- 无标题文档
查看论文信息

论文中文题名:

 倾斜煤层直角梯形巷道变形破坏机理及控制技术研究    

姓名:

 熊咸玉    

学号:

 18104053002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 岩土加固理论与技术    

第一导师姓名:

 戴俊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Deformation failure mechanism and control technology of right angle trapezoidal roadway in inclined coal seam    

论文中文关键词:

 倾斜煤层 ; 力学模型 ; 非对称 ; 变形破坏 ; 支护技术    

论文外文关键词:

 Inclined coal seam ; Mechanical model ; Asymmetric ; Deformation and failure ; Support technology    

论文中文摘要:

我国倾斜煤层煤炭储量约占煤炭资源总量的35 %,其开发利用在我国能源战略中具有举足轻重的地位,但由于倾斜煤层巷道围岩应力环境复杂,非对称变形破坏特征显著,导致巷道支护难度大,严重制约了倾斜煤层煤炭资源安全高效开采。由于巷道断面形状及煤层倾角效应影响,致使倾斜煤层巷道围岩应力-变形的力学分析困难,主应力大小和方向的传递规律揭示不清。目前,对倾斜煤层巷道围岩应力分布及变形破坏机理缺乏系统研究,在巷道围岩的控制技术研究方面仍需完善。

因此,本文以石炭井二矿区倾斜煤层巷道为工程背景,采用理论分析、数值模拟、相似物理模型试验及现场工程试验等研究方法,对倾斜煤层巷道围岩应力及变形破坏分布规律、主应力传递路径的演化特征、考虑主应力方向偏转的自稳平衡圈失稳机制进行研究,并提出了倾斜煤层直角梯形巷道围岩变形的控制技术。主要工作及研究成果如下:

利用复变函数及弹性力学理论,构建了倾斜煤层巷道围岩力学模型,改进了映射函数求解方法,引入倾角系数,推导出适用于任意倾角及断面形状巷道围岩应力及位移的解析解,揭示了倾斜煤层巷道围岩非对称应力分布规律及渐进破坏机理,即左帮(高帮)顶角位置首先破坏-两帮浅部围岩破坏-顶板有效长度增大-两帮破坏向深部延伸-进入破坏的恶性循环。基于巷道围岩位移解析解和计算几何,建立了倾斜煤层巷道非对称变形度计算模型,实现了具有时序性和区域性的巷道非对称变形程度的定量化和可视化表征。

(2)采用数值模拟方法,对不同倾角、不同断面形状的倾斜煤层巷道在不同荷载作用下围岩应力、变形及塑性区进行分析,揭示了倾斜煤层巷道围岩渐进性非对称破坏规律,得出巷道围岩应力峰值及应力集中区呈现右帮(低帮)大于左帮(高帮)的非对称分布特征,倾角越大,其非对称分布特征越明显。随着荷载的增加,巷道围岩应力集中程度及变形越大,巷道围岩应力集中区由浅部向深部转移。其中直角梯形巷道围岩非对称应力集中程度和变形破坏最严重。

(3)开展了不同倾角、不同断面形状倾斜煤层巷道相似物理模型试验,改进了DIC测量技术,实现了巷道围岩应力场及主应变偏转轨迹的实时监测,揭示了非对称应力分布及应力方向偏转组合条件下倾斜煤层巷道围岩变形破坏规律,发现了直角梯形巷道顶板岩层形成非对称拱形主应变传递包络特征,且其自稳平衡圈呈现向左帮(高帮)偏转的半椭圆形。倾角越大,巷道围岩非对称变形破坏越明显。直角梯形巷道变形破坏最为严重,其左帮(高帮)顶角位置首先出现沿煤层倾斜方向的裂隙,该裂隙的扩展作为巷道围岩渐进性变形破坏的诱发点,是巷道围岩稳定性控制的关键。

(4)采用弹性力学理论及数值模拟分析出倾斜煤层直角梯形巷道围岩主应力矢量场及应力传递路径呈现非对称演化特征,揭示了主应力偏转对巷道围岩变形破坏的驱动效应,并通过了相似物理模型试验验证。主应力偏转现象影响巷道围岩承载能力和破坏模式,定义了主应力偏转作用下的巷道围岩稳定度Fs,当Fs大于0,巷道处于稳定状态。提出了巷道左帮(高帮)尖角处裂隙发育控制方法,划分了围岩主应力方向敏感区,可在巷道左帮(高帮)尖角处布设锚杆来改变主应力偏转轨迹,将主应力方向驱离方向敏感区,提高巷道围岩稳定度。

(5)建立了考虑主应力方向偏转的倾斜煤层直角梯形巷道自稳平衡圈力学模型,分析了其边界应力状态,阐明了自稳平衡圈稳定性调控机制。并结合巷道围岩非对称应力分布、主应力偏转效应及渐进变形破坏特征,提出了非对称支护原则:锚杆(索)、金属网非对称联合支护,增加巷道围岩的稳定性;加强巷道薄弱部位的支护,降低自稳平衡圈应力状态等级;根据主应力偏转角度进行差异化支护,改善非对称变形破坏;优化锚杆(索)安装角度,控制主应力偏转轨迹。设计“锚杆(索)向右帮(低帮)倾斜布置,帮角弱化区加密加长支护”的非对称支护方案,并进行了数值模拟及现场工程试验验证,支护效果良好。

论文外文摘要:

Inclined coal seam coal reserves account for 35 % of the total coal resources in China, and its development and utilization plays an important role in energy strategy. However, due to the complex surrounding rock stress environment and significant asymmetric deformation and failure characteristics of inclined coal seam roadway, which leads to the difficulty of roadway support. It has seriously restricted the safe and efficient mining of coal resources in inclined coal seams. Due to the influence of roadway section shape and coal seam inclination effect, which leads to the difficulty of mechanical analysis of roadway's surrounding rock stress-deformation in inclined coal seam and the unclear transmission law of the magnitude and direction of principal stress. At present, there is a lack of systematic research on the stress distribution and deformation failure mechanism of roadway surrounding rock in inclined coal seam, and the research on the control technology of roadway's surrounding rock still needs to be improved.

Therefore, taking the inclined coal seam roadway in Shitanjing No. 2 mining area as the engineering background, using the research methods of theoretical analysis, numerical simulation, similar physical simulation test and field engineering test, this paper studies the asymmetric stress and deformation failure distribution law of roadway's surrounding rock in inclined coal seam , the evolution characteristics of principal stress transfer path, and the instability mechanism of self stable equilibrium circle considering principal stress deflection. The control technology of surrounding rock deformation of right angle trapezoidal roadway in inclined coal seam is put forward. The main work and research results are as follows:

The mechanical model of roadway's surrounding rock in inclined coal seam is constructed by using complex variable function and elastic mechanics theory, the mapping function solving method is improved, and the inclination coefficient is introduced, which deduces the analytical solution of stress and deformation of roadway's surrounding rock suitable for arbitrary inclination and section shape. The asymmetric stress distribution law and progressive deformation failure mechanism of the roadway surrounding rock of inclined coal seam are revealed, that is, the sharp corner on the roof's left side is first destroyed - the shallow surrounding rock of the two sides is destroyed - the effective span of the roof is increased - the two sides are destroyed and extended to the deep - into the vicious cycle of destruction. Based on the analytical solution of displacement and computational geometry, the calculation model of asymmetric deformation degree of inclined coal seam roadway is established, and the quantitative and visual representation of roadway's asymmetric deformation degree with timing and regionality is realized.

The stress, deformation and plastic zone of surrounding rock of inclined coal seam roadway with different inclination and different section shapes under different loads are analyzed by numerical simulation method. The progressive asymmetric failure law of roadway surrounding rock is revealed quantitatively and intuitively, that is, the peak stress and stress concentration area of roadway surrounding rock in inclined coal seam show an asymmetric distribution trend that the right side is greater than the left side. With the increase of dip angle, the asymmetric distribution characteristics of roadway surrounding rock are more obvious, and the asymmetric stress concentration and deformation failure of right angle trapezoidal roadway surrounding rock are the most serious.With the increase of load, the greater the stress concentration and deformation, and the stress concentration area transfers from shallow to deep.

The similar physical model tests of inclined coal seam roadway with different dip angles and different section shapes are carried out, the DIC measurement technology is improved, the real-time monitoring of roadway surrounding rock stress field and principal strain deflection trajectory is realized, and the deformation and failure law of inclined coal seam roadway under the condition of asymmetric stress distribution and stress direction deflection combination is revealed. It is found that the asymmetric arch principal strain transmission envelope is formed in the roof rock of right angle trapezoidal roadway, and its self stable equilibrium circle presents a semi oval deflection to the left side. With the increase of dip angle, the asymmetric deformation and failure of roadway surrounding rock is more obvious, and the deformation and damage of right angle trapezoidal roadway is the most serious. The crack along the inclined direction of the coal seam first appears at the roof corner of the left side, which is the key to the stability control of the roadway.

The transmission path of the principal stress component and direction of the roadway surrounding rock in inclined coal seam is analyzed by using the theory of elasticity and numerical simulation method, and the asymmetric evolution characteristics of the principal stress deflection and its driving effect on the deformation and failure of the roadway are revealed, which is verified by the similar physical simulation test. The phenomenon of principal stress deflection affects the bearing capacity and failure mode of roadway, and the stability Fs of roadway surrounding rock under the action of principal stress deflection is defined. When Fs﹥0, the two sides of roadway are stable. The crack development control method at the sharp corner of the left side is put forward, and the sensitive area of the main stress direction of the surrounding rock is divided. The method of arranging bolts at the sharp corner of the left side is proposed to change the stress deflection track, drive the main stress direction away from the sensitive area of the direction, and improve the stability of the roadway's surrounding rock.

The mechanical model of self stable balance circle of right angle trapezoidal roadway in inclined coal seam considering the deflection of principal stress direction is established, the boundary stress state is analyzed, and the stability control mechanism of self stable balance circle is clarified. Combined with the asymmetric stress distribution, principal stress deflection effect and progressive deformation and failure characteristics of roadway's surrounding rock, the asymmetric support principle is put forward: asymmetric combined support of bolt (cable) and metal mesh to increase the stability of roadway surrounding rock; Strengthen the support of weak parts of roadway and reduce the stress state grade of self stable balance circle; Differential support is carried out according to the deflection angle of principal stress to improve asymmetric deformation and failure; Optimize the installation angle of anchor bolt (cable) and control the deflection track of principal stress. The asymmetric support scheme of "the anchor bolt (cable) is inclined to the right side, and area of sharp corner is densified and extended support" is designed, and verified by numerical simulation and field engineering test.

参考文献:

[1]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[2]邹才能, 何东博, 贾成业, 等. 世界能源转型内涵、路径及其对碳中和的意义[J]. 石油学报, 2021, 42(02): 233-247.

[3]王长建, 汪菲, 叶玉瑶, 等. 基于供需视角的中国煤炭消费演变特征及其驱动机制[J]. 自然资源学报, 2020, 35(11): 2708-2723.

[4]屠洪盛, 刘送永, 黄昌文, 等. 急倾斜煤层走向长壁工作面底板破坏机理及稳定控制[J]. 采矿与安全工程学报, 2022, 39(02): 248-254.

[5]伍永平, 贠东风, 解盘石, 等. 大倾角煤层长壁综采: 进展、实践、科学问题[J]. 煤炭学报, 2020, 45(01): 24-34.

[6]侯朝炯团队. 巷道围岩控制[M]. 徐州: 中国矿业大学出版社, 2013.

[7]BRADY B, Brown E. Rock mechanics for underground mining[M]. Springer, 2004.

[8]单仁亮, 彭杨皓, 孔祥松, 等. 国内外煤巷支护技术研究进展[J]. 岩石力学与工程学报, 2019, 38(12): 2377-2403.

[9]康红普. 我国煤矿巷道围岩控制技术发70年及展望[J]. 岩石力学与工程学报, 2021, 40(01): 1-30.

[10]孟庆彬, 韩立军, 乔卫国, 等. 深部高应力软岩巷道断面形状优化设计数值模拟研究[J]. 采矿与安全工程学报, 2012, 29(05): 650-656.

[11]张进鹏, 刘立民, 刘传孝, 等. 深部大倾角煤岩层巷道断面形状与耦合支护[J]. 中南大学学报(自然科学版), 2021, 52(11): 4074-4087.

[12]王旭锋, 汪洋, 张东升. 大倾角“三软”煤层巷道关键部位强化支护技术研究[J]. 采矿与安全工程学报, 2017, 34(02): 208-213.

[13]XUE Y G, MA X M, QIU D H, et al. Analysis of the factors influencing the nonuniform deformation and a deformation prediction model of soft rock tunnels by data mining[J]. Tunnelling and Underground Space Technology, 2021, 109: 103769.

[14]YANG S Q, CHEN M, FANG G, et al. Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata[J]. Tunnelling and Underground Space Technology, 2018, 82: 248-264.

[15]GHORBANI M, SHAHRIAR K, SHARIFZADEH M, et al. A critical review on the developments of rock support systems in high stress ground conditions[J]. International Journal of Mining Science and Technology, 2020, 30(05): 555-572.

[16]LISJAK A, GRASSELLI G, VIETOR T. Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 65: 96-115.

[17]WU K, SHAO Z S, SHARIFZADEH M, et al. Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(01): 144-152.

[18]李季, 强旭博, 马念杰, 等. 巷道围岩蝶形塑性区蝶叶方向性形成机制及工程应用[J]. 煤炭学报, 2021, 46(09): 2838-2852.

[19]贾后省, 王璐瑶, 刘少伟, 等. 综放工作面煤柱巷道软岩底板非对称底臌机理与控制[J]. 煤炭学报, 2019, 44(04): 1030-1040.

[20]袁亮, 薛俊华, 刘泉声, 等. 煤矿深部岩巷围岩控制理论与支护技术[J]. 煤炭学报, 2011, 36(04): 535-543.

[21]侯朝炯, 王襄禹, 柏建彪, 等. 深部巷道围岩稳定性控制的基本理论与技术研究[J]. 中国矿业大学学报, 2021, 50(01): 1-12.

[22]曹树刚, 王帅, 王寿全, 等. 大倾角煤层回采巷道断面适应性[J]. 东北大学学报(自然科学版), 2017, 38(03): 436-441.

[23]辛亚军, 郝海春, 任金武, 等. 斜顶软煤回采巷道围岩再造承载层控制机理研究[J]. 采矿与安全工程学报, 2017, 34(04): 730-738.

[24]王沉, 屠世浩, 李召鑫, 等. 深部“三软”煤层回采巷道断面优化研究[J]. 中国矿业大学学报, 2015, 44(01): 9-15.

[25]马德鹏, 杨永杰, 曹吉胜, 等. 基于能量释放的深井巷道断面形状优化[J]. 中南大学学报(自然科学版), 2015, 46(09): 3354-3360.

[26]JIANG L S, WU Q S, WU Q L, et al. Fracture failure analysis of hard and thick key layer and its dynamic response characteristics[J]. Engineering Failure Analysis, 2019, 98: 118-130.

[27]ZHAO Y H, WANG S R, ZOU Y F, et al. Pressure-arching characteristics of fractured strata structure during shallow horizontal coal mining[J]. Tehnicki Vjesnik-Technical Gazette, 2018, 25(05): 1457-1466.

[28]WANG Q, XIN Z X, JIANG B, et al. Comparative experimental study on mechanical mechanism of combined arches in large section tunnels[J]. Tunnelling and Underground Space Technology, 2020, 99: 103386.

[29]SHEN W L, BAI J B, WANG X Y, et al. Response and control technology for entry loaded by mining abutment stress of a thick hard roof[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 90: 26-34.

[30]BAI J B, SHEN W L, GUO G L, et al. Roof deformation, failure characteristics, and preventive techniques of gob-side entry driving heading adjacent to the advancing working face[J]. Rock Mechanics and Rock Engineering, 2015, 48(06): 2447-2458.

[31]董春亮, 赵光明, 李英明, 等. 深部圆形巷道开挖卸荷的围岩力学特征及破坏机理[J]. 采矿与安全工程学报, 2017, 34(03): 511-518+526.

[32]靖洪文, 孟庆彬, 朱俊福, 等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报, 2020, 37(03): 429-442.

[33]王志强, 武超, 石磊, 等. 基于复变理论的双向不等压圆形巷道围岩应力及塑性区分析[J]. 煤炭学报, 2019, 44(S2): 419-429.

[34]赵志强, 马念杰, 刘洪涛, 等. 巷道蝶形破坏理论及其应用前景[J]. 中国矿业大学学报, 2018, 47(05): 969-978.

[35]郭晓菲, 郭林峰, 马念杰, 等. 巷道围岩蝶形破坏理论的适用性分析[J]. 中国矿业大学学报, 2020, 49(04): 646-653+660.

[36]GONG W P, LUO Z, JUANG C H, et al. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays[J]. Computers and Geotechnics, 2014, 56: 69-79.

[37]UKRITCHON B, KEAWSAWASVONG S. Three-dimensional lower bound finite element limit analysis of hoek-brown material using semidefinite programming[J]. Computers and Geotechnics, 2018, 104: 248-270.

[38]LUO W J, YANG X L. 3d stability of shallow cavity roof with arbitrary profile under influence of pore water pressure[J]. Geomechanics and Engineering, 2018, 16(06): 569-575.

[39]KARGAR A R, RAHMANNEJAD R, HAJABASI M A. A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method[J]. International Journal of Solids and Structures, 2014, 51(06): 1475-1482.

[40]MANH H T, SULEM J, SUBRIN D. A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground[J]. Rock Mechanics and Rock Engineering, 2015, 48(01): 277-288.

[41]PAN Q J, DIAS D. Upper-bound analysis on the face stability of a non-circular tunnel[J]. Tunnelling and Underground Space Technology, 2017, 62: 96-102.

[42]陈子荫. 围岩力学分析中的解析方法[M]. 北京: 煤炭工业出版社, 1994.

[43]吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007.

[44]MUSKHELISHVILI NI. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Noordhoff, 1953.

[45]VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics[J]. 1997, 21: 77-89.

[46]WANG H N, ZENG G S, JIANG M J. Analytical stress and displacement around non-circular tunnels in semi-infinite ground[J]. Applied Mathematical Modelling, 2018, 63: 303-328.

[47]ZENG G S, WANG H N, JIANG M J. Analytical solutions of noncircular tunnels in viscoelastic semi-infinite ground subjected to surcharge loadings[J]. Applied Mathematical Modelling, 2022, 102: 492-510.

[48]LU A Z, ZENG G S, ZHANG N. A complex variable solution for a non-circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(12): 1833-1853.

[49]ZHOU Y L, LU A Z, CAI H, et al. Improvement of the cauchy integral method for the stresses and displacements around a deeply-buried non-circular tunnel[J]. Journal of Theoretical and Applied Mechanics, 2022, 60(01): 153-166.

[50]KARGAR A R, RAHMANNEJAD R, HAJABASI M A. A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method[J]. International Journal of Solids and Structures, 2014, 51(06): 1475-1482.

[51]赵凯, 刘长武, 张国良. 用弹性力学的复变函数法求解矩形硐室周边应力[J]. 采矿与安全工程学报, 2007, 82(03): 361-365.

[52]李明, 茅献彪. 基于复变函数的矩形巷道围岩应力与变形粘弹性分析[J]. 力学季刊, 2011, 32(02): 195-202.

[53]施高萍, 祝江鸿, 李保海, 等. 矩形巷道孔边应力的弹性分析[J]. 岩土力学, 2014, 35(09): 2587-2593+2601.

[54]范广勤, 汤澄波. 应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数[J]. 岩石力学与工程学报, 1993, 12(03): 255-264.

[55]吕爱钟, 王全为. 应用最优化技术求解任意截面形状巷道映射函数的新方法[J]. 岩石力学与工程学报, 1995, 14(03): 269-274.

[56]朱大勇, 钱七虎, 周早生, 等. 复杂形状洞室映射函数的新解法[J]. 岩石力学与工程学报, 1999, 18(03): 279-282.

[57]陈梁. 采动影响下大倾角煤层巷道围岩破裂演化与失稳机理研究[D]. 中国矿业大学, 2020.

[58]胡少轩. 大倾角煤层巷道围岩稳定性分析与控制技术研究[D]. 中国矿业大学, 2018.

[59]郑志强. 单位圆到任意曲线保角变换的近似计算方法[J]. 应用数学和力学, 1992, 13(05): 449-457.

[60]贺凯, 常聚才, 李万峰, 等. 基于复变函数的斜顶巷道围岩应力分布解析解[J]. 煤炭工程, 2021, 53(07): 97-101.

[61]杨仁树, 王千星. 非均匀荷载下斜井井壁应力和位移场弹性分析[J]. 煤炭学报, 2020, 45(11): 3726-3734.

[62]王少杰, 曾祥太, 吕爱钟. 非圆形水工衬砌隧洞与横观各向同性岩体在光滑接触下的解析分析[J]. 应用数学和力学, 2021, 42(04): 342-353.

[63]MANH H T, SULEM J, SUBRIN D. A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground[J]. Rock Mechanics and Rock Engineering, 2015, 48(01): 277-288.

[64]ZENG G S, CAI H, LU A Z. An analytical solution for an arbitrary cavity in an elastic half-plane[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4509-4526.

[65]GUO Y F, WANG H N, JIANG M J. Efficient iterative analytical model for underground seepage around multiple tunnels in semi-infinite saturated media[J]. Journal of Engineering Mechanics, 2021, 147(11): 04021101.

[66]JIANG Z Y, ZHOU G Q, JIANG L. Symplectic elasticity analysis of stress in surrounding rock of elliptical tunnel[J]. KSCE Journal of Civil Engineering, 2020, 24(10): 3119-3130.

[67]张农, 李宝玉, 李桂臣, 等. 薄层状煤岩体中巷道的不均匀破坏及封闭支护[J]. 采矿与安全工程学报, 2013, 30(01): 1-6.

[68]熊咸玉, 戴俊. 缓倾斜煤层直角梯形巷道支护技术[J]. 煤炭学报, 2020, 45(S1): 110-118.

[69]伍永平, 刘孔智, 贠东风, 等. 大倾角煤层安全高效开采技术研究进展[J]. 煤炭学报, 2014, 39(08): 1611-1618.

[70]任奋华, 来兴平, 蔡美峰, 等. 破碎岩体巷道非对称破坏与变形规律定量预计与评价[J]. 北京科技大学学报, 2008, 167(03): 221-226+232.

[71]卢兴利, 刘泉声, 苏培芳, 等. 潘二矿松软破碎巷道群大变形失稳机理及支护技术优化研究[J]. 岩土工程学报, 2013, 35(S1): 97-102.

[72]何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报, 2014, 39(08): 1409-1417.

[73]何满潮, 王晓义, 刘文涛, 等. 孔庄矿深部软岩巷道非对称变形数值模拟与控制对策研究[J]. 岩石力学与工程学报, 2008, 197(04): 673-678.

[74]LUO S H, WANG T, WU Y P, et al. Internal mechanism of asymmetric deformation and failure characteristics of the roof for longwall mining of a steeply dipping coal seam[J]. Archives of Mining Sciences, 2021, 66(01): 101-124.

[75]HUO Y M, SONG X M, SUN Z D, et al. Evolution of mining-induced stress in fully mechanized top-coal caving under high horizontal stress[J]. Energy Science & Engineering, 2020, 8(06): 2203-2215.

[76]孙玉福. 水平应力对巷道围岩稳定性的影响[J]. 煤炭学报, 2010, 35(06): 891-895.

[77]陶文斌, 陶杰, 侯俊领, 等. 深埋巷道地应力特征及优化支护设计[J]. 华南理工大学学报(自然科学版), 2020, 48(04): 28-37.

[78]高圣元, 赵维生, 赵铁林, 等. 深埋背斜软层巷道围岩稳定性演化规律研究[J]. 采矿与安全工程学报, 2017, 34(03): 495-503.

[79]陈上元, 宋常胜, 郭志飚, 等. 深部动压巷道非对称变形力学机制及控制对策[J]. 煤炭学报, 2016, 41(01): 246-254.

[80]周钢, 王鹏举, 邹长磊, 等. 复杂构造应力采区沿空掘巷非对称支护研究[J]. 采矿与安全工程学报, 2014, 31(06):901-906.

[81]马念杰, 赵希栋, 赵志强, 等. 深部采动巷道顶板稳定性分析与控制[J]. 煤炭学报, 2015, 40(10): 2287-2295.

[82]赵志强, 马念杰, 郭晓菲, 等. 大变形回采巷道蝶叶型冒顶机理与控制[J]. 煤炭学报, 2016, 41(12): 2932-2939.

[83]刘洪涛, 吴祥业, 镐振, 等. 双巷布置工作面留巷塑性区演化规律及稳定控制[J]. 采矿与安全工程学报, 2017, 34(04): 689-697.

[84]李季, 马念杰, 丁自伟. 基于主应力方向改变的深部沿空巷道非均匀大变形机理及稳定性控制[J]. 采矿与安全工程学报, 2018, 35(04): 670-676.

[85]贾后省, 李国盛, 王路瑶, 等. 采动巷道应力场环境特征与冒顶机理研究[J]. 采矿与安全工程学报, 2017, 34(04): 707-714.

[86]杨仁树, 朱晔, 李永亮, 等. 采动影响巷道弱胶结层状底板稳定性分析与控制对策[J]. 煤炭学报, 2020, 45(07): 2667-2680.

[87]赵洪宝, 程辉, 李金雨, 等. 孤岛煤柱影响下巷道围岩非对称性变形机制研究[J]. 岩石力学与工程学报, 2020, 39(S1): 2771-2784.

[88]吴祥业, 刘洪涛, 李建伟, 等. 重复采动巷道塑性区时空演化规律及稳定控制[J]. 煤炭学报, 2020, 45(10): 3389-3400.

[89]赵维生, 韩立军, 赵周能, 等. 主应力对巷道交岔点围岩稳定性影响研究[J]. 岩土力学, 2015, 36(06): 1752-1760.

[90]张文忠. 地堑状断层组影响下采动主应力偏转规律研究[J]. 安徽理工大学学报(自然科学版), 2019, 39(06): 44-49.

[91]赵毅鑫, 卢志国, 朱广沛, 等. 考虑主应力偏转的采动诱发断层活化机理研究[J]. 中国矿业大学学报, 2018, 47(01): 73-80.

[92]卢志国, 鞠文君, 赵毅鑫, 等. 采动诱发应力主轴偏转对断层稳定性影响分析[J]. 岩土力学, 2019, 40(11): 4459-4466.

[93]王家臣, 王兆会. 综放开采顶煤裂隙扩展的应力驱动机制[J]. 煤炭学报, 2018, 43(09): 2376-2388.

[94]韩宇峰, 王兆会, 唐岳松. 综放工作面临空开采顶煤主应力偏转特征[J]. 煤炭学报, 2020, 45(S1): 12-22.

[95]王家臣, 王兆会, 杨杰, 等. 千米深井超长工作面采动应力偏转特征及应用[J]. 煤炭学报, 2020, 45(03): 876-888.

[96]WANG J C, WANG Z H, YANG S L. Stress analysis of longwall top-coal caving face adjacent to the gob[J]. International Journal of Mining Reclamation and Environment, 2020, 34(07): 476-497.

[97]WANG Z H, WANG J C, YANG S L. An ultrasonic-based method for longwall top-coal cavability assessment[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 209-225.

[98]庞义辉, 王国法, 李冰冰. 深部采场覆岩应力路径效应与失稳过程分析[J]. 岩石力学与工程学报, 2020, 39(04): 682-694.

[99]赵雁海, 俞缙, 周晨华, 等. 考虑主应力轴偏转影响的远场拱壳围岩压力拱效应表征[J]. 岩土工程学报, 2021, 43(10): 1842-1850+1958.

[100]ZHU Z Q, SHENG Q, ZHANG Y M, et al. Numerical modeling of stress disturbance characteristics during tunnel excavation[J]. Advances in Materials Science and Engineering, 2020, 2020(09): 1-9.

[101]汪大海, 贺少辉, 刘夏冰, 等. 基于主应力偏转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38(06): 1284-1296.

[102]陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴偏转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(05): 1402-1406.

[103]应宏伟, 李晶, 谢新宇, 等. 考虑主应力轴偏转的基坑开挖应力路径研究[J]. 岩土力学, 2012, 33(04): 1013-1017.

[104]朱泽奇, 盛谦, 周永强, 等. 隧洞围岩应力开挖扰动特征与规律研究[J]. 应用基础与工程科学学报, 2015, 23(02): 349-358.

[105]张社荣, 梁礼绘. 考虑三维应力偏转的隧洞衬砌支护时机研究[J]. 水利学报, 2007, 369(06): 704-709.

[106]崔溦, 王宁. 开挖过程中隧洞围岩应力主轴偏转及其对围岩破坏模式的影响[J]. 中南大学学报(自然科学版), 2014, 45(06): 2062-2070.

[107]李建贺, 盛谦, 朱泽奇, 等. 地下洞室分期开挖应力扰动特征与规律研究[J]. 岩土力学, 2017, 38(02): 549-556.

[108]王猛, 牛誉贺, 于永江, 等. 主应力演化影响下的深部巷道围岩变形破坏特征试验研究[J]. 岩土工程学报, 2016, 38(02): 237-244.

[109]刘立鹏, 汪小刚, 贾志欣, 等. 掌子面推进过程围岩应力及裂隙发育规律[J]. 中南大学学报(自然科学版), 2013, 44(02): 764-771.

[110]熊良宵, 杨林德. 深埋隧洞开挖造成的应力变化过程[J]. 中南大学学报(自然科学版), 2009, 40(01): 236-242.

[111]周辉, 黄磊, 姜玥, 等. 岩石空心圆柱扭剪仪研制的重点问题及研究进展[J]. 岩土力学, 2018, 39(12): 4295-4304.

[112]孙常新, 韩立新, 高峰. 隧道开挖中的应力偏转和裂隙塑性变形问题研究[J]. 现代隧道技术, 2011, 48(01): 6-11.

[113]靳晓光, 李晓红. 高地应力区深埋隧道三维应力场数值模拟[J]. 重庆大学学报(自然科学版), 2007, 30(06): 97-101.

[114]RUAN H, WANG Y K, WAN Y S, et al. Three-dimensional numerical modeling of ground deformation during shield tunneling considering principal stress rotation[J]. International Journal of Geomechanics, 2021, 21(07): 04021095.

[115]BASARIR H, OGE I F, AYDIN O. Prediction of the stresses around main and tail gates during top coal caving by 3d numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 88-97.

[116]CHEN C N, CHANG W C. Optimal rock bolt installation design based on 3d rock stress distribution and stereography coupled analysis[J]. Journal of Mechanics, 2018, 34(06): 749-758.

[117]于学馥, 郑颖人, 刘怀恒. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983.

[118]黄戡, 安永林, 岳健, 等. 渗透力对新奥法隧道掌子面稳定性的影响[J]. 中南大学学报(自然科学版), 2019, 50(05): 1221-1228.

[119]潘锐, 王雷, 蔡毅, 等. 深部巷道平顶稳定性分析及返修控制研究[J]. 采矿与安全工程学报, 2021, 38(04): 756-765.

[120]靖洪文, 吴疆宇, 孟波, 等. 深部矩形底煤巷围岩破坏失稳全过程宏细观演化特征研究[J]. 采矿与安全工程学报, 2022, 39(01): 82-93.

[121]左建平, 孙运江, 文金浩, 等. 深部巷道全空间协同控制技术及应用[J]. 清华大学学报(自然科学版), 2021, 61(08): 853-862.

[122]单仁亮, 仝潇, 黄鹏程, 等. 管索组合结构及其力学性能研究[J]. 岩土力学, 2022, 43(03): 602-614.

[123]赵兴东, 周鑫, 赵一凡, 等. 深部金属矿采动灾害防控研究现状与进展[J]. 中南大学学报(自然科学版), 2021, 52(08): 2522-2538.

[124]康红普. 巷道围岩的关键圈理论[J]. 力学与实践, 1997, 19(01): 35-37.

[125]何满潮, 景海河, 孙晓明. 软岩工程力学[M]. 北京: 科学出版社, 2002.

[126]景海河, 何满潮, 孙晓明, 等. 软岩巷道支护荷载的确定方法[J]. 中国矿业大学学报, 2002, 31(05): 39-41.

[127]李树清, 王卫军, 潘长良. 深部巷道围岩承载结构的数值分析[J]. 岩土工程学报, 2006, 28(03): 377-381.

[128]朱建明, 徐秉业, 任天贵, 等. 巷道围岩主次承载区协调作用[J]. 中国矿业, 2000, 9(02): 46-49.

[129]王卫军, 李树清, 欧阳广斌. 深井煤层巷道围岩控制技术及试验研究[J]. 岩石力学与工程学报, 2006, 25(10): 2102-2107.

[130]田永山. 软泥岩巷道矿压机理的相似模拟探讨[J]. 阜新矿业学院学报, 1987, 8(04): 15-25.

[131]谢广祥, 李家卓, 王磊, 等. 采场底板围岩应力壳力学特征及时空演化[J]. 煤炭学报, 2018, 43(01): 52-61.

[132]黄运飞. 围岩自承岩环作用原理的边界元分析[J]. 工程力学, 1989(02): 138-144.

[133]黄庆享, 郑超. 巷道支护的自稳平衡圈理论[J]. 岩土力学, 2016, 37(05): 1231-1236.

[134]陈学华, 沈海鸿, 王善勇. 巷道围岩自稳结构原理及其影响因素研究[J]. 辽宁工程技术大学学报(自然科学版), 2002, 21(03): 261-263.

[135]郑建伟, 鞠文君, 张镇, 等. 等效断面支护原理与其应用[J]. 煤炭学报, 2020, 45(03): 1036-1043.

[136]董方庭. 巷道围岩松动圈支护理论及应用技术[M]. 北京: 煤炭工业出版社, 2001.

[137]王斌, 王卫军, 赵伏军, 等. 基于巷道围岩自承特性的锚杆锚固效果研究[J]. 岩土力学, 2014, 35(07): 1965-1972.

[138]杨本生, 贾永丰, 孙利辉, 等. 高水平应力巷道连续“双壳”治理底臌实验研究[J]. 煤炭学报, 2014, 39(08): 1504-1510.

[139]杨本生, 王仲永, 贾永丰, 等. 深部高应力工程软岩巷道非连续“双壳”围岩控制机理研究[J]. 采矿与安全工程学报, 2015, 32(05): 721-727.

[140]韩立军, 孟庆彬, 魏忠民, 等. 煤巷锚网支护系统安全评价方法研究[J]. 采矿与安全工程学报, 2013, 30(06): 791-798.

[141]赵光明, 张小波, 王超, 等. 软弱破碎巷道围岩深浅承载结构力学分析及数值模拟[J]. 煤炭学报, 2016, 41(07): 1632-1642.

[142]马全礼, 代进, 李洪. 锚杆支护对围岩碎裂区的作用分析[J]. 矿山压力与顶板管理, 2005, 22(01): 42-43+46.

[143]彭瑞, 赵启峰, 朱建明, 等. 软岩巷道开挖面承载结构研究及分层支护设计[J]. 地下空间与工程学报, 2019, 15(02): 489-504.

[144]宋桂军, 张彬, 付兴玉, 等. 浅埋煤层“主控层-软弱层”组合结构的形成机理及应用[J]. 采矿与安全工程学报, 2021, 38(02): 286-294.

[145]焦建康, 鞠文君. 动载扰动下巷道锚固承载结构冲击破坏机制[J]. 煤炭学报, 2021, 46(S1): 94-105.

[146]李英明, 赵呈星, 刘增辉, 等. 围岩承载层分层演化规律及“层-双拱”承载结构强度分析[J]. 岩石力学与工程学报, 2020, 39(02): 217-227.

[147]宁建国, 邱鹏奇, 杨书浩, 等. 深部大断面硐室动静载作用下锚固承载结构稳定机理研究[J]. 采矿与安全工程学报, 2020, 37(01): 50-61.

[148]卜庆为, 辛亚军, 王超, 等. 交错巷道巷间围岩承载结构稳定性分析[J]. 煤炭学报, 2018, 43(07): 1866-1877.

[149]谭云亮, 范德源, 刘学生, 等. 煤矿深部超大断面硐室群围岩连锁失稳控制研究进展[J]. 煤炭学报, 2022, 47(01): 180-199.

[150]侯公羽, 梁金平, 李小瑞. 常规条件下巷道支护设计的原理与方法研究[J]. 岩石力学与工程学报, 2022, 41(04): 691-711.

[151]彭赐灯. 矿山压力与岩层控制研究热点最新进展评述[J]. 中国矿业大学学报, 2015, 44(01): 1-8.

[152]CHEN Y, MA S Q, YU Y. Stability control of underground roadways subjected to stresses caused by extraction of a 10-m-thick coal seam: A case study[J]. Rock Mechanics and Rock Engineering, 2017, 50(09): 2511-2520.

[153]XIE Z Z, ZHANG N, FENG X W, et al. Investigation on the evolution and control of surrounding rock fracture under different supporting conditions in deep roadway during excavation period[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104122.

[154]HU X Y, FANG Y, WALTON G, et al. Analysis of the behaviour of a novel support system in an anisotropically jointed rock mass[J]. Tunnelling and Underground Space Technology, 2019, 83: 113-134.

[155]HUANG W P, YUAN Q, TAN Y L, et al. An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field[J]. Tunnelling and Underground Space Technology, 2018, 73: 26-36.

[156]LIU W W, FENG Q, FU S G, et al. Elasto-plastic solution for cold-regional tunnels considering the compound effect of non-uniform frost heave, supporting strength and supporting time[J]. Tunnelling and Underground Space Technology, 2018, 82: 293-302.

[157]WANG H, JIANG C, ZHENG P Q, et al. A combined supporting system based on filled-wall method for semi coal-rock roadways with large deformations[J]. Tunnelling and Underground Space Technology, 2020, 99: 103382.

[158]何满潮, 齐干, 程骋, 等. 深部复合顶板煤巷变形破坏机制及耦合支护设计[J]. 岩石力学与工程学报, 2007, 184(05): 987-993.

[159]张勇, 申付新, 孙晓明, 等. 三软煤层切顶成巷二次复用围岩应力及变形演化规律[J]. 中国矿业大学学报, 2020, 49(02): 247-254.

[160]王俊峰, 王恩, 陈冬冬, 等. 窄柔模墙体沿空留巷围岩偏应力演化与控制[J]. 煤炭学报, 2021, 46(04): 1220-1231.

[161]武精科, 阚甲广, 谢生荣, 等. 深井沿空留巷非对称破坏机制与控制技术研究[J]. 采矿与安全工程学报, 2017, 34(04): 739-747.

[162]苏学贵, 宋选民, 李浩春, 等. 特厚倾斜复合顶板巷道破坏特征与稳定性控制[J]. 采矿与安全工程学报, 2016, 33(02): 244-252.

[163]张进鹏, 刘立民, 刘传孝, 等. 松软厚煤层异型开切眼新型预应力锚注支护研究与应用[J]. 煤炭学报, 2021, 46(10): 3127-3138.

[164]郑铮, 杨增强, 朱恒忠, 等. 倾斜煤层沿空异形巷道煤柱宽度与围岩控制研究[J]. 采矿与安全工程学报, 2019, 36(02): 223-231.

[165]于洋, 柏建彪, 王襄禹, 等. 软岩巷道非对称变形破坏特征及稳定性控制[J]. 采矿与安全工程学报, 2014, 31(03): 340-346.

[166]吴祥业, 王婧雅, 陈世江, 等. 重复采动巷道塑性区调控原理与稳定控制[J]. 岩土力学, 2022, 43(01): 205-217.

[167]杨括宇, 陈从新, 夏开宗, 等. 崩落法开采金属矿巷道围岩破坏机制的断层效应[J]. 岩土力学, 2020, 41(S1): 279-289.

[168]杨仁树, 李永亮, 郭东明, 等. 深部高应力软岩巷道变形破坏原因及支护技术[J]. 采矿与安全工程学报, 2017, 34(06): 1035-1041.

[169]洛锋, 曹树刚, 李国栋, 等. 煤层巷道围岩破断失稳演化特征和分区支护研究[J]. 采矿与安全工程学报, 2017, 34(03): 479-487.

[170]李臣, 郭晓菲, 霍天宏, 等. 预掘双回撤通道煤柱留设及其围岩稳定性控制[J]. 华中科技大学学报(自然科学版), 2021, 49(04): 20-25, 31.

[171]刘帅, 杨科, 唐春安. 深井软岩下山巷道群非对称破坏机理与控制研究[J]. 采矿与安全工程学报, 2019, 36(03): 455-464.

[172]王立平, 李学华, 程建龙, 等. 巷道受断层端部应力集中失稳机理及控制研究[J]. 采矿与安全工程学报, 2017, 34(03): 472-478.

[173]陈正拜, 李永亮, 杨仁树, 等. 窄煤柱巷道非均匀变形机理及支护技术[J]. 煤炭学报, 2018, 43(07): 1847-1857.

[174]张广超, 何富连, 来永辉, 等. 高强度开采综放工作面区段煤柱合理宽度与控制技术[J]. 煤炭学报, 2016, 41(09): 2188-2194.

[175]范磊,王卫军,袁超. 基于可拓学倾斜软岩巷道支护效果评价方法[J]. 采矿与安全工程学报, 2020, 37(03): 498-504.

[176]谭云亮, 范德源, 刘学生, 等. 煤矿超大断面硐室判别方法及其工程特征[J]. 采矿与安全工程学报, 2020, 37(01): 23-31.

[177]李术才, 王德超, 王琦, 等. 深部厚顶煤巷道大型地质力学模型试验系统研制与应用[J]. 煤炭学报, 2013, 38(09): 1522-1530.

[178]蒋金泉, 曲华, 刘传孝. 巷道围岩弱结构灾变失稳与破坏区域形态的奇异性[J]. 岩石力学与工程学报, 2005, 24(18): 3373-3379.

[179]PENG R, MENG X R, ZHAO G M, et al. Multi-echelon support method to limit asymmetry instability in different lithology roadways under high ground stress[J]. Tunnelling and Underground Space Technology, 2021, 108: 103681.

[180]WU G J, CHEN W Z, JIA S P, et al. Deformation characteristics of a roadway in steeply inclined formations and its improved support[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104324.

[181]李冲, 何思锋, 陈梁. 大跨度穿断层软岩巷道顶板非对称破裂机制与控制对策研究[J]. 采矿与安全工程学报, 2021, 38(06): 1081-1090.

[182]谢生荣, 岳帅帅, 陈冬冬, 等. 深部充填开采留巷围岩偏应力演化规律与控制[J]. 煤炭学报, 2018, 43(07): 1837-1846.

[183]MA Q, TAN Y L, ZHAO Z H, et al. Roadside support schemes numerical simulation and field monitoring of gob-side entry retaining in soft floor and hard roof[J]. Arabian Journal of Geosciences, 2018, 11(18): 563.

[184]MA W Q, WANG T X. Instability mechanism and control countermeasure of a cataclastic roadway regenerated roof in the extraction of the remaining mineral resources: A case study[J]. Rock Mechanics and Rock Engineering, 2019, 52(07): 2437-2457.

[185]YANG H Y, CAO S G, LI Y, et al. Soft roof failure mechanism and supporting method for gob-side entry retaining[J]. Minerals, 2015, 5(04): 707-722.

[186]FAN D Y, LIU X S, TAN Y L, et al. An innovative approach for gob-side entry retaining in deep coal mines: A case study[J]. Energy Science & Engineering, 2019, 7(06): 2321-2335.

[187]MENG F B, WEN Z J, SHEN B T, et al. Applicability of yielding-resisting sand column and three-dimensional coordination support in stopes[J]. Materials, 2019, 12(16): 2635.

[188]HUANG W P, WANG X W, SHEN Y S, et al. Application of concrete-filled steel tubular columns in gob-side entry retaining under thick and hard roof stratum: A case study[J]. Energy Science & Engineering, 2019, 7(06): 2540-2553.

[189]马振乾, 姜耀东, 杨英明, 等. 急倾斜松软煤层巷道变形特征与控制技术[J]. 采矿与安全工程学报, 2016, 33(02): 253-259.

[190]刘垚鑫, 高明仕, 贺永亮, 等. 倾斜特厚煤层综放沿空掘巷围岩稳定性研究[J]. 中国矿业大学学报, 2021, 50(06): 1051-1059.

[191]李岩松, 陈寿根. 基于复变函数理论的非圆形隧道解析解[J]. 西南交通大学学报, 2020, 55(02): 265-272.

[192]杨公标, 张成平, 闵博, 等. 浅埋含空洞地层圆形隧道开挖引起的位移复变函数弹性解[J]. 岩土力学, 2018, 39(S2): 25-36.

[193]武强, 李学渊. 基于计算几何和信息图谱的矿山地质环境遥感动态监测[J]. 煤炭学报, 2015, 40(01): 160-166.

[194]崔广心. 相似理论与模型试验[M]. 江苏: 中国矿业大学出版社, 1990.

[195]QIU J D, LI X B, LI D Y, et al. Physical model test on the deformation behavior of an underground tunnel under blasting disturbance[J]. Rock Mechanics and Rock Engineering, 2021, 54(01): 91-108.

[196]GHABRAIE B, REN G, SMITH J, et al. Application of 3d laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movement[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 219-230.

[197]LV A, MASOUMI H, WALSH S D C, et al. Elastic-softening-plasticity around a borehole: An analytical and experimental study[J]. Rock Mechanics and Rock Engineering, 2019, 52(04): 1149-1164.

[198]杨济铭, 张红日, 陈林, 等. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析[J]. 中南大学学报(自然科学版), 2022, 53(01): 225-238.

[199]WANG W Q, YE Y C, WANG Q H, et al. Experimental study on anisotropy of strength, deformation and damage evolution of contact zone composite rock with dic and ae techniques[J]. Rock Mechanics and Rock Engineering, 2022, 55(02): 837-853.

[200]SUN J Z, LIU J Y. Visualization of tunnelling-induced ground movement in transparent sand[J]. Tunnelling and Underground Space Technology, 2014, 40: 236-240.

[201]罗生虎, 王同, 田程阳, 等. 大倾角煤层长壁开采顶板应力传递路径倾角效应[J]. 煤炭学报, 2022, 47(02): 623-633.

[202]杨爱武, 杨少坤, 于月鹏. 考虑不同波形影响的主应力轴连续旋转下吹填土动力特性研究[J]. 工程地质学报, 2021, 29(01): 1-11.

[203]董彤, 郑颖人, 孔亮, 等. 空心圆柱扭剪试验中广义应力路径的控制与实现[J]. 岩土工程学报, 2017, 39(S1): 106-110.

[204]王杰, 贡京伟, 赵泽印. 单轴压类岩石试件应变局部化位置、方向及预警应用研究[J]. 岩土力学, 2018, 39(S2): 186-194.

[205]顾路, 王学滨, 杜亚志, 等. 单轴压缩湿砂土试样主应变轴偏转规律试验研究[J]. 岩土力学, 2016, 37(04): 1013-1022+1041.

[206]JAEGER J C. Shear failure of anistropic rocks[J]. Geological Magazine, 1960, 97(01): 65-72.

中图分类号:

 TD353    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式