题名: | 基于Aspen Plus的水焦浆气化动力学模拟与优化 |
作者: | |
学号: | 2021326066 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 085700 |
学科: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2023 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤气化 |
导师姓名: | |
导师单位: | |
第二导师姓名: | |
提交日期: | 2023-06-24 |
答辩日期: | 2023-05-31 |
外文题名: | Simulation and optimization of gasification dynamics of semi-coke water slurry based on Aspen Plus |
关键词: | 水焦浆 ; 气化 ; Aspen Plus ; 动力学 ; 能量衡算 |
外文关键词: | Semi-coke water slurry ; Gasification ; Aspen Plus ; Dynamics ; Energy balance |
摘要: |
煤气化是将煤转化为洁净燃气的过程,该技术不仅可以制造高价值化学产品,而且可以减少煤炭直接燃烧所带来的环境污染。因此,煤气化是一种有效的煤炭高价值利用和绿色环保手段。中国是世界上最大的煤炭消费国之一,大力开发和利用高效清洁的煤气化技术对于提高我国能源利用效率和改善生态环境具有重要意义。 水煤浆是一种新型的煤基流体燃料,由约65%的煤粉、30%的水和1%的添加剂组成。该燃料不仅具有高泵送效率和高燃烧效率的优点,并且还有着易于运输储存、气体污染物排放低以及节能环保等综合优势。兰炭是低变质烟煤通过低温热解产生的固体产物,相较于原煤,兰炭已去除了大部分的SO2和NOx,且灰分含量较低、固定碳含量较高,因此是一种理想的清洁燃料选择。此外,兰炭还是配制水焦浆的理想材料,将兰炭粉加工成水焦浆,以此替代原煤气化,可以降低污染成分排放量,并拓宽兰炭资源化利用途径。 本文以神府半焦、水和亚甲基双萘磺酸钠/聚羧酸盐(NNO/PCE)分散剂所制成的水焦浆为研究对象,采用湿法进料的德士古气化技术,基于大型化工模拟软件Aspen Plus建立了水焦浆气化段动力学模型以及灰水处理段模型,并将模拟计算结果与实际数据对比,以验证模型可靠性。采取灵敏度分析方法,讨论了关键参数对气化段产物分布以及碳洗塔出口净合成气的水汽比影响。结果表明:当水焦浆浓度为65%,氧焦比为1.0,反应器直径3.0 m,高径比控制在2.0,氧气进料温度25℃时,气化段出口粗合成气中的有效气含量相对较高。当灰水处理段的变换冷凝液温度控制在100℃,流量25 m3/h,碳洗塔进口的粗合成气C-PRO温度控制在220℃,压力4.20 MPa,流量190000.0 kg/h,碳洗塔压力为3.85 MPa时,可以使净合成气的水汽比满足后续变换工段对饱和水蒸气含量要求。基于上述优化条件,对各工段进行物料及能量衡算,结果表明:水焦浆气化总系统物料及能量均守恒。气化段产出有效气摩尔分数为74%,灰水处理段产出净合成气水汽比为1.33。取1.5384 kg/h的水焦浆进料速率当量进行分析,总系统进料物料所携带能量为33.4977 MJ/h,系统所需外加能量为8.5584 MJ/h,净合成气出口温度213.7℃,所携带的能量为33.8654 MJ/h,占总系统输入的80.52%,系统能量损耗为5.3776 MJ/h。 本文为水焦浆的工业化应用提供了基础理论数据。 |
外文摘要: |
Gasification is the process of converting coal into clean gas. This technology can be used not only to produce valuable chemical products, but also to reduce environmental pollution caused by direct coal combustion. Therefore, gasification is an effective means of high-value utilization of coal and environmental protection. China is one of the world’s largest coal-consuming countries, and its development and use of gasification technology with efficient and pure characteristics are of great significance for improving energy utilization efficiency and improving the ecological environment. Coal-water slurry is a new type of coal-based fluid fuel, composing of about 65% coal powder, 30% water, and 1% additives. It has the advantages of high efficient pumping and combustion, easy transportation and storage, low emissions of gas pollutants, energy conservation and environmental protection. Compared with raw coal, semi-coke, the solid product produced by low metamorphic bituminous coal of low-temperature pyrolysis, has removed most of the SO2 and NOx, and has a lower ash content and a higher fixed carbon content. Therefore, it can be regarded as an ideal clean fuel choice. In addition, semi-coke is also an ideal material for preparing semi-coke water slurry. Processing semi-coke powder into semi-coke water slurry can replace coal gasification, reduce the emission of pollutant components, and broaden the utilization of semi-coke resource. This paper took the semi-coke water slurry prepared by combining semi-coke with water and sodium methylenebisnaphthalene sulfonate/polycarboxylate water reducer (NNO/PCE) dispersant as the research object, used the Texaco gasification technology with wet raw material supply, and established a dynamic model of semi-coke water slurry gasification section and a model of ash-water treatment section based on the large chemical engineering simulation software Aspen Plus. The simulation calculation results were then compared with actual data to verify the reliability of the model. Sensitivity analysis is conducted to discuss the impact of key parameters on the product distribution of the gasification section and the water/vapor ratio of the net synthesis gas in the carbon scrubber outlet. The results show that when the concentration of semi-coke water slurry is 65%, the oxygen/semi-coke ratio is 1.0, the diameter of the reactor is 3.0 m, the height/diameter ratio is 2.0, and the oxygen supply temperature is 25°C, the effective gas content in the crude synthesis gas at the outlet of the gasification section is relatively high. When the temperature of the condensate in the ash-water treatment section is controlled at 100℃ with the flow rate of 25 m3/h, and the temperature of the crude synthesis gas C-PRO at the carbon scrubber inlet is controlled at 220℃ with the pressure of 4.20 MPa and the flow rate of 190000.0 kg/h, and the pressure in the carbon washing tower is 3.85 MPa, the water/vapor ratio of the net synthesis gas can meet the requirements for the saturated water vapor content in the subsequent transformation section. Based on the above optimization conditions, the material and energy balance of each section were calculated, and the results indicate that the material and energy are conserved in the overall system of semi-coke water slurry gasification. The molar fraction of effective gas produced in the gasification section is 74% and the water/vapor ratio of net synthesis gas produced in the ash-water treatment section is 1.33. When the equivalent feed rate of 1.5384 kg/h of semi-coke water slurry is selected for analysis, the results show that the total energy carried by the system’s incoming material is 33.4977 MJ/h, the required additional energy is 8.5584 MJ/h, the outlet temperature of the net synthesis gas is 213.7℃, with the energy of 33.8654 MJ/h, accounting for 80.52% of the total system input. The energy loss of the system is 5.3776 MJ/h. This article provides fundamental theoretical data for the industrial application of semi-coke water slurry. |
参考文献: |
[3] 梁壮, 邸帅, 赵东波. 煤炭行业高质量发展存在的问题及对策研究[J]. 中国煤炭, 2022, 48(11): 9-14. [4] 孙超, 黄文杰, 桂天柱. 美国煤炭工业发展趋势及对我国的启示[J]. 煤炭经济研究, 2021, 41(2): 51-58. [5] 张莉, 张建强, 宁树正, 等. 中国与全球煤炭行业形势对比分析[J]. 中国煤炭地质, 2021, 33(S1): 17-21+43. [6] 郑志行, 张家元, 李谦, 等. 气流床煤气化的Aspen Plus建模:平衡模型和动力学模型[J]. 化工进展, 2021, 40(8): 4165-4172. [8] 时明亮. 兰炭末制备水炭浆及其燃烧性能评价[D]. 西安建筑科技大学, 2016. [14] 孟茁越, 杨志远, 李智华, 等. 双峰级配制备高浓度水焦浆的实验研究[J]. 西安科技大学学报, 2020, 40(6): 1047-1054+1108. [15] 姚雅倩, 杨志远, 孟茁越, 等. 分散剂对兰炭浆成浆性能的影响及其吸附动力学[J]. 洁净煤技术, 2022, 28(6): 192-198. [16] 靳皎, 姚晓虹, 刘晓花, 等. Aspen Plus在煤气化技术中的应用进展[J]. 山东化工, 2016, 45(13): 71-73. [17] 高立兵, 吕中原, 索寒生, 等. 石油化工流程模拟软件现状与发展趋势[J]. 化工进展, 2021, 40(S2): 1-14. [21] 王玉忠. 利用褐煤鲁奇炉与BGL炉碎煤加压气化工艺模拟研究[J]. 化工管理, 2018(6): 93-100. [22] 李英泽, 杨路, 王琦, 等. BGL炉煤气化过程建模和模拟[J]. 化工学报, 2020, 71(3): 1174-1188. [23] 王嘉剑. 气流床气化条件下碱性氧化物对煤灰渣流动性影响研究[D]. 华东理工大学, 2022. [25] 王蕾. 基于气流床气化的辐射废锅水冷壁布置及结构优化模拟研究[D]. 华东理工大学, 2022. [28] 郭庆华, 王亦飞, 陈雪莉, 等. 多喷嘴对置式水煤浆气化技术进展及工程应用[J]. 氮肥与合成气, 2019, 47(1): 1-6+11. [29] 陈罗刚, 马亚军, 张卫锋. 基于Aspen Plus的多元料浆气化工艺模拟与分析[J]. 化工设计通讯, 2021, 47(7): 1-2+38. [30] 张骏驰, 赵春安, 张龙. 基于Aspen Plus的地下煤气化动力学模型建模[J]. 能源化工, 2022, 43(4): 20-26. [33] 张磊, 汪根宝, 谢东升, 等. GE水煤浆气化全流程模拟[J]. 化学工程, 2011, 39(7): 78-82. [34] 章荣林. 基于煤气化工艺技术的选择与评述[J]. 化肥设计, 2008(2): 3-8. [36] 刘少俊, 冯国增, 宋印东, 等. 基于Aspen Plus的船舶热力系统教学[J]. 化工高等教育, 2013, 30(4): 92-94. [37] 解娅男, 李复. 基于Aspen Plus的酸水汽提模拟[J]. 计算机与现代化, 2019(12): 78-82+87. [38] 李萌萌, 姜召, 李璐, 等. Aspen Plus在超临界流体技术中的应用研究进展[J]. 化工进展, 2014, 33(S1): 19-26. [39] 刘晓花, 刘丹, 郝婷, 等. Aspen Plus在煤气化中的应用[J]. 广东化工, 2016, 43(13): 144-145+130. [40] 宋晓宇, 杨志远, 孟茁越, 等. 煤制天然气的Aspen Plus过程模拟研究进展[J]. 应用化工, 2020, 49(2): 439-443+448. [41] 朱莎弘, 杨欣华, 张双铭, 等. 基于Aspen Plus的废锅流程粉煤气化炉的稳态流程模拟[J]. 煤炭学报: 1-10. [48] 陈世豪, 曹志凯, 师佳, 等. 基于ASPEN PLUS的固定床煤气化稳态模拟方法研究[J]. 煤炭学报, 2012, 37(S1): 167-172. [49] 东赫, 刘金昌, 解强, 等. 典型气流床煤气化炉气化过程的建模[J]. 化工进展, 2016, 35(8): 2426-2431. [50] 田硕, 刘琳琳, 都健. 基于不同气化剂的BGL炉煤气化的模拟和优化[J]. 华东理工大学学报(自然科学版), 2018, 44(4): 518-523. [52] 汪洋, 代正华, 于广锁, 等. 运用Gibbs自由能最小化方法模拟气流床煤气化炉[J]. 煤炭转化, 2004(4): 27-33. [54] 彭伟锋, 钟伟民, 孔祥东, 等. 德士古水煤浆气化过程的建模与优化分析[J]. 计算机与应用化学, 2012, 29(7): 779-783. [64] 方薪晖. 基于Aspen Plus的半焦制浆及气化模拟研究[J]. 煤炭加工与综合利用, 2014(12): 61-65. [65] 杨纯, 徐莹璐, 陈慧, 等. 兰炭用于水煤浆气化原料可行性研究[J]. 洁净煤技术, 2019, 25(S2): 24-28. [66] 孟茁越, 杨志远, 鞠晓茜, 等. 分散剂对水焦浆成浆性影响的量子化学研究[J]. 燃料化学学报, 2019, 47(9): 1025-1031. [70] 张宗飞, 汤连英, 吕庆元, 等. 基于Aspen Plus的粉煤气化模拟[J]. 化肥设计, 2008(3): 14-18+26. [73] 刘亮, 原满, 田红, 等. BGL碎煤熔渣气化炉气化过程模拟[J]. 化学工程, 2013, 41(7): 64-68. [78] 刘蓉, 王琪, 郭强, 等. 基于反应动力学的煤气化技术模拟与分析[J]. 有色冶金节能, 2020, 36(6): 49-53. [82] 陈嘉豪. 煤粉部分气化多联产模拟研究[D]. 浙江大学, 2021. [83] 吴瑶. 基于Aspen Plus对耦合化学链燃烧的焦炉煤气重整制氢系统性能的研究[D]. 重庆大学, 2014. [85] 曹琴. 基于ASPEN的PTFE聚合流程模拟与分析[D]. 华东理工大学, 2014. [86] 彭伟锋. 水煤浆气化过程的建模与优化[D]. 华东理工大学, 2012. [87] 邢秀峰, 许相波, 雷小云, 等. 以煤热解为基础的多联产系统的热效率分析[J]. 中国能源, 2007(1): 42-44. |
中图分类号: | TQ546 |
开放日期: | 2027-06-19 |