[J]. 中国安全科学学报, 2000(6):27-31.

[43]Houst Yves F., Wittmann Folker H. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste[J]. Cement and Concrete Research, 1994:1165-1176.

[44]Long Hang, Lin Haifei, Li Shugang, et al. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics[J]. Fuel, 2021, 292:120268.

[45]刘彦伟, 魏建平, 何志刚, 等. 温度对煤粒瓦斯扩散动态过程的影响规律与机理[J]. 煤炭学报, 2013, 38(S1):100-105.

[46]岳高伟, 王兆丰, 康博. 低温环境煤的瓦斯扩散系数时变特性[J]. 中国安全科学学报, 2014, 24(2):107-112.

[47]张登峰, 崔永君, 李松庚, 等. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J]. 煤炭学报, 2011, 36(10):1693-1698.

[48]李志强, 段振伟, 景国勋. 不同温度下煤粒瓦斯扩散特性试验研究与数值模拟[J]. 中国安全科学学报, 2012, 22(4):38-42.

[49]王飞. 煤的吸附解吸动力学特性及其在瓦斯参数快速测定中的应用[D]. 徐州:中国矿业大学, 2016.

[50]夏慧, 蔡峰, 袁媛, 等. 变温变压下煤样瓦斯吸附解吸特性实验研究[J]. 工矿自动化, 2020, 46(7):89-93.

[51]陈攀, 黄来胜. 焦作矿区煤与瓦斯突出预测解吸指标敏感性研究[J]. 内蒙古煤炭经济, 2020, (6):11-13+16.

[52]程波, 乔伟, 颜文学, 等. 煤矿井下煤层瓦斯含量测定方法的研究进展[J]. 矿业安全与环保, 2019, 46(4):98-103.

[53]Zhang Jun. Experimental Study and Modeling for CO2 Diffusion in coals with different particle sizes: based on gas absorption (imbibition) and pore structure[J]. Energy & Fuels, 2016, 30(1):531-543.

[54]刘厅. 深部裂隙煤体瓦斯抽采过程中的多场耦合机制及其工程响应[D]. 徐州:中国矿业大学, 2019.

[55]李志强, 成墙, 刘彦伟, 等. 柱状煤芯瓦斯扩散模型与扩散特征实验研究[J]. 中国矿业大学学报, 2017, 46(5):1033-1040.

[56]刘永茜, 张玉贵, 张浪. 煤层瓦斯运移机制的关键参数表征[J]. 岩石力学与工程学报, 2017, 36(5):1145-1151.

[57]蔡银英, 程建圣, 程波. 基于时变扩散系数的圆柱体煤屑的瓦斯放散规律研究[J]. 矿业安全与环保, 2020, 47(3):32-36.

[58]李成武, 薛洪来, 刘文彪. 承压煤体瓦斯解吸-扩散特性实验研究[J]. 煤炭学报, 2018, 43(3):717-723.

[59]郝建峰, 梁冰, 孙维吉, 等. 煤与瓦斯的热流固耦合关系研究现状及展望[J]. 采矿与安全工程学报: 2022:1-11.

[60]刘冠男, 叶大羽, 高峰, 等. 幂率型裂隙分布煤层渗流场与变形应力场耦合模型及数值模拟[J]. 岩石力学与工程学报, 2022, 41(3):492-502.

[61]刘明举, 何学秋, 许考. 孔隙气体对断裂电磁辐射的影响及其机理[J]. 煤炭学报, 2002, 5:483-487.

[62]Karacan C. Özgen. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology, 2007, 72(3-4):209-220.

[63]Karacan C. Özgen. Heterogeneous Sorption and Swelling in a Confined and stressed coal during CO2 injection[J]. Energy & Fuels, 2003, 17(6):1595-1608.

[64]Goodman A.L., Favors R.N., Hill M.M., et al. Structure changes in Pittsburgh No.8 coal caused by sorption of CO2 gas[J]. Energy & Fuels, 2005, 19(4):1759-1760.

[65]周动, 冯增朝, 王辰, 等. 煤吸附甲烷结构变形的多尺度特征[J]. 煤炭学报, 2019, 44(7): 159-2166.

[66]肖晓春, 丁鑫, 赵鑫, 等. 加载速率影响的煤体破裂过程声-电荷试验研究[J]. 岩土力学, 2017, 38(12):3419-3426.

[67]范家文, 刘健. 煤体解吸甲烷规律及解吸后微结构特征研究[J]. 煤炭工程, 2021, 53(2):147-152.

[68]吴信波, 李贵红, 刘钰辉, 等. 低阶煤煤体变形特征及渗流规律实验研究[J]. 科学技术与工程, 2021, 21(3):906-910.

[69]Long Hang, Lin Haifei, Li Shugang, et al. Nanomechanical properties of CH4-containing coal during CO2 storage under different injection pressures based on molecule dynamics[J]. Applied Surface Science, 2022, 590:153126.

[70]Lin Haifei, Long Hang, Li Shugang, et al. CH4 adsorption and diffusion characteristics in stress-loaded coal based on molecular simulation[J]. Fuel, 2022.

[71]陈结, 潘孝康, 姜德义, 等. 三轴应力下软煤和硬煤对不同气体的吸附变形特性[J]. 煤炭学报, 2018, 43(S1):149-157.

[72]张宝鑫, 邓泽, 傅雪海, 等. 温度对中高阶烟煤甲烷吸附-常压/带压解吸过程中煤体变形影响实验[J]. 天然气地球科学, 2020, 31(12):1826-1836.

[73]陶云奇. 含瓦斯煤THM耦合模型建立[J]. 煤矿安全, 2012, 43(2):9-12.

[74]张丽萍. 低渗透煤层气开采的热-流-固耦合作用机理及应用研究[D]. 徐州:中国矿业大学, 2011.

[75]Zhu Wancheng, Liu Jishan, Qu Hongyan, et al. A model of coal-gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(2-3):213-221.

[76]栗婧, 汪振, 戚瑞康, 等. 不同温度下型煤吸附解吸变形规律的研究[J]. 煤炭技术, 2020, 39(1):83-88.

[77]刘健, 范家文. 不同温压作用下煤体对甲烷吸附量及其变形的试验研究[J]. 煤炭工程, 2019, 51(6):124-127.

[78]吴世跃, 赵文, 郭勇义. 煤岩体吸附膨胀变形与吸附热力学的参数关系[J]. 东北大学学报, 2005, 7:683-686.

[79]梁冰, 章梦涛, 王泳嘉. 煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J]. 岩石力学与工程学报, 1996, 2:40-47.

[80]梁冰, 袁欣鹏, 孙维吉. 本煤层顺层瓦斯抽采渗流耦合模型及应用[J]. 中国矿业大学学报, 2014, 43(2):208-213.

[81]姚精明, 税国洪, 王熙. 煤岩体破坏过程中电磁辐射与能量耗散耦合分析[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(3):345-348.

[82]张立强. 煤层瓦斯抽采中煤体破裂与气体渗流规律研究[D]. 徐州:中国矿业大学, 2020.

[83]邢俊旺, 杨栋, 康志勤, 等. 应力约束下煤体吸附解吸瓦斯变形特性的试验研究[J]. 煤矿安全, 2018, 49(10):9-12.

[84]姜德义, 袁曦, 陈结, 等. 吸附气体对突出煤渗流特性的影响[J]. 煤炭学报, 2015, 40(9):2091-2096.

[85]王旭升, 陈占清. 岩石渗透试验瞬态法的水动力学分析[J]. 岩石力学与工程学报, 2006, (S1):3098-3103.

[86]李顺才, 李强, 缪协兴, 等. 小纪汗井田地层介质渗透特性及煤层为主含水层成因机制[J]. 煤炭学报, 2017, 42(2):353-359.

[87]张培森, 侯季群, 赵成业, 等. 不同围压不同损伤程度红砂岩渗流特性试验研究[J]. 岩石力学与工程学报, 2020, 39(12):2405-2415.

[88]张培森, 侯季群, 赵成业, 等. 不同应力状态下底板岩体渗流特性分析研究[J]. 煤炭科学技术, 2022, 50(1):127-133.

[89]刘江峰, 倪宏阳, 浦海, 等. 多孔介质气体渗透率测试理论、方法、装置及应用[J]. 岩石力学与工程学报, 2021, 40(1):137-146.

[90]林海飞, 龙航, 李树刚, 等. 煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用[J]. 岩石力学与工程学报, 2022, S2:3294-3305.

[91]蒋长宝, 尹光志, 李晓泉, 等. 突出煤型煤全应力-应变全程瓦斯渗流试验研究[J]. 岩石力学与工程学报, 2010, 29(S2):3482-3487.

[92]李天珍, 李玉寿, 马占国. 破裂岩石非达西渗流的试验研究[J]. 工程力学, 2003, 4: 132-135.

[93]李清淼, 梁运培, 邹全乐. 循环加卸载路径下不同含瓦斯煤渗流及损伤演化特征[J]. 煤炭学报, 2019, 44(9):2803-2815.

[94]张春会, 于永江, 岳宏亮, 等. 考虑Klinbenberg效应的煤中应力-渗流耦合数学模型[J]. 岩土力学, 2010, 31(10):3217-3222.

[95]许江, 张丹丹, 彭守建, 等. 三轴应力条件下温度对原煤渗流特性影响的实验研究[J]. 岩石力学与工程学报, 2011, 30(9):1848-1854.

[96]张冲, 刘晓斐, 王笑然, 等. 三轴加载煤体瓦斯渗流速度-温度联合响应特征[J]. 煤炭学报, 2018, 43(3):743-750.

[97]张春会, 赵莺菲, 郑晓明. 考虑温度和滑脱效应的煤渗流应力耦合模型[J]. 河北科技大学学报, 2015, 36(3):306-312.

[98]魏建平, 吴松刚, 王登科, 等. 温度和轴向变形耦合作用下受载含瓦斯煤渗流规律研究[J]. 采矿与安全工程学报, 2015, 32(1):168-174.

[99]李波波, 王斌, 杨康, 等. 应力与温度综合作用的煤岩渗透机理[J]. 中国矿业大学学报, 2020, 49(5):844-855.

[100]肖晓春, 潘一山. 考虑滑脱效应的煤层气渗流数学模型及数值模拟[J]. 岩石力学与工程学报, 2005, 16:2966-2970.

[101]尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(4):535-541.

[102]Sun Peide, Guo Maoxin. A new numerical approach of coupled modeling for solid deformation and gas leak flow in multi-coal-seams[J]. Journal of Coal Science & Engineering (China), 2005,1:36-39.

[103]Zhao Yangsheng, Hu Yaoqing, Zhao Baohu, et al. Nonlinear coupled mathematical model for solid deformation and gas seepage in fractured media[J]. Transport in Porous Media, 2004, 55(2):119-136.

[104]Yao Duoxi, Xu Jiying, Lu Hai-feng. Nonlinear coupling analysis of coal seam floor during mining based on FLAC3D[J]. Journal of Coal Science and Engineering (China), 2011, 17(1):22-27.

[105]程远平, 刘洪永, 郭品坤, 等. 深部含瓦斯煤体渗透率演化及卸荷增透理论模型[J]. 煤炭学报, 2014, 39(8):1650-1658.

[106]匡铁军. 深部低渗透率煤层瓦斯抽采气固耦合机理研究[J]. 煤炭科学技术, 2017, 45(8):170-176.

[107]Li Sheng, Fan Chaojun, Han Jun, et al. A fully coupled thermal-hydraulic-mechanical model with two-phase flow for coalbed methane extraction[J]. Journal of Natural Gas Science and Engineering, 2016, 33:324-336.

[108]Zhao Yang, Lin Baiquan, Liu Ting. Thermo-hydro-mechanical couplings controlling gas migration in heterogeneous and elastically-deformed coal[J]. Computers and Geotechnics, 2020, 123:103570.

[109]Chen Yuexia, Xu Jiang, Peng Shoujian, et al. A gas–solid–liquid coupling model of coal seams and the optimization of gas drainage boreholes[J]. Energies, 2018, 11(3):560.

[110]韩颖, 张飞燕, 刘晓, 等. 基于Hoek-Brown准则的煤层钻孔失稳破坏类型数值模拟研究[J]. 煤炭学报, 2020, 45(S1):308-318.

[111]肖智勇, 王长盛, 王刚, 等. 基质-裂隙相互作用对渗透率演化的影响:考虑基质变形和应力修正[J]. 岩土工程学报, 2021, 43(12):2209-2219.

[112]赵家巍, 周宏伟, 刘泽霖, 等. 卸荷煤体分数阶渗透率模型参数探讨及其在渗流模拟中的应用[J]. 煤炭学报, 2022, 47(6):2386-2395.

[113]程远平, 俞启香, 周红星, 等. 煤矿瓦斯治理“先抽后采”的实践与作用[J]. 采矿与安全工程学报, 2006, 23(4):389-392+410.

[114]赵阳升, 秦惠增, 白其峥. 煤层瓦斯流动的固-气耦合数学模型及数值解法的研究[J]. 固体力学学报, 1994, 1: 49-57.

[115]陈鼎文, 卢平, 余陶. 群孔瓦斯抽采钻孔有效抽采半径的模拟与优化[J]. 湖北理工学院学报, 2022, 38(2):27-31.

[116]白杰. 基于流固耦合的瓦斯抽采半径数值模拟研究[J]. 江西煤炭科技, 2022, 1:147-151.

[117]郝富昌, 刘彦伟, 龙威成, 等. 蠕变-渗流耦合作用下不同埋深有效抽采半径研究[J]. 煤炭学报, 2017, 42(10):2616-2622.

[118]林柏泉, 宋浩然, 杨威, 等. 基于煤体各向异性的煤层瓦斯有效抽采区域研究[J]. 煤炭科学技术, 2019, 47(6):139-145.

[119]岳高伟, 王宾宾, 曹汉生, 等. 结构异性煤层顺层钻孔方位对有效抽采半径的影响[J]. 煤炭学报, 2017, 42(S1):138-147.

[120]鲁义, 申宏敏, 秦波涛, 等. 顺层钻孔瓦斯抽采半径及布孔间距研究[J]. 采矿与安全工程学报, 2015, 32(1): 156-62.

[121]马念杰, 郭晓菲, 赵希栋, 等. 煤与瓦斯共采钻孔增透半径理论分析与应用[J]. 煤炭学报, 2016, 41(1):120-127.

[122]程远平, 董骏, 李伟, 等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报, 2017, 42(6):1466-1474.

[123]王宏图, 江记记, 王再清, 等. 本煤层单一顺层瓦斯抽采钻孔的渗流场数值模拟[J]. 重庆大学学报, 2011, 34(4): 24-9.

[124]宋红立, 赵洋, 李庆钊. 考虑煤体蠕变的瓦斯渗流规律及抽采钻孔布置[J]. 工矿自动化, 2019, 45(11):42-48.

[125]张磊, 孔金浩, 葛生庄. 低渗透采煤工作面本煤层钻孔有效抽采半径的研究[J]. 煤炭科学技术, 2020, 48(S2):184-187.

[126]李钢, 范喜生, 马丕梁, 等. 本煤层瓦斯预抽钻孔合理布置间距的确定[J]. 煤炭科学技术, 2011, 39(3):56-58.

[127]唐恩贤, 党利鹏, 闫国锋. 基于时空属性的黄陵矿区瓦斯精准化预抽实践[J]. 煤炭科学技术, 2018, 46(8):87-92.

[128]王兆丰, 席杰, 陈金生, 等. 底板岩巷穿层钻孔一孔多用瓦斯抽采时效性研究[J]. 煤炭科学技术, 2021, 49(1):248-256.

[129]黎凤岐, 乔炜, 牛国斌, 等. 地面多分支水平钻井与井下钻孔对接预抽瓦斯技术[J]. 煤炭科学技术, 2014, 42(5):48-50+54.

[130]孟范喻. 多支路定向钻孔预抽快掘双巷区域瓦斯技术研究[J]. 煤炭科学技术, 2022, 50(S1):125-131.

[131]Li Li, Long Hang, Li Shu-gang, et al. Permeability characteristics of CH4, CO2, and N2 during the whole process of adsorption in coal with accumulated pressure under triaxial stresses[J]. Journal of Petroleum Science and Engineering, 2022, 213:110380.

[132]陈安敏, 顾金才, 沈俊, 等. 岩土工程多功能模拟试验装置的研制及应用[J]. 岩石力学与工程学报, 2004, 3:372-378.

[133]Fumagalli Emanuele. Springer Vienna[M]. Vienna: Springer Vienna.

[134]翟新献. 放顶煤工作面顶板岩层移动相似模拟研究[J]. 岩石力学与工程学报, 2002, 11:1667-1671.

[135]Dai Linchao. Research on simulation test of coal similar material[J]. Advanced Materials Research, 2014, 850-851.

[136]李树刚, 赵鹏翔, 林海飞, 等. 煤岩瓦斯“固-气”耦合物理模拟相似材料特性实验研究[J]. 煤炭学报, 2015, 40(1):80-86.

[137]张庆贺, 袁亮, 王汉鹏, 等. 煤与瓦斯突出物理模拟相似准则建立与分析[J]. 煤炭学报, 2016, 41(11):2773-2779.

[138]姜永东, 阳兴洋, 熊令. 多场耦合作用下煤层气的渗流特性与数值模拟[J]. 重庆大学学报, 2011, 34(4):30-35.

[139]胡雄, 梁为, 侯厶靖, 等. 温度与应力对原煤、型煤渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2012, 31(6):1222-1229.

[140]李清川. 气体吸附诱发煤体损伤劣化的试验分析与机理研究[D]. 济南:山东大学, 2019.

[141]张良. 含瓦斯煤蠕变-渗流演化实验与理论研究[D]. 北京:中国矿业大学(北京), 2021.

[142]GB/T 23561.1-2009, 煤和岩石物理力学性质测定方法第1部分:采样一般规定[S]. 北京:中国煤炭工业协会, 2009.

[143]王汉鹏, 张庆贺, 袁亮, 等. 含瓦斯煤相似材料研制及其突出试验应用[J]. 岩土力学, 2015, 36(6):1676-1682.

[144]袁亮, 薛阳, 王汉鹏, 等. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治, 2020, 2(1):1-10.

[145]赵明阶, 徐蓉. 岩石声学特性研究现状及展望[J]. 重庆交通学院学报, 2000, 2: 79-85+98.

[146]成林, 王赟, 张玉贵, 等. 煤岩声波特征研究现状及展望[J]. 地球物理学进展, 2013, 28(1):452-461.

[147]王云刚, 李满贵, 李盟, 等. 构造煤超声波参数影响因素的分析[J]. 中国安全生产科学技术, 2014, 10(7):82-86.

[148]彭苏萍, 高云峰, 彭晓波, 等. 淮南煤田含煤地层岩石物性参数研究[J]. 煤炭学报, 2004, 2:177-181.

[149]张培森, 赵成业, 李腾辉, 等. 红砂岩三轴加载过程中波速变化及能量演化规律试验研究[J]. 岩石力学与工程学报, 2021, 40(7):1369-1382.

[150]樊秀峰, 简文彬. 砂岩疲劳特性的超声波速法试验研究[J]. 岩石力学与工程学报, 2008, 3:557-563.

[151]徐晓炼, 张茹, 戴峰, 等. 煤岩特性对超声波速影响的试验研究[J]. 煤炭学报, 2015, 40(4):793-800.

[152]陈世强, 李东会, 张明杰, 等. 三轴加载含水煤样波速与孔隙率关系实验研究[J]. 地球物理学进展, 2021, 36(5):2151-2158.

[153]李菁华. 注气驱替煤体瓦斯中吸附及渗流规律实验研究[D]. 徐州:中国矿业大学, 2021.

[154]Chalmers Gareth R.L., Bustin R.M. The organic matter distribution and methane capacity of the lower cretaceous strata of Northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2007, 70(1-3):223-239.

[155]魏晨慧. 热流固耦合条件下煤岩体损伤模型及其应用[D]. 沈阳:东北大学, 2012.

[156]Thimons Edward D., Kissell Fred N. Diffusion of methane through coal[J]. Fuel, 1973, 52(4):274-280.

[157]Ni Weiming. The Mathematics of diffusion[Z]: Society for Industrial and Applied Mathematics.

[158]赵伟. 粉化煤体瓦斯快速扩散动力学机制及对突出煤岩的输运作用[D]. 徐州:中国矿业大学, 2018.

[159]李志强, 刘勇, 许彦鹏, 等. 煤粒多尺度孔隙中瓦斯扩散机理及动扩散系数新模型[J]. 煤炭学报, 2016, 41(3):633-643.

[160]张遵国, 陈毅, 唐朝, 等. 煤体CO2吸附/解吸变形特征及变形模型[J]. 煤炭学报, 2022, 47(8):3128-3137.

[161]刘延保. 极松软煤体高压吸附过程中变形特性试验研究[J]. 矿业安全与环保, 2016, 43(5):1-4+8.

[162]赵伞. 环境温度对废弃矿井遗煤吸附瓦斯特性影响[D]. 焦作:河南理工大学, 2020.

[163]王佑安, 杨思敬. 煤和瓦斯突出危险煤层的某些特征[J]. 煤炭学报, 1980, 1:47-53.

[164]Aksu Zumrive. Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modeling[J]. Biochemical Engineering Journal, 2001, 7(1):79-84.

[165]Ho Yushan, McKay Gordon. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research, 2000, 34(3):735-742.

[166]张遵国, 赵丹, 曹树刚, 等. 软煤吸附解吸变形差异性试验研究[J]. 采矿与安全工程学报, 2019, 36(6):1264-1272.

[167]蔺亚兵, 申小龙, 刘军, 等. 黄陇侏罗纪煤田地应力特征及其地质意义[J]. 采矿与安全工程学报, 2020, 37(4):819-827.

中图分类号:

 TD712    

开放日期:

 2027-01-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式