- 无标题文档
查看论文信息

论文中文题名:

 厚硬顶板分段水力压裂裂缝扩展规律及卸压控制技术研究    

姓名:

 李典成    

学号:

 20203077032    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 董国伟    

第一导师单位:

 西安科技大学能源学院    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on the fracture propagation law and pressure relief control technology of sectional hydraulic fracturing in thick and hard roof    

论文中文关键词:

 厚硬顶板 ; 分段水力压裂 ; 诱导应力场 ; 缝间扰动 ; 天然裂缝    

论文外文关键词:

 Thick and hard roof ; Sectional hydraulic fracturing ; Induced stress field ; Fracture interference ; Natural fracture    

论文中文摘要:

本文以海石湾煤矿6125-1工作面为工程背景,采用理论分析、数值模拟及现场试验相结合的方法对厚硬顶板分段水力压裂裂缝扩展规律及卸压控制技术进行了系统研究。着重分析了分段水力压裂卸压机理、缝间扰动规律及裂缝性地层水力裂缝扩展规律,并在工作面运输顺槽开展了工业性试验。主要结论如下:

(1)钻孔方位和地应力状态改变导致裂缝扩展形态产生多样变化,当钻孔布置方向与三向主应力方向一致时,水力裂缝主要有垂直钻孔轴向的径向裂缝和平行于钻孔轴向的轴向裂缝两种类型,其中径向裂缝有利于裂缝网络的形成,因此布置钻孔最优方案是沿着最小水平主应力方向布置,可在所有地应力状态下都产生径向裂缝。

(2)水力裂缝扩展时会在其周围产生诱导应力,在裂缝尖端产生拉应力集中区,使水平主应力值减小,在裂缝两侧产生压应力集中区,使水平主应力值增大,总体上诱导应力值随着距裂缝距离的增加而趋向于原始应力值,停泵卸压后,诱导应力值随时间推移逐渐减小。多缝扩展时由于诱导应力场的存在裂缝间相互干扰,不同地层力学参数和施工参数影响下缝间扰动效应强弱不同,对于地层力学参数而言,具体排序为水平主应力差>弹性模量>泊松比,对于施工参数而言,具体排序为分段间距>注水排量>压裂顺序。

(3)试验工作面地质条件下,水力裂缝与天然裂缝间共发生穿透扩展、偏转扩展及沿天然裂缝扩展三种相互作用模式。水力裂缝在高逼近角与高应力差条件下扩展时接触天然裂缝容易发生穿透行为,在低逼近角条件下接触天然裂缝容易发生沿天然裂缝扩展的行为。在裂缝性地层中,较高的水平主应力差和注水排量以及较低的天然裂缝处岩石抗拉强度有利于激活天然裂缝,促使地层中形成压裂裂缝网络。

(4)采用分段顺序压裂分层垮落技术对运输顺槽上方厚硬顶板进行了预裂处理,提出了包括压裂设备选型、压裂钻孔布置及施工流程设计在内的成套厚硬顶板卸压控制技术方法,试验结果表明分段压裂过程中产生了较丰富的径向裂缝,取得了较好的效果。

论文外文摘要:

Based on the engineering background of 6125-1 working face in Haishiwan Coal Mine, this paper has been systematically studied the fracture propagation law and pressure relief control technology of sectional hydraulic fracturing in thick and hard roof by means of theoretical analysis, numerical simulation and field test. The pressure relief mechanism of sectional hydraulic fracturing, the law of mutual interference between fractures and the law of hydraulic fracture propagation in fractured strata are emphatically analyzed, and the industrial test is carried out in the working face transportation roadway. The main conclusions are as follows:

(1)The change of borehole orientation and in-situ stress state leads to various changes in fracture propagation morphology. When the borehole arrangement direction is consistent with the direction of three-dimensional principal stress, there are two types of hydraulic fractures: radial fractures perpendicular to the axial direction of the borehole and axial fractures parallel to the axial direction of the borehole. The radial fractures are beneficial to the formation of fracture network. Therefore, the optimal scheme for arranging boreholes is to arrange along the direction of the minimum horizontal principal stress, which can produce radial fractures in all in-situ stress states.

(2)When the hydraulic fracture propagation, the induced stress will be generated around it. The tensile stress concentration zone will be generated at the fracture tip, which will reduce the horizontal principal stress value. The compressive stress concentration zone will be generated on both sides of the fracture, which will increase the horizontal principal stress value. In general, the induced stress value tends to the original stress value with the increase of the distance from the fracture. After the pump is stopped to relieve pressure, the induced stress value gradually decreases with time. Due to the interference between fractures in the induced stress field during multi-fracture propagation, the strength of the disturbance effect between fractures is different under the influence of different strata mechanical parameters and construction parameters. For the strata mechanical parameters, the specific order is horizontal differential principal stress > elastic modulus > Poisson 's ratio. For the construction parameters, the specific order is sectional spacing > water injection displacement > fracturing sequence.

(3)Under the geological conditions of the test working face, there are three interaction modes between the hydraulic fracture and the natural fracture, including penetration propagation, deflection propagation and propagation along the natural fracture. When the hydraulic fracture propagates under the conditions of high approach angle and high stress difference, the contact natural fracture is prone to penetration behavior. Under the condition of low approach angle, the contact natural fracture is prone to propagation along the natural fracture. In fractured strata, higher horizontal differential principal stress and water injection displacement and lower rock tensile strength at natural fractures are conducive to activating natural fractures and promoting the formation of fracturing fracture networks in the strata.

(4)The pre-splitting treatment of the thick and hard roof above the transport roadway was carried out by using the sectional sequential fracturing and layered falling technology. A complete set of pressure relief control technology methods for thick and hard roof, including fracturing equipment selection, fracturing borehole layout and construction process design was proposed. The test results show that abundant radial fractures are generated during the sectional fracturing process, and the good results were obtained.

参考文献:

[1] BP. BP世界能源统计年鉴2022[M]. London: BP, 2022.

[2] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[3] 牟全斌, 闫志铭, 张俭. 煤矿井下定向长钻孔水力压裂瓦斯高效抽采技术[J]. 煤炭科学技术, 2020, 48(07): 296-303.

[4] 夏永学, 潘俊锋, 谢非, 等. 井下超长水平孔分段压裂防冲机理及效果[J]. 煤炭学报, 2022, 47(S1): 115-124.

[5] 贺斌, 雷鹏翔, 弓仲标. 水力压裂技术在大柳塔煤矿52502工作面的应用[J]. 煤炭科学技术, 2021, 49(S2): 78-84.

[6] 张宏伟, 赵世帆, 管隆刚, 等. 6.0m大采高厚硬顶板工作面强矿压特征[J]. 采矿与岩层控制工程学报, 2022, 4(05): 37-46.

[7] 柏建彪, 张自政, 王襄禹, 等. 高水材料充填沿空留巷应力控制与围岩强化机理及应用[J]. 煤炭科学技术, 2022, 50(06): 16-28.

[8] 陈星, 冯美华, 尚楠, 等. 厚硬顶板宽煤柱临空巷道冲击地压防治技术研究[J]. 煤炭工程, 2022, 54(01): 84-88.

[9] 徐刚, 于健浩, 范志忠, 等. 国内典型顶板条件工作面矿压显现规律[J]. 煤炭学报, 2021, 46(S01): 25-37.

[10] 卜庆为, 涂敏, 张向阳, 等. 采场厚硬顶板破断失稳与能量聚散演化研究[J]. 采矿与安全工程学报, 2022, 39(05): 867-878.

[11] 赵善坤, 赵阳, 王寅, 等. 采动巷道侧向高低位厚硬顶板破断模式试验研究[J]. 煤炭科学技术, 2021, 49(04): 111-120.

[12] German V I , Mansurov V A . Induced Seismicity Monitoring and Procedure of Rock-Burst Focus Localization[J]. 2002, 38(4): 336-343.

[13] 胡千庭, 田成林, 谭云亮, 等. 重复采动条件下坚硬顶板力学试验研究[J]. 中国矿业大学学报, 2018, 47(01): 67-72.

[14] 吕进国, 姜耀东, 李守国, 等. 巨厚坚硬顶板条件下断层诱冲特征及机制[J]. 煤炭学报, 2014, 39(10): 1961-1969.

[15] 陈树亮, 黄炳香. 井工矿坚硬顶煤顶板控制方法的技术经济分析[J]. 中国矿业, 2021, 30(05): 130-135.

[16] Feng Xiaowei, Zhang Nong. Position-optimization on retained entry and backfilling wall in gob-side entry retaining techniques[J]. International Journal of Coal Science & Technology, 2015, 2(3): 186-195.

[17] Xu Ying, Chen Jin, Bai Jianbiao. Control of floor heaves with steel pile in gob-side entry retaining[J]. International Journal of Mining Science and Technology, 2016, 25(3): 162-169.

[18] 陈大勇, 黄炳香, 吴占伟, 等. 煤矿顶板超深孔爆破对巷道围岩稳定性影响研究[J]. 采矿与安全工程学报, 2022, 39(06): 1135-1142.

[19] 赵善坤. 深孔顶板预裂爆破与定向水压致裂防冲适用性对比分析[J]. 采矿与安全工程学报, 2021, 38(04): 706-719.

[20] 刘长友, 杨敬轩, 于斌, 等. 覆岩多层坚硬顶板条件下特厚煤层综放工作面支架阻力确定[J]. 采矿与安全工程学报, 2015, 32(01): 7-13.

[21] 黄炳香, 赵兴龙, 陈树亮, 等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报, 2017, 36(12): 2954-2970.

[22] 马冰, 蒋威. 厚硬顶板定向水力压裂分层垮落技术研究[J]. 煤炭技术, 2022, 41(04): 13-17.

[23] 潘俊锋, 马文涛, 刘少虹, 等. 坚硬顶板水射流预制缝槽定向预裂防冲技术试验[J]. 岩石力学与工程学报, 2021, 40(08): 1591-1602.

[24] 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究[J]. 煤炭科学技术, 2022, 50(08): 50-59.

[25] 程蓬. 特厚煤层动压巷道水力致裂卸压护巷技术研究[J]. 煤炭科学技术, 2019, 47(11): 50-55.

[26] Hubbert M K , Willis D G . Mechanics of Hydraulic Fracturing[J]. Transactions of Society of Petroleum Engineers of AIME, 1957, 210: 153-168.

[27] Haimson B. Fairhurst C. Initiation and extension of hydraulic fractures in rocks[J]. Society of Petroleum Engineers Journal, 1967, 7(3): 310-318.

[28] Yew C H , Li Y . Fracturing of a deviated well[J]. Production Engineering, 1988, 4(3): 429-437.

[29] Hossain M M , Rahman M K . Hydraulic Fracture Initiation and Propagation: Roles of Wellbore Trajectory, Perforation and Stress Regimes[J]. J.pet.Sci.Eng.2000, (27): 129-149.

[30] Crosby D G , Rahman M M , Rahman M K ,et al. Single and multiple transverse fracture initiation from horizontal wells[J]. Journal of Petroleum Science and Engineering, 2002, 35(3-4): 191-204.

[31] 黄荣撙. 水力压裂裂缝的起裂和扩展[J]. 石油勘探与开发, 1981(05): 62-74.

[32] 陈勉, 陈治喜, 黄荣樽. 大斜度井水压裂缝起裂研究[J]. 石油大学学报(自然科学版), 1995(02): 30-35.

[33] 张国华, 魏光平, 侯凤才. 穿层钻孔起裂注水压力与起裂位置理论[J]. 煤炭学报, 2007, No.148(01): 52-55.

[34] 冯彦军, 康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报, 2013, 32(S2): 3169-3179.

[35] 付永强, 李鹭光, 何顺利. 斜井及水平井在不同构造应力场水力压裂起裂研究[J]. 钻采工艺, 2007, No.136(01): 27-30+144-145.

[36] Carter R D . Derivation of the general equation for estimating the extent of the fractured area[J]. Drilling and Prod. 1957, 261-270.

[37] Geertsma J, De Klerk F. A rapid method of predicting width and extent of hydraulically induced fractures[J]. Journal of Petroleum Technology, 1969, 21(12): 1571-1581.

[38] Perkins T, Kern L. Widths of hydraulic fractures[J]. Journal of Petroleum Technology, 1961, 13(9): 937-949.

[39] Van Eekelen. Hydraulic fracture geometry:fracture containment in layered formations[J]. Society of Petroleum Engineers Journal, 1982, 22(3): 341-349.

[40] Crockett A, Okusu N, Clealy M. A Complete Integrated Model for Desgin and Real-Time Analysis of Hydraulic Fracturing Operations[J]. SPE 15069.221-234.

[41] 李林地, 张士诚, 庚勐. 煤层气藏水力裂缝扩展规律[J]. 天然气工业, 2010, 30(02): 72-74+143.

[42] 张小东, 张鹏, 刘浩, 等. 高煤级煤储层水力压裂裂缝扩展模型研究[J]. 中国矿业大学学报, 2013, 42(04): 573-579.

[43] 程远方, 吴百烈, 李娜, 等. 煤层压裂裂缝延伸及影响因素分析[J]. 特种油气藏, 2013, 20(002): 126-129.

[44] Fisher M K , Heinze J R , Harris C D , et al. Optimizing Horizontal Completion Techniques in the Barnett Shale Using Microseismic Fracture Mapping[C]// SPE Annual Technical Conference and Exhibition, 2004.

[45] Nagel N B , Sanchez-Nagel M. Stress shadowing and microseismic events: A numerical evaluation[C]// SPE Annual Technical Conference and Exhibition, 2011.

[46] 陈作, 周健, 张旭, 等. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律[J]. 石油钻探技术, 2016, 44(06): 78-83.

[47] 许耀波. 应力干扰下煤层顶板水平井穿层分段压裂规律[J]. 煤田地质与勘探, 2020, 48(04): 11-18.

[48] 任岚, 林然, 赵金洲, 等. 基于最优SRV的页岩气水平井压裂簇间距优化设计[J]. 天然气工业, 2017, 37(04): 69-79..

[49] 夏彬伟, 刘浪, 彭子烨, 等. 致密砂岩水平井多裂缝扩展及转向规律研究[J]. 岩土工程学报, 2020, 42(08): 1549-1555.

[50] 杨典森, 周云, 周再乐. 含界面储层水力压裂试验与数值模拟研究进展[J]. 岩石力学与工程学报, 2022, 41(09): 1771-1794.

[51] 程正华, 艾池, 张军, 等. 胶结型天然裂缝对水力压裂裂缝延伸规律的影响[J]. 新疆石油地质, 2022, 43(04): 433-439.

[52] 沈永星, 冯增朝, 周动, 等. 天然裂缝对页岩储层水力裂缝扩展影响数值模拟研究[J]. 煤炭科学技术, 2021, 49(08): 195-202.

[53] 马耕, 张帆, 刘晓, 等. 裂缝性储层中水力裂缝扩展规律的试验研究[J]. 采矿与安全工程学报, 2017, 34(05): 993-999.

[54] Manchanda, Ripudaman, Bryant, et al. Strategies for Effective Stimulation of Multiple Perforation Clusters in Horizontal Wells[J]. SPE Production & Operations, 2016, 33(03).

[55] Settgast R R , lzadi G, Hurt R S , et al. Optimized Cluster Design in Hydraulic Fracture Stimulation[C]// Unconventional Resources Technology Conference, 2015.

[56] 胡千庭, 刘继川, 李全贵, 等. 煤层分段水力压裂渗流诱导应力场的数值模拟[J]. 采矿与安全工程学报, 2022, 39(04): 761-769.

[57] 赵伟, 袁源, 王凯, 等. 深度对含瓦斯煤层水力压裂裂纹转向行为的影响数值模拟分析[J]. 煤矿安全, 2022, 53(10): 51-56.

[58] 王世斌, 王刚, 陈雪畅, 等. 基于PFC2D-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究[J]. 煤矿安全, 2022, 53(10): 132-140.

[59] 赵凯凯, 张镇, 李文洲, 等. 基于XSite的钻孔起裂水力裂缝三维扩展研究[J]. 岩土工程学报, 2021, 43(08): 1483-1491.

[60] 贾进章, 葛佳琪, 甄纹浩, 等. 水力压裂增透技术及应用研究[J]. 中国安全科学学报, 2020, 30(10): 63-68.

[61] Roussel N P , Sharma M M . Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions[C]// SPE Annual Technical Conference and Exhibition, 2011.

[62] 史吉辉, 李庆超, 李强, 等. 页岩气水平井分段压裂簇间形态干扰规律分析[J]. 中国科技论文, 2018, 13(21): 2447-2452.

[63] 张汝生, 王强, 张祖国, 等. 水力压裂裂缝三维扩展ABAQUS数值模拟研究[J]. 石油钻采工艺, 2012, 34(06): 69-72.

[64] 程万, 蒋国盛, 周治东, 等. 水平井中多条裂缝同步扩展时裂缝竞争机制[J]. 岩土力学, 2018, 39(12): 4448-4456.

[65] 刘泉声, 甘亮, 吴志军, 等. 基于零厚度黏聚力单元的水力压裂裂隙空间分布影响分析[J]. 煤炭学报, 2018, 43(S2): 393-402.

[66] 程亮, 卢义玉, 葛兆龙, 等. 倾斜煤层水力压裂起裂压力计算模型及判断准则[J]. 岩土力学, 2015, 36(02): 444-450.

[67] 李传亮, 孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000(02): 54-56+83.

[68] 徐冰. 中低渗储层压裂渗滤强化采油机理及数学模型研究[D]. 东北石油大学, 2019.

[69] 郭建春, 邓燕, 赵金洲. 射孔完井方式下大位移井压裂裂缝起裂压力研究[J]. 天然气工业, 2006(06): 105-107+169.

[70] 任岚, 赵金洲, 胡永全, 等. 裂缝性储层射孔井水力裂缝张性起裂特征分析[J]. 中南大学学报(自然科学版), 2013, 44(02): 707-713.

[71] 康红普, 伊丙鼎, 高富强, 等. 中国煤矿井下地应力数据库及地应力分布规律[J]. 煤炭学报, 2019, 44(01): 23-33.

[72] 李颖川. 采油工程[M]. 北京:石油工业出版社, 2009.

[73] 裴玉彬, 闫士亮, 晁明哲, 等. 浅层砂岩垂直井分段压裂起裂压力研究[J]. 辽宁化工, 2012, 41(09): 929-932.

[74] 任登峰. 裂缝性致密气藏缝网压裂产能模拟研究[D]. 西南石油大学, 2014.

[75] Chong Z H , Yao Q L , Li X H . Experimental Investigation of Fracture Propagation Behavior Induced by Hydraulic Fracturing in Anisotropic Shale Cores[J]. Energies, 2019, 12(6): 976.

[76] Ju Y, Wang Y, Xu B, et al. Numerical Analysis of the Effects of Bedded Interfaces on Hydraulic Fracture Propagation in Tight Multilayered Reservoirs Considering Hydro-Mechanical Coupling[J]. Journal of Petroleum Science and Engineering, 2019, 178: 356-375.

[77] Zheng Y X , Liu J J , Lei Y, et al. The Propagation Behavior of Hydraulic Fracture in Rock Mass with Cemented Joints[J]. Geofluids, 2019, 2019: 1-15.

[78] 曾义金, 杨春和, 张保平. 页岩气开发工程中的理论与实践[M]. 北京:科学出版社, 2017.

[79] 李军, 翟文宝, 陈朝伟, 等. 基于零厚度内聚力单元的水力裂缝随机扩展方法研究[J]. 岩土力学, 2021, 42(01): 265-279.

[80] 康红普, 冯彦军, 张震, 等. 煤矿井下定向钻孔水力压裂岩层控制技术及应用[J]. 煤炭科学技术, 2023, 51(01): 31-44.

[81] 赫海全, 袁崇亮, 张玉生. 海石湾煤矿地应力分布特征研究[J]. 内蒙古煤炭经济, 2021, No.333(16): 1-4.

中图分类号:

 TD325    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式