论文中文题名: | 基于生成对抗网络的图像超分辨率重建方法研究 |
姓名: | |
学号: | 21208223080 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 数字图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-13 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Research on Image Super-Resolution Reconstruction Method Based on Generative Adversarial Network |
论文中文关键词: | |
论文外文关键词: | Super-resolution reconstruction ; Generative adversarial network ; Multi-scale perception ; Attention mechanism ; Model lightweight |
论文中文摘要: |
图像超分辨率重建是一种图像处理技术,通过增加图像的空间分辨率,使其在细节和清晰度上得到改善。随着人工智能的发展,卷积神经网络的出现使图像超分辨率重建技术成为了研究热点,提高了图像重建的清晰度和质量。基于深度学习的图像超分辨率重建虽然已经取得了显著的成功,但仍然存在伪影、纹理细节模糊、参数量大和运行时间长等问题。本文在生成对抗网络的基础上,通过改进网络结构和损失函数、设计新型模块、增强图像数据等方法对模型进行优化,从而提高图像的重建效果,并使模型更加轻量化。本文的主要研究内容如下: (1) 针对超分辨率重建中存在图像过于平滑和纹理细节模糊的问题,提出了多尺度感知生成对抗网络的图像超分辨率重建方法。首先,采用多分支路径实现多尺度感知特征的提取,使每个分支专注于捕获特定尺度和语义信息。同时,设计通道空间注意力块,增强模型对输入数据的关注能力,更加有效地捕获重要的通道和空间特征,提升模型的重建性能。然后,通过结合增强型残差密集块进一步促使信息在网络中更直接地传递,缓解梯度消失并增强图像纹理细节。最后,将感知损失、对抗损失和像素损失进行加权和,防止图像平滑现象发生,并对模型性能进行优化,提高模型的鲁棒性。实验结果表明,该方法在多个基准数据集上表现出色,客观评价指标明显优于其他方法,能恢复出细节更清晰且真实性更强的超分辨率图像。相比其他算法,分别在PSNR、SSIM和LPIPS上平均改进了1.357dB、0.043和0.025。 (2) 针对超分辨率重建模型中存在参数量大、运行时间长的问题,提出了深度可分离生成对抗网络的轻量级图像超分辨率重建方法。首先,整个网络使用深度可分离卷积,在深度卷积和逐点卷积中捕获空间特征和通道特征,并有效减少参数量。同时,设计特征分离蒸馏块,通过在不同层之间传递特征信息,促使模型学习到更为丰富和高级的特征表示,并将部分特征信息传递到浅层残差块中逐步优化,从而使网络更加轻量化。然后,引入轻量级坐标注意力,关注输入中特定位置的特征,共享注意力权重计算参数,以降低计算复杂度。最后,设计SN-PatchGAN判别网络,捕捉图像局部信息并对每个局部块进行判别,提高对图像结构的感知,从而指导生成网络产生更优质的图像。实验结果表明,该方法在使用更少参数量和更短运行时间的同时,能够重建出质量更高、感官性更强的超分辨率图像。相比其他算法,分别在PSNR、SSIM和LPIPS指标上平均改进了0.982dB、0.051和0.037,参数量平均减少了135K,运行时间平均缩短了0.17s。 |
论文外文摘要: |
Image super-resolution reconstruction is an image processing technique that improves an image in detail and clarity by increasing its spatial resolution. With the development of artificial intelligence, the emergence of convolutional neural network makes the image super-resolution reconstruction technique become a research hotspot, which improves the clarity and quality of image reconstruction. Although image super-resolution reconstruction based on deep learning has achieved remarkable success, it still suffers from artefacts, blurred texture details, large number of parameters and long running time. In this paper, based on generative adversarial networks, the model is optimised by improving the network structure and loss function, designing novel modules, and enhancing the image data, so as to improve the reconstruction of images and make the model more lightweight. The main research content of this paper is as follows. (1) Aiming at the problems of too smooth image and blurred texture details in super-resolution reconstruction, a multi-scale perceptual generative adversarial network is proposed for image super-resolution reconstruction. Firstly, multi-branching paths are used to achieve multi-scale perceptual feature extraction, so that each branch focuses on capturing specific scale and semantic information. At the same time, a channel spatial attention block is designed to enhance the model's ability to focus on the input data, capture important channel and spatial features more effectively, and improve the reconstruction performance of the model. Then, information is further prompted to pass more directly through the network by incorporating enhanced residual density blocks to mitigate gradient vanishing and enhance image texture details. Finally, perceptual loss, adversarial loss and pixel loss are weighted and summed to prevent image smoothing from occurring and optimise model performance to improve model robustness. The experimental results show that the method performs well on several benchmark datasets, and the objective evaluation indexes are significantly better than other methods, recovering super-resolution images with clearer details and greater realism. Compared with other algorithms, it improves on average 1.357dB, 0.043 and 0.025 in PSNR, SSIM and LPIPS metrics, respectively. (2) Aiming at the problem of large number of parameters and long running time of super-resolution reconstruction model, a lightweight image super-resolution reconstruction method with depth-separable generative adversarial network is proposed. Firstly, the whole network uses depth-separable convolution to capture spatial and channel features in deep and point-by-point convolution, and effectively reduce the number of parameters. At the same time, feature separation distillation blocks are designed to induce the model to learn richer and more advanced feature representations by transferring feature information between different layers, and pass some feature information to shallow residual blocks for gradual optimisation, thus making the network more lightweight. Then, lightweight coordinate attention is introduced to focus on features at specific locations in the input, and the attention weight calculation parameters are shared to reduce the computational complexity. Finally, the SN-PatchGAN discriminative network is designed to capture the local information of the image and discriminate each local block to improve the perception of the image structure, thus guiding the generative network to produce better quality images. Experimental results show that the method is capable of reconstructing higher quality and sensory super-resolution images while using fewer parameters and shorter run times. Compared with other algorithms, it improves on average 0.982dB, 0.051 and 0.037 in PSNR, SSIM and LPIPS metrics, respectively, with an average reduction of 135K in the number of parameters and an average reduction of 0.17s in the running time. |
参考文献: |
[1] 黄健, 赵元元, 郭苹, 等. 深度学习的单幅图像超分辨率重建方法综述[J]. 算机工程与应用, 2021, 57(18): 13-23. [4] 汪亚东. 基于通道特征融合与多尺度特征的单图像超分辨率重建算法研究[D]. 中国科学技术大学, 2022. [6] 王宇骥, 董昊呈, 龚雪鸾, 等. 基于潜在注意力的高性能视频超分辨率技术[J]. 计算机科学, 2023, 50(S2): 228-237. [7] 贺温磊, 王朝立, 孙占全. 基于生成对抗网络的遥感图像超分辨率重建[J]. 信息与控制, 2021, 50(2): 195-203. [9] 张艳青, 马建红, 韩颖, 等. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. [11] 邢苏霄, 陈金玲, 李锡超, 等. 基于深度学习的单图像超分辨率重建综述[J]. 计算机系统应用, 2022, 31(7): 23-34. [12] Harris J L. Diffraction and resolving power[J]. JOSA, 1964, 54(7): 931-936. [13] 李展, 张庆丰, 孟小华, 等. 多分辨率图像序列的超分辨率重建[J]. 自动化学报, 2012, 38(11): 1804-1814. [21] 陈晓, 荆茹韵. 单图像超分辨率方法综述[J]. 电子测量技术, 2022, 45(09): 104-112. [22] 李岩, 杨得成, 于光华, 等. 基于深度学习的红外图像超分辨率重建方法[J]. 激光杂志, 2024, 45(01): 142-147. [29] 梁敏, 王昊榕, 张瑶, 等. 基于加速残差网络的图像超分辨率重建方法[J]. 计算机应用, 2021, 41(05): 1438-1444. [30] 王拓然, 程娜, 丁士佳, 等. 基于自适应注意力融合特征提取网络的图像超分辨率[J]. 计算机应用研究, 2023, 40(11): 3472-3477. [33] 臧永盛, 周冬明, 王长城, 等. 基于层次注意力的图像超分辨率重建[J]. 无线电工程, 2021, 51(11): 1245-1253. [38] 贺智明, 黄志成. 基于坐标注意力生成对抗网络的图像超分辨率重建[J/OL]. 微电子学与计算机, 2023, 40(12): 35-44. [40] 唐艳秋, 潘泓, 朱亚平, 等. 图像超分辨率重建研究综述[J]. 电子学报, 2020, 48(7): 1407-1420. [50] 杜均森, 郭杰龙, 俞辉, 等. 基于卷积稀疏编码与生成对抗网络的图像超分辨率重建[J]. 液晶与显示, 2023, 38(10): 1423-1433. [51] 刘郭琦, 刘进锋, 朱东辉. 基于生成对抗网络的图像超分辨率重建算法[J]. 液晶与显示, 2021, 36(12): 1720-1727. [58] 邓酩, 柳庆龙, 侯立宪. 多尺度残差生成对抗网络的图像超分辨率重建[J]. 科学技术与工程, 2023, 23(31): 13472-13481. [76] 吕佳, 许鹏程. 多尺度自适应上采样的图像超分辨率重建算法[J]. 计算机科学与探索, 2023, 17(4): 879-891. [80] 盘展鸿, 朱鉴, 迟小羽, 等. 基于特征融合和注意力机制的图像超分辨率模型[J]. 计算机应用研究, 2022, 39(3): 884-888. |
中图分类号: | TP391 |
开放日期: | 2024-06-14 |