- 无标题文档
查看论文信息

论文中文题名:

 生态网络构建及关键修复区域识别 ——以山西省平陆县为例    

姓名:

 赵菊花    

学号:

 20210061017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081603    

学科名称:

 工学 - 测绘科学与技术 - 地图制图学与地理信息工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地图制图学与地理信息工程    

第一导师姓名:

 杨永崇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Construction of ecological network and identification of key restoration areas: a case study of Pinglu County, Shanxi Province    

论文中文关键词:

 景观格局指数 ; 形态学空间格局分析 ; 景观连通性 ; 最小累积阻力模型 ; 电路理论 ; 平陆县    

论文外文关键词:

 Landscape pattern index ; MSPA ; Landscape connectivity ; MCR ; Circuit theory ; Pinglu county    

论文中文摘要:

      黄河流域是我国重要的生态廊道,是我国生态安全战略的重要组成部分。生态网络是维持生态系统物质循环与能量流动的重要途径,通过生态网络构建识别国土空间生态保护与修复的关键区域,对于保障生态网络的连通性及区域生态安全具有重要理论与现实意义。本研究选取黄河沿线山西省平陆县为研究区,以土地利用数据、归一化植被指数、交通道路数据、高程数据、自然保护地等数据为基础,采用形态学空间格局分析(MSPA)、景观连通性分析、最小累积阻力模型(MCR)、重力模型、电路理论等方法,分析了2000-2020年平陆县土地利用和景观格局的变化情况、MSPA景观类型与核心区的连通性变化情况,构建了2020年平陆县生态网络并识别了关键修复区域,得到以下结论:

     (1)2000-2020年,平陆县土地利用类型以耕地和草地为主,其中,耕地占比约42.5%,草地占比约18.1%。研究时段内,平陆县草地和建设用地面积增加,耕地和水域面积显著减少;增加的草地和建设用地主要由耕地转入,减少的水域主要转出为未利用地。城镇化发展导致新增建设用地占据了大量耕地,社会经济发展一定程度上对生态系统稳定性造成了威胁。2000-2020年,平陆县草地斑块破碎化程度加强,建设用地扩张明显,水域和未利用地斑块被周边道路等分割的程度较严重,各生态用地斑块的形状逐渐复杂;平陆县整体斑块数量和密度增加,景观异质性升高,连通性略微增强,景观类型多样性增加但分布均衡性有所下降。空间分布上,平陆县西南部、中部及东部为破碎化较严重区域,且长期未得到改善。

    (2)基于MSPA分析得出平陆县7种景观类型,对各景观类型在2000-2020年的时空变化及景观连通性情况进行分析。经过对比得出最适宜的边缘宽度为90m,平陆县核心区斑块面积占生态用地总面积的60%以上,主要分布在县域北部两侧和东南少部分区域,在中部地区的核心区斑块面积较小且破碎化严重。2000-2020年平陆县核心区总面积约增加20km2,主要表现为东北地区大型斑块内部的生态转好,孔隙缩小,连通性增强。通过分析得出景观连通的最佳距离阈值为2000m,平陆县2000-2020年景观重要性较高的核心区斑块面积整体增加,在2000-2010年变化显著,2010-2020年趋于稳定。

    (3)基于MSPA和景观连通性分析结果,结合自然保护地分布情况确定出平陆县2020年共有生态源地32处,总面积约366.57km2,主要以林地和草地为主,分布于县域北部两侧和西南部地区。共提取出潜在生态廊道84条,总长度为219.49km,呈北疏南密、西疏东密的网状分布状态。其中,重要生态廊道44条,主要分布在生态源地周围,廊道跨越距离较短;一般生态廊道40条,长度均较长,稳定性较弱,确定出平陆县生态廊道的适宜宽度在120-250m。识别出平陆县生态夹点58处、生态障碍点83处、生态断裂点51处,生态夹点区域面积为414.63hm2,主要以耕地、草地和林地为主分布在东南部及西部区域;生态障碍点区域面积1376.64hm2,以耕地和建设用地为主分布在县域西部和中北部,受人类活动干扰严重;生态断裂点主要分布在中部地区县道等重要干道上。识别出破碎生态核心区面积3282.21hm2,主要分散于三门镇、曹川镇和常乐镇内耕地和林地的过渡区。

    (4)在平陆县未来生态修复工作中,建议在生态源地周围建立生态屏障缓冲区,以保护和抗干扰为主严格限制内部的建设活动。对林草类重要生态廊道以保护保育为主,对农用地类重要生态廊道以提升整治为主。在生态夹点区域以自然恢复为主,适当加强周围高标准农田建设;在生态障碍点周边适当修建绿色通道避开高阻碍区;在生态断裂点处建设天桥或地下通道供生物通行。

论文外文摘要:

       The Yellow River Basin is an important ecological corridor in China and a crucial component of China's ecological security strategy. The ecological network is an essential means of maintaining the material cycle and energy flow in ecosystems. By constructing an ecological network to identify key areas for land ecological protection and restoration, it is of great theoretical and practical significance to ensure the connectivity of the ecological network and regional ecological security. This study selected Pinglu County, Shanxi Province, along the Yellow River, as the research area. Based on land use data, normalized vegetation index, traffic road data, elevation data, and nature reserves data, we used methods such as Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, Minimum Cumulative Resistance (MCR) model, gravity model, and circuit theory to analyze the changes in land use and landscape patterns in Pinglu County from 2000 to 2020 and the changes in the connectivity between MSPA landscape types and core areas. We constructed the ecological network of Pinglu County in 2020 and identified key restoration areas. The following conclusions were drawn:

      (1) From 2000 to 2020, land use in Pinglu County was dominated by cultivated land and grassland, with cultivated land accounting for approximately 42.5% and grassland accounting for approximately 18.1%. During the study period, the area of grassland and construction land increased, while the area of cultivated land and water bodies decreased significantly. The increased grassland and construction land were mainly converted from cultivated land, while the decreased water bodies were mainly converted to unused land. Urbanization development has led to a large amount of cultivated land being occupied by newly added construction land, which has posed a threat to the stability of the ecosystem to some extent. From 2000 to 2020, the fragmentation degree of grassland patches in Pinglu County was enhanced, and the expansion of construction land was obvious. The degree of division of water bodies and unused land patches by surrounding roads was severe, and the shape of each ecological land patch became increasingly complex. The number and density of overall patches in Pinglu County increased, landscape heterogeneity increased, connectivity slightly increased, landscape diversity increased, but the balance of distribution decreased. In terms of spatial distribution, the southwest, central, and eastern parts of Pinglu County were regions with severe fragmentation, and they have not been improved for a long time.

      (2) Based on the MSPA analysis, seven landscape types were identified in Pinglu County. The spatial and temporal changes, as well as landscape connectivity, of each landscape type from 2000 to 2020 were analyzed. After comparison, the most suitable edge width was determined to be 90 m. The core area of Pinglu County accounts for over 60% of the total ecological land area and is mainly distributed on both sides of the northern part and a small part of the southeastern region. The core area in the central region is relatively small and fragmented. From 2000 to 2020, the total area of the core area of Pinglu County increased by approximately 20 km2, mainly due to the improvement of ecology and connectivity within large patches in the northeast region, leading to a decrease in gaps. By analyzing landscape connectivity, the optimal distance threshold was found to be 2000 m. The area of the core area patches with high landscape importance in Pinglu County increased overall from 2000 to 2020, with significant changes from 2000 to 2010 and stabilization from 2010 to 2020.

       (3) Based on the MSPA and landscape connectivity analysis, a total of 32 ecological source areas were identified in Pinglu County in 2020, covering approximately 366.57 km2, mainly consisting of forests and grasslands, and distributed on both sides of the northern and southwestern regions of the county. A total of 84 potential ecological corridors were identified, with a total length of 219.49 km, showing a mesh-like distribution pattern with sparse distribution in the north and west and dense distribution in the south and east. Among them, 44 corridors were identified as important ecological corridors, mainly distributed around ecological source areas with shorter crossing distances. The remaining 40 corridors had longer lengths and weaker stability. The appropriate width for ecological corridors in Pinglu County was determined to be between 120-250 m. A total of 58 ecological pinch points, 83 ecological barriers, and 51 ecological fragmentation points were identified in Pinglu County. The area of ecological pinch points was 414.63 hm2, mainly consisting of croplands, grasslands, and transitional forests, and distributed in the southeastern and western regions. The area of ecological barriers was 1376.64 hm2, mainly consisting of croplands and construction land, and distributed in the western and central-northern parts of the county, heavily influenced by human activities. Ecological fragmentation points were mainly distributed on important roads, such as county roads, in the central region. A fragmented ecological core area of 3282.21 hm2 was identified, mainly scattered in the transitional zones between croplands and forests in the towns of Sanmen, Caochuan, and Changle.

       (4) In the future ecological restoration work in Pinglu County, it is recommended to establish ecological buffer zones around the ecological source areas to protect and resist interference, and strictly limit construction activities within the zones. The protection and conservation of important ecological corridors for forests and grasslands should be the main focus, while the improvement and management of important ecological corridors for agricultural land should be prioritized. Natural recovery should be the main strategy in ecological pinch points areas, with appropriate strengthening of the construction of high-standard farmland in the surrounding areas. Green corridors should be constructed around ecological barrier areas to avoid high-resistance areas. For ecological fracture points, it is recommended to build overpasses or underground passages to facilitate the passage of organisms.

参考文献:

[1]杨志广, 蒋志云, 郭程轩, 等. 基于形态空间格局分析和最小累积阻力模型的广州市生态网络构建[J]. 应用生态学报. 2018, 29(10): 3367-3376.

[2]Peng J, Pan Y, Liu Y, et al. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape[J]. Habitat International. 2018, 71: 110-124.

[3]An Y, Liu S, Sun Y, et al. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory[J]. Landscape ecology. 2021, 36(7): 2059-2076.

[4]何春阳, 张金茜, 刘志锋, 等. 1990-2018年土地利用/覆盖变化研究的特征和进展[J]. 地理学报. 2021, 76(11): 2730-2748.

[5]Matricardi E A T, Skole D L, Cochrane M A, et al. Multi-temporal assessment of selective logging in the Brazilian Amazon using Landsat data[J]. International journal of remote sensing. 2007, 28(1): 63-82.

[6]Matricardi E A T, Skole D L, Pedlowski M A, et al. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery[J]. Remote Sensing of Environment. 2010, 114(5): 1117-1129.

[7]Matricardi E A T, Skole D L, Pedlowski M A, et al. Assessment of forest disturbances by selective logging and forest fires in the Brazilian Amazon using Landsat data[J]. International journal of remote sensing. 2013, 34(4): 1057-1086.

[8]Dadashpoor H, Azizi P, Moghadasi M. Land use change, urbanization, and change in landscape pattern in a metropolitan area[J]. Science of The Total Environment. 2019, 655: 707-719.

[9]Reiche J, Souzax C M, Hoekman D H, et al. Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013, 6(5): 2159-2173.

[10]Misra A, Balaji R. Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India[J]. Environ Monit Assess. 2015, 187(7): 461.

[11]Frazier A E, Vadjunec J M, Kedron P, et al. Linking landscape ecology and land system architecture for land system science: an introduction to the special issue[J]. Journal of land use science. 2019, 14(2): 123-134.

[12]Parcerisas L, Marull J, Pino J, et al. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005)[J]. Environmental Science & Policy. 2012, 23: 120-132.

[13]Gautam A P, Webb E L, Shivakoti G P, et al. Land use dynamics and landscape change pattern in a mountain watershed in Nepal[J]. Agriculture, ecosystems & environment. 2003, 99(1): 83-96.

[14]吴泉源, 侯志华, 于竹洲, 等. 龙口市海岸带土地利用动态变化分析[J]. 地理研究. 2006, 25(5): 921-929.

[15]吴莉, 侯西勇, 徐新良, 等. 山东沿海地区土地利用和景观格局变化[J].农业工程学报,2013,29(5):207-216+293.

[16]贾慧聪, 潘东华, 张万昌. 洞庭湖区近30年土地利用/覆盖变化对湿地的影响分析[J]. 中国人口·资源与环境. 2014, 24(S3): 126-128.

[17]蒲罗曼, 张树文, 李飞, 等. 近40年东北农牧交错带土地利用变化对人类活动的响应-以吉林省西部地区为例[J]. 江苏农业科学. 2016, 44(6): 522-525.

[18]杜国明, 孙晓兵, 王介勇. 东北地区土地利用多功能性演化的时空格局[J]. 地理科学进展. 2016, 35(2): 232-244.

[19]郭少壮, 白红英, 孟清, 等. 秦岭地区林地与草地景观格局变化及其驱动因素[J]. 生态学报. 2020, 40(1): 130-140.

[20]邬紫荆, 李枝坚, 曾辉. 惠州市景观格局空间分异特征的梯度分析[J]. 生态学杂志. 2021, 40(2): 490-500.

[21]杨阳, 唐晓岚, 李哲惠, 等. 长江流域土地利用景观格局时空演变及驱动因子-以2008-2018年为例[J]. 西北林学院学报. 2021, 36(2): 220-230.

[22]Goldstein E L, Gross M, Degraaf R M. Wildlife and greenspace planning in medium-scale residential developments[J]. Urban Ecology. 1983, 7(3): 201-214.

[23]Pereira M, Segurado P, Neves N. Using spatial network structure in landscape management and planning: A case study with pond turtles[J]. Landscape and Urban Planning. 2011, 100(1): 67-76.

[24]Moran M D, Monroe A, Stallcup L. A proposal for practical and effective biological corridors to connect protected areas in northwest Costa Rica[J]. Nature Conservation. 2019, 36(12): 113-137.

[25]Cook E A. Landscape structure indices for assessing urban ecological networks[J]. Landscape and Urban Planning. 2002, 58(2): 269-280.

[26]Kong F, Yin H, Nobukazu N, et al. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling[J]. Landscape and Urban Planning,2009,95(1).

[27]况达, 陈竹安, 危小建, 等. 基于移动窗口与MCR模型的建设用地适宜性评价-以武汉市江夏区为例[J]. 湖北民族学院学报(自然科学版). 2017, 35(4): 471-476.

[28]韦宝婧, 苏杰, 胡希军, 等. 基于“HY-LM”的生态廊道与生态节点综合识别研究[J]. 生态学报. 2022, 42(7): 2995-3009.

[29]田雅楠, 张梦晗, 许荡飞, 等. 基于“源-汇”理论的生态型市域景观生态安全格局构建[J]. 生态学报. 2019, 39(7): 2311-2321.

[30]苏冲, 董建权, 马志刚, 等. 基于生态安全格局的山水林田湖草生态保护修复优先区识别-以四川省华蓥山区为例[J]. 生态学报. 2019, 39(23): 8948-8956.

[31]付凤杰, 刘珍环, 刘海. 基于生态安全格局的国土空间生态修复关键区域识别-以贺州市为例[J]. 生态学报. 2021, 41(9): 3406-3414.

[32]吕大伟, 蔡海生, 张学玲, 等. 基于遥感生态指数的弋阳县生态安全格局构建及优化[J]. 农业现代化研究. 2021, 42(3): 545-556.

[33]柳建玲, 李胜鹏, 范胜龙, 等. 基于生态安全格局的厦漳泉地区国土空间生态保护修复区与预警点识别[J]. 生态学报. 2021, 41(20): 8124-8134.

[34]陈群, 刘平辉, 朱传民. 基于MCR模型的江西省抚州市生态安全格局构建[J]. 水土保持通报. 2022, 42(2): 210-218.

[35]严政, 王壮壮, 周成杰, 等. 基于生态保护重要性的江西省瑞金市生态安全格局构建[J]. 水土保持通报. 2021, 41(1): 260-266.

[36]汉瑞英, 赵志平, 肖能文, 等. 基于最小累积阻力差值模型的北京市生态安全格局构建[J]. 水土保持通报. 2022, 42(3): 95-102.

[37]戴亚南, 陶红, 彭渤, 等. 基于最小累积阻力模型的平江县生态安全格局构建[J]. 湖南师范大学自然科学学报. 2022, 45(1): 110-119.

[38]于成龙, 刘丹, 冯锐, 等. 基于最小累积阻力模型的东北地区生态安全格局构建[J]. 生态学报. 2021, 41(1): 290-301.

[39]谭华清, 张金亭, 周希胜. 基于最小累计阻力模型的南京市生态安全格局构建[J]. 水土保持通报. 2020, 40(3): 282-288, 296.

[40]郭家新, 胡振琪, 李海霞, 等. 基于MCR模型的市域生态空间网络构建[J]. 农业机械学报. 2021, 52(3): 275-284.

[41]徐伟振, 黄思颖, 耿建伟, 等. 基于MCR和重力模型下的厦门市生态空间网络构建[J]. 西北林学院学报. 2022, 37(2): 264-272.

[42]李瑶, 李久林, 储金龙. 基于电路理论的金寨县生态安全格局构建[J]. 生态科学. 2022, 41(2): 227-236.

[43]陈南南, 康帅直, 赵永华, 等. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建[J]. 应用生态学报. 2021, 32(5): 1545-1553.

[44]陶培峰, 李萍, 丁忆, 等. 基于生态重要性评价与最小累积阻力模型的重庆市生态安全格局构建[J]. 测绘通报. 2022(1): 15-20, 38.

[45]朱琪, 袁泉, 于大炮, 等. 基于电路理论的东北森林带生态安全网络构建[J]. 生态学杂志. 2021, 40(11): 3463-3473.

[46]陈南南, 康帅直, 赵永华, 等. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建[J]. 应用生态学报. 2021, 32(5): 1545-1553.

[47]张美丽, 李智, 张益琛, 等. 基于生态安全格局的国土空间生态修复关键区域识别-以河北省阜平县为例[J]. 水土保持研究. 2021, 28(3): 299-307.

[48]周媛. 多元目标导向下的成都中心城区绿地生态网络构建[J]. 浙江农林大学学报. 2019, 36(2): 359-365.

[49]闫玉玉, 孙彦伟, 刘敏. 基于生态安全格局的上海国土空间生态修复关键区域识别与修复策略[J]. 应用生态学报. 2022, 33(12): 3369-3378.

[50]阳文锐, 李婧, 闻丞, 等. 基于物种分布的北京平原生态网络构建[J]. 生态学报. 2022, 42(20): 8213-8222.

[51]马世发, 劳春华, 江海燕. 基于生态安全格局理论的国土空间生态修复分区模拟-以粤港澳大湾区为例[J]. 生态学报. 2021, 41(9): 3441-3448.

[52]汉瑞英, 赵志平, 肖能文. 生物多样性保护优先区生态网络构建与优化-以太行山片区为例[J]. 西北林学院学报. 2021, 36(2): 61-67.

[53]曹宇, 王嘉怡, 李国煜. 国土空间生态修复:概念思辨与理论认知[J]. 中国土地科学. 2019, 33(7): 1-10.

[54]张玉, 冯晓明, 陈利顶, 等. 区域生态学的国际起源和研究热点[J]. 生态学报. 2021, 41(8): 3277-3285.

[55]Van Liere L, Janse J H. Restoration and Resilience to Recovery of the Lake Loosdrecht Ecosystem in Relation to Its Phosphorus Flow[J]. Hydrobiologia. 1992, 233(1-3): 95-104.

[56]Maleki S, Soffianian A R, Koupaei S S, et al. Wetland Restoration Prioritization Using Artificial Neural Networks[J]. Wetlands (Wilmington, N.C.). 2020, 40(1): 179-192.

[57]Turrión D, Morcillo L, Alloza J A, et al. Innovative Techniques for Landscape Recovery after Clay Mining under Mediterranean Conditions[J]. Sustainability (Basel, Switzerland). 2021, 13(6): 3439.

[58]叶璇, 康帅直, 赵永华, 等. 陕北黄土高原植被恢复与生态系统服务的时空关系[J]. 应用生态学报. 2022, 33(10): 2760-2768.

[59]徐艳红, 于鲁冀, 吕晓燕, 等. 淮河流域河南段退化河流生态系统修复模式[J]. 环境工程学报. 2017, 11(1): 143-150.

[60]王云霖. 粤港澳大湾区森林生态系统退化空间识别及修复对策研究[J]. 今日国土. 2020(6): 35-38.

[61]周立华, 刘洋. 中国生态建设回顾与展望[J]. 生态学报. 2021, 41(8): 3306-3314.

[62]薄雲天, 张汝萌, 张悦, 等. 我国生态修复的现状及国外生态修复的启示[J]. 区域治理. 2018(23): 52.

[63]彭建, 李冰, 董建权, 等. 论国土空间生态修复基本逻辑[J]. 中国土地科学. 2020, 34(5): 18-26.

[64] 马艳玲. 国土空间生态修复的概念思辨与理论认知[J]. 农场经济管理. 2019(12): 46-47.

[65]蔡海生, 查东平, 张学玲, 等. 基于主导生态功能的江西省国土空间生态修复分区研究[J]. 地学前缘. 2021, 28(4): 55-69.

[66]方莹, 王静, 黄隆杨, 等. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别-以烟台市为例[J]. 自然资源学报. 2020, 35(1): 190-203.

[67]袁媛, 白中科, 师学义, 等. 基于生态安全格局的国土空间生态保护修复优先区确定-以河北省遵化市为例[J]. 生态学杂志. 2022, 41(4): 750-759.

[68]刘纪远, 宁佳, 匡文慧, 等. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报. 2018, 73(5): 789-802.

[69]董金玮, 周岩, 尤南山. 2000-2020年中国30米年最大NDVI数据集[J]. 国家生态科学数据中心.2021 (doi: 10.12199/nesdc.ecodb.rs.2021.012. cstr:15732.11.nesdc. ecodb.rs.20 21.012).

[70]李煜东, 臧传富, 陈相龙. 淮河流域1990-2015年间土地利用时空变化特征及驱动机制研究[J]. 生态科学. 2020, 39(2): 104-113.

[71]王国玲, 李艳红, 苏志珠, 等. 2008-2013年晋北地区土地利用/覆被变化研究[J]. 农学学报. 2019, 9(5): 38-43.

[72]张浚茂, 臧传富. 东南诸河流域1990-2015年土地利用时空变化特征及驱动机制[J]. 生态学报. 2019, 39(24): 9339-9350.

[73]卢涛, 马克明, 傅伯杰, 等. 三江平原沟渠网络结构对区域景观格局的影响[J]. 生态学报. 2008, 28(6): 2746-2752.

[74]刘红玉, 李兆富. 流域土地利用/覆被变化对洪河保护区湿地景观的影响[J]. 地理学报. 2007(11): 1215-1222.

[75]Vogt P, Ferrari J R, Lookingbill T R, et al. Mapping functional connectivity[J]. Ecological Indicators. 2009, 9(1): 64-71.

[76]Soille P, Vogt P. Morphological segmentation of binary patterns[J]. Pattern recognition letters. 2009, 30(4): 456-459.

[77]许峰, 尹海伟, 孔繁花, 等. 基于MSPA与最小路径方法的巴中西部新城生态网络构建[J]. 生态学报. 2015(19): 6425-6434.

[78]陈静, 左翔, 彭建松, 等. 基于MSPA与景观连通性分析的城市生态网络构建-以保山市隆阳区为例[J]. 西部林业科学. 2020, 49(4): 118-123.

[79]汪勇政, 李久林, 顾康康, 等. 基于形态学空间格局分析法的城市绿色基础设施网络格局优化-以合肥市为例[J]. 生态学报. 2022, 42(5): 2022-2032.

[80]陈瑾, 赵超超, 赵青, 等. 基于MSPA分析的福建省生态网络构建[J]. 生态学报. 2023, 43(2): 603-614.

[81]刘常富, 周彬, 何兴元, 等. 沈阳城市森林景观连接度距离阈值选择[J]. 应用生态学报. 2010, 21(10): 2508-2516.

[82]魏家星, 张昱镇, 连紫璇, 等. 基于生态供需空间的区域生态安全格局构建研究-以苏南城市群为例[J]. 长江流域资源与环境. 2022, 31(2): 387-397.

[83]古雄. 基于生态网络构建的县域国土空间生态保护与修复策略研究-以江西省泰和县为例[D]. 南昌:江西财经大学, 2022.

[84]Yao Y, Ma L, Che X, et al. Simulation study of urban expansion under ecological constraint-Taking Yuzhong County, China as an example[J]. Urban forestry & urban greening. 2021, 57: 126933.

[85]沈钦炜, 林美玲, 莫惠萍, 等. 佛山市生态网络构建及优化[J]. 应用生态学报. 2021, 32(9): 3288-3298.

[86]黄鑫, 曹学章, 张明, 等. 基于最小累积阻力模型的内蒙古胜利煤田景观生态安全格局构建[J]. 生态与农村环境学报. 2019, 35(1): 55-62.

[87]Mcrae B H, Hall S A, Beier P, et al. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits[J]. PLoS One. 2012, 7(12): e52604.

[88]范春苗, 王志泰, 汤娜, 等. 基于形态学空间格局和空间主成分的贵阳市中心城区生态网络构建[J]. 生态学报. 2022, 42(16): 6620-6632.

[89]邬志龙, 杨济瑜, 谢花林. 南方丘陵山区生态安全格局构建与优化修复-以瑞金市为例[J]. 生态学报. 2022, 42(10): 3998-4010.

[90]Carroll C, Mcrae B H, Brookes A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America[J]. Conserv Biol. 2012, 26(1): 78-87.

[91]李久林,徐建刚,储金龙.基于Circuit理论的城市生态安全格局研究-以安庆市为例[J]. 长江流域资源与环境.2020,29(8):1812-1824.

[92]潘竟虎,王云.基于CVOR和电路理论的讨赖河流域生态安全评价及生态格局优化[J]. 生态学报.2021,41 (7):2582-2595.

[93]Mcrae B H, Dickson B G, Keitt T H, et al. Using circuit theory to model connectivity in ecology, evolution, and conservation [J]. Ecology. 2008, 89 (10): 2712-2724.

[94]Mcrae B H, Beier P. Circuit theory predicts gene flow in plant and animal populations[J]. Proc Natl Acad Sci U S A. 2007, 104(50): 19885-19890.

[95]温雪静, 周智, 张美丽, 等. 太行山区国土空间生态修复关键区域识别-以唐县为例[J]. 中国生态农业学报(中英文). 2021, 29(12): 2093-2106.

[96]朱强, 俞孔坚, 李迪华. 景观规划中的生态廊道宽度[J]. 生态学报. 2005, 25(9): 2406-2412.

[97]倪庆琳, 侯湖平, 丁忠义, 等. 基于生态安全格局识别的国土空间生态修复分区-以徐州市贾汪区为例[J]. 自然资源学报. 2020, 35(1): 204-216.

中图分类号:

 P208.2    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式