- 无标题文档
查看论文信息

论文中文题名:

 HT700镍铁基高温合金TIG焊接头组织与性能研究    

姓名:

 郭长辉    

学号:

 20211225035    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 高温合金    

第一导师姓名:

 刘二勇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on microstructure and properties of TIG welded joint of HT700 nickel-iron based superalloy    

论文中文关键词:

 HT700高温合金 ; TIG焊 ; 裂纹敏感性 ; 热力学模拟 ; 焊后热处理 ; 蠕变性能    

论文外文关键词:

 HT700 superalloy ; TIG welding ; crack sensitivity ; thermomechanical simulation ; post-weld heat treatment ; creep properties    

论文中文摘要:

提高燃煤发电机组的热效率,增加煤电转化率是减少燃煤电厂碳排放的必然要求。发展更高参数、更大容量的700 ℃先进超超临界(A-USC)燃煤发电技术可将发电效率可提高约50%,煤炭消耗量和CO2排放量降低24%。HT700(GH4070P)镍铁基高温合金具有优异的机械性能和高温组织稳定性,被认为是700 ℃超超临界机组主蒸汽管道的备选材料。燃煤发电机组主蒸汽管道是典型的焊接结构部件,要求基体材料具有良好的焊接性能,并对其焊接接头的高温力学性能提出了更高要求。本文首先对HT700高温合金进行TIG焊点状拘束裂纹试验和横向拘束裂纹实验,分析了不同焊接条件下焊接接头的微观组织、性能和近缝区液化裂纹敏感性,结合热力学模拟分析了焊缝凝固裂纹敏感性,然后对管道焊接接头进行焊后热处理、长时热暴露以及持久性能实验,分析了焊接接头显微组织和性能,并采用Larson-Miller参数法预测了不同热处理制度下的焊接接头蠕变寿命,实现了焊后热处理制度的优化。全文获得以下主要结论:

(1)点状拘束裂纹实验表明,HT700合金自熔焊缝区存在凝固裂纹,焊接热影响区的近缝区由于Mo、Nb、W元素向γ基体晶界扩散形成合金碳化物MC,并与γ发生共晶反应而产生液化裂纹。随着焊接热输入的增大,近缝区的液化裂纹敏感性降低,当热输入达到29.2 kJ时,最大裂纹长度MCL最小。

(2)热力学稳态相图计算表明,Inconel 617焊丝和Haynes 282焊丝在凝固过程中均无杂质相产生,Inconel 617焊丝填充的焊缝金属具有更小的凝固温度区间(78.0 ℃)和更小的热膨胀系数(27.73×10-6 K-1~19.48×10-6 K-1);Haynes 282焊丝熔覆金属在凝固温度区间具有比Inconel 617更低的液相粘度。

(3)横向拘束裂纹实验表明,在348.9 J/mm、384.0 J/mm的热输入条件下,HT700合金填充Haynes 282焊丝形成的焊缝与基体熔合效果良好,但有凝固裂纹产生;填充Inconel 617焊丝形成的焊缝成型良好,未发现凝固裂纹。随着热输入的增大,Inconel 617的枝晶间偏析系数较小,组织更为均匀,MC碳化物也更细小。热力学模拟结果显示,HT700合金填充Haynes 282焊丝与Inconel 617焊丝的焊缝相组成接近,填充Inconel 617形成的焊缝金属具有更小的液相粘度、凝固温度区间和热膨胀系数。

(4)HT700合金管道焊接焊缝成型良好,焊缝区组织由γ枝晶和二次碳化物M6C组成;热影响区晶粒无明显长大现象,但晶界发生弯曲变形。两种焊后热处理的焊接接头热影响区和基体均析出了球状γ'强化相。经过675 ℃/4000 h热暴露后,两种焊后热处理的HT700合金焊接接头热影响区和基体沉淀强化相γ'形态始终保持球状,长大规律符合LSW理论。

(5)持久实验表明,700 ℃和980 ℃焊后热处理的焊接接头在210 MPa/700 ℃、230 MPa/700 ℃、260 MPa/675 ℃、280 MPa/675 ℃的温度/载荷条件下的持久断裂时间分别为2765.4 h、683.3 h、2472.5 h、2009.6 h和2188.1 h、1098.4 h、2564.6 h、1293.2 h。利用Larson-Miller参数法建立了焊接接头服役温度、载荷与蠕变寿命的定量关系,在675 ℃/30 MPa的服役条件下,700 ℃ PWHT焊接接头的蠕变寿命(982692.4 h)大于980 ℃ PWHT的蠕变寿命(751704.4 h)。

论文外文摘要:

Improving the thermal efficiency of coal-fired generating units and increasing the conversion rate of coal-fired power is an inevitable requirement for reducing carbon emissions from coal-fired power plants. The development of 700 °C advanced ultra-supercritical (A-USC) coal-fired power generation technology with higher parameters and larger capacity can increase power generation efficiency by about 50%, and reduce coal consumption and CO2 emissions by 24%. HT700 (GH4070P) nickel-iron-based superalloy has excellent mechanical properties and high temperature microstructure stability, and is considered as an alternative material for the main steam pipeline of 700 °C ultra-supercritical units. The main steam pipe of coal-fired generating units is a typical welded structural component, which requires the matrix material to have good welding performance, and puts forward higher requirements for the high temperature mechanical properties of its welded joints. In this paper, firstly, TIG spot-like constraint crack test and transverse constraint crack test were carried out on HT700 superalloy. The microstructure, properties and near-seam liquefaction crack sensitivity of welded joints under different welding conditions were analyzed. The sensitivity of weld solidification crack was analyzed by thermodynamic simulation. Then, post-weld heat treatment, long-term thermal exposure and creep performance experiments were carried out on pipeline welded joints. The microstructure and properties of welded joints were analyzed. The creep life of welded joints under different heat treatment systems was predicted by Larson-Miller parameter method, and the post-weld heat treatment system was optimized. The main conclusions are as follows :

(1) The spot-varestraint constraint crack test shows that there are solidification cracks in the self-fusion weld of HT700 alloy. The near-seam area of the welding heat affected zone is liquefied due to the formation of a eutectic liquid film resulting from the diffusion of Mo, Nb, and W elements to the grain boundary of the γ matrix to form alloy carbide MC and react with the γ phase. With the increase of welding heat input, the liquefaction crack in the near-seam area decreases. When the heat input reaches 29.2 kJ, the maximum crack length MCL is the smallest.

(2) The calculation of thermodynamic steady-state phase diagram shows that there is no impurity phase in the solidification process of Inconel 617 welding wire and Haynes 282 welding wire. The weld metal filled with Inconel 617 welding wire has a smaller solidification temperature range (78.0 °C) and smaller thermal expansion coefficient (27.73×10-6 K-1~19.48×10-6 K-1). The Haynes 282 wire cladding metal has a lower liquid viscosity than Inconel 617 in the solidification temperature range.

(3) The trans-varerestraint crack test shows that under the heat input conditions of 348.9J/mm and 384.0J/mm, the weld formed by HT700 alloy filled with Haynes 282 welding wire has a good fusion effect with the base metal, but there are solidification cracks. The weld formed by filling Inconel 617 welding wire is well formed and no solidification crack is found. With the increase of heat input, the interdendritic segregation coefficient of Inconel 617 is smaller, the microstructure is more uniform, and the MC carbides are finer. The thermodynamic simulation results show that the weld phase composition of HT700 alloy filled with Haynes 282 wire is close to that of Inconel 617 wire, and the weld metal formed by filling Inconel 617 has smaller liquid viscosity, solidification temperature range and thermal expansion coefficient.

(4) The weld of HT700 alloy pipeline is well formed, and the microstructure of weld zone is composed of γ dendrite and secondary carbide M6C. There is no obvious grain growth in the heat affected zone, but the grain boundary is bent. The spherical γ' strengthening phase was precipitated in the heat affected zone and the base metal of the welded joints of the two post-weld heat treatment. After 675 °C/4000 h thermal exposure, the γ ' morphology of the heat affected zone and the base metal precipitation strengthening phase of the HT700 alloy welded joint of the two post-weld heat treatments always remains spherical, and the growth law conforms to the LSW theory.

(5) The creep rupture experiments show that the creep life of the welded joints treated at 700 °C and 980 °C under the temperature/load conditions of 210 MPa/700 °C, 230 MPa/700 °C, 260 MPa/675 °C and 280 MPa/675 °C is 2765.4 h, 683.3 h, 2472.5 h, 2009.6 h and 2188.1 h, 1098.4 h, 2564.6 h, 1293.2 h. The quantitative relationship between service temperature, load and rupture life of welded joints was established by Larson-Miller parameter method. Under the service condition of 675 °C/30 MPa, the creep life of 700 °C PWHT welded joints (982692.4 h) was greater than that of 980 °C PWHT (751704.4 h).

参考文献:

[1] Pint B A, Unocic K A, Brese R G, et al. Characterization of chromia scales formed in supercritical carbon dioxide[J]. Materials at High Temperatures, 2018, 35(1-3): 39-49.

[2] 张世宏, 胡凯, 刘侠, 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望[J]. 金属学报, 2022, 58(3): 272-294.

[3] 倪一帆, 杨昌顺, 王苗苗. GH750和Haynes 282在750℃水蒸气中的氧化行为研究[J]. 动力工程学报, 2021, 41(07): 596-601.

[4] 汪力. 700 超超临界蒸汽轮机叶片用 Waspaloy 合金组织与性能研究[D]. 昆明理工大学, 2016.

[5] 张坤. 异种钢焊接接头力学性能与组织结构研究[D]. 北京: 华北电力大学, 2017..

[6] 屈柯楠. 700 蒸汽参数发电机组热力系统优化研究[D]. 硕士学位论文, 华北电力大学, 中国, 2017.

[7] 于淼, 梁志远, 桂雍, 等. 4 种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究[J]. 表面技术, 2018, 47(6): 8-16.

[8] 赵子龙, 李生志, 马翔, 等. 700 ℃超超临界机组主蒸汽管道候选材料特性与服役性能研究现状[J]. 热力发电, 2021, 50(11): 1-12.

[9] 田仲良, 包汉生, 何西扣, 等. 700 ℃汽轮机转子用耐热合金的强化机理[J]. 钢铁研究学报, 2015, 27(9): 1-6.

[10] 李阳, 王岩. 700 A-USC 电站锅炉材料专利分析与研究[J]. 材料导报: 纳米与新材料专辑, 2013, 27(2): 148-152.

[11] 刘祖铭, 张刘杰, 刘咏, 等. 氧化物弥散强化铁基高温合金研究现状[C]//2009 全国粉末冶金学术会议论文集. 2009: 45-51

[12] 余磊, 曹睿. 镍基合金焊接裂纹研究现状[J]. 金属学报, 2021, 57(1): 16-28.

[13] 薄春雨, 杨玉亭, 周世锋, 等. 镍基耐蚀材料焊接结晶裂纹敏感性的研究现状与趋势[J]. 焊接, 2006 (2): 15-18.

[14] 张皓月. S, P 对 Inconel690 焊丝熔敷金属结晶裂纹敏感性影响的研究[D]. 哈尔滨: 机械科学研究院哈尔滨焊接研究所, 2011.

[15] 张秉刚, 彭飞, 王厚勤, 等. 沉淀强化镍基高温合金熔化焊液化裂纹研究进展[J]. 焊接, 2019 (9): 26-31.

[16] Chen Y, Lu F, Zhang K, et al. Investigation of dendritic growth and liquation cracking in laser melting deposited Inconel 718 at different laser input angles[J]. Materials & Design, 2016, 105: 133-141.

[17] Luu D N, Zhou W, Nai S M L. Mitigation of liquation cracking in selective laser melted Inconel 718 through optimization of layer thickness and laser energy density[J]. Journal of Materials Processing Technology, 2022, 299: 117374.

[18] Chen Y, Zhang K, Huang J, et al. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J]. Materials & Design, 2016, 90: 586-594.

[19] Karthik G M, Janaki Ram G D, Kottada R S. Use of Friction Buttering for Overcoming HAZ Liquation Cracking[J]. Metallurgical and Materials Transactions B, 2017, 48: 2274-2280.

[20] Ojo O A. Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition[J]. Materials Science and Technology, 2007, 23(10): 1149-1155.

[21] Aqeel M, Shariff S M, Gautam J P, et al. Liquation cracking in Inconel 617 alloy by Laser and Laser-Arc Hybrid welding[J]. Materials and Manufacturing Processes, 2021, 36(8): 904-915.

[22] Shahsavari H A, Kokabi A H, Nategh S. Effect of preweld microstructure on HAZ liquation cracking of Rene 80 superalloy[J]. Materials science and technology, 2007, 23(5): 547-555.

[23] Rush M T, Colegrove P A, Zhang Z, et al. Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds[J]. Journal of Materials Processing Technology, 2012, 212(1): 188-197.

[24] Han K, Wang H, Shen L, et al. Analysis of cracks in the electron beam welded joint of K465 nickel-base superalloy[J]. Vacuum, 2018, 157: 21-30.

[25] Li Q, Lin X, Wang X, et al. Research on the grain boundary liquation mechanism in heat affected zones of laser forming repaired K465 nickel-based superalloy[J]. Metals, 2016, 6(3): 64.

[26] Yan F, Liu S, Hu C, et al. Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd: YAG laser welding[J]. Journal of Materials Processing Technology, 2017, 244: 44-50.

[27] Miller W A, Chadwick G A. On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting[J]. Acta metallurgica, 1967, 15(4): 607-614.

[28] Hier-Majumder S, Leo P H, Kohlstedt D L. On grain boundary wetting during deformation[J]. Acta materialia, 2004, 52(12): 3425-3433.

[29] 谢玉江, 王茂才, 王明生. 高 Al, Ti 含量镍基高温合金激光, 微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J]. 中国表面工程, 2010 (5): 1-16.

[30] 周辉. 镍基焊缝中高温失塑裂纹产生机制的晶体塑性研究[D]. 中国科学技术大学, 2019.

[31] 谢奕心. 超超临界机组用 Inconel740H 合金的高温氧化性能研究[D]. 江苏大学, 2017.

[32] Ramirez J E. Susceptibility of IN740 to HAZ liquation cracking and ductility-dip cracking[J]. Welding journal, 2012, 91(4): 122-131.

[33] Brittan A M, Mahaffey J, Anderson M, et al. Effect of supercritical CO2 on the performance of 740H fusion welds[J]. Materials Science and Engineering: A, 2019, 742: 414-422.

[34] 叶建水, 董建新, 张麦仓, 等. 700 超超临界电站锅炉用高温合金 617B 和 740H 管道氩弧焊接头微观组织特征[J]. 稀有金属材料与工程, 2015, 44(9): 2189-2195.

[35] 赵双群, 谢锡善, 董建新. 700 超超临界燃煤电站用镍基高温合金 Inconel 740/740H 的组织与性能[J]. 第九届电站金属材料学术年会. 成都: 中国电机工程学会, 2011.

[36] Tung D C, Lippold J C. Residual stress driven cracking in superalloy weldments[J]. Materials at High Temperatures, 2017, 34(3): 186-193.

[37] Yin H, Gao Y, Gu Y. Evolution of the microstructure and microhardness of the welding joint of IN 740H alloy with IN 617 as filler metal[J]. Materials Characterization, 2017, 127: 288-295.

[38] 尹宏飞, 袁勇, 严靖博, 等. Haynes 282焊丝的焊接冶金分析及性能研究[J]. 热加工工艺, 2020, 49(21): 23-26+30.

[39] 吴栋, 王鑫, 董文超, 等. 焊接热循环及时效处理对一种Ni-Fe基高温合金的组织和力学性能的影响[J]. 金属学报, 2014, 50(3): 313-322.

[40] 路文江. 镍基合金焊接热影响区的液化裂纹敏感性[J]. 焊接学报, 1993, 14(3): 186-194.

[41] Yan F, Hu C, Zhang X, et al. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy[J]. Optics & Laser Technology, 2017, 92: 44-51.

[42] Chen K C, Chen T C, Shiue R K, et al. Liquation cracking in the heat-affected zone of IN738 superalloy weld[J]. Metals, 2018, 8(6): 387.

[43] 胡赓祥,蔡洵,戎咏华编著. 材料科学基础[M]. 上海交通大学出版社, 2010.

[44] 赵龙志, 曹小明, 田冲, 等. 挤压铸造SiC/ZL109铝合金双连续相复合材料的凝固组织[J]. 金属学报, 2006(3): 325-330.

[45] 金云学, 曾松岩, 张二林, 等. TiC/Ti合金中共晶TiC形态的形成机制研究[J]. 稀有金属材料与工程, 2003(6): 451-455.

[46] 张冬梅, 崔海超, 杨尚磊, 等. Inconel 718激光焊接接头组织与热影响区裂纹研究[J]. 材料导报, 2016, 30(8): 96-99.

[47] 王丹, 门井浩太, 山本元道, 等. 奥氏体系合金激光焊接凝固裂纹敏感性研究[J]. 稀有金属材料与工程, 2021, 50(7): 2435-2446.

[48] Kadoi K, Fujinaga A, Yamamoto M, et al. The effect of welding conditions on solidification cracking susceptibility of type 310S stainless steel during laser welding using an in-situ observation technique[J]. Welding in the World, 2013, 57: 383-390.

[49] Idowu O A, Ojo O A, Chaturvedi M C. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy[J]. Materials Science and Engineering: A, 2007, 454: 389-397.

[50] DuPont J N, Marder A R, Notis M R, et al. Solidification of Nb-bearing superalloys: Part II. Pseudoternary solidification surfaces[J]. Metallurgical and Materials Transactions A, 1998, 29: 2797-2806.

[51] Alexandrov B T, Hope A T, Sowards J W, et al. Weldability studies of high-Cr, Ni-base filler metals for power generation applications[J]. Welding in the World, 2011, 55: 65-76.

[52] Hope A T, Lippold J C. Development and testing of a high-chromium, Ni-based filler metal resistant to ductility dip cracking and solidification cracking[J]. Welding in the World, 2017, 61: 325-332.

[53] 赵云松, 赵婷婷, 张迈, 等. S元素对镍基高温合金及其涂层组织和性能的影响研究进展[J]. 航空材料学报, 2021, 41(3): 96-110.

[54] Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces[J]. Current Opinion in Solid State and Materials Science, 2014, 18(4): 253-261.

[55] 赵新宝, 党莹樱, 尹宏飞, 等. 超超临界电站用镍铁基高温合金TCP相和碳化物相析出的热力学计算[J]. 材料工程, 2015, 43(5): 38-43.

[56] 李发林. LNG 低温船用 9Ni 钢材料的焊接工艺与接头性能[D]. 南昌航空大学, 2016.

[57] 叶欣. Inconel718 合金薄壁铸件焊接接头组织演变和热裂纹研究[D]. 上海交通大学, 2015.

[58] Manikandan S G K, Sivakumar D, Rao K P, et al. Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone[J]. Journal of Materials Processing Technology, 2014, 214(2): 358-364.

[59] 王迪, 杨永强, 何兴容, 等. 316L不锈钢粉末光纤激光选区熔化特性[J]. 强激光与粒子束, 2010, 22(8): 1881-1886.

[60] 李博帅, 朱明, 鲁金涛, 等. 焊后热处理及长时热暴露对HT700高温合金摩擦焊接接头组织的影响[J]. 动力工程学报, 2021, 41(4): 337-344.

[61] Joseph C, Persson C, Colliander M H. Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282[J]. Materials Science and Engineering: A, 2017, 679: 520-530.

[62] Joseph C, Persson C, Hörnqvist Colliander M. Precipitation kinetics and morphology of grain boundary carbides in Ni-base superalloy Haynes 282[J]. Metallurgical and Materials Transactions A, 2020, 51: 6136-6141.

[63] Xu L, Tian C G, Cui C Y, et al. Morphology evolution of unstable γ′ in Ni–Co based superalloy[J]. Materials Science and Technology, 2014, 30(8): 962-967.

[64] Ricks R A, Porter A J, Ecob R C. The growth of γ′ precipitates in nickel-base superalloys[J]. Acta Metallurgica, 1983, 31(1): 43-53.

[65] Ardell A J. Non-integer temporal exponents in trans-interface diffusion-controlled coarsening[J]. Journal of Materials Science, 2016, 51: 6133-6148.

[66] Guan Y, Liu Y, Ma Z, et al. Precipitation and coarsening behavior of γ′ phase in CoNi-base superalloy under different aging treatments[J]. Vacuum, 2020, 175: 109247.

[67] Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐reifung)[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie, 1961, 65(7‐8): 581-591.

[68] Verma S K, Pramanik A, Jyothsna K, et al. Phase Transformation Temperatures, γ–γ′ Lattice Parameter Misfit, and γ′ Precipitate Morphology in Co–Ti–V Alloys[J]. Metallurgical and Materials Transactions A, 2022, 53(11): 4011-4022.

[69] Cui J, Zhang J, Yao J. Effect of Thermal Exposure on the Microstructure and Stress-Rupture Properties of a Directionally Solidified Superalloy[J]. Journal of Materials Engineering and Performance, 2021, 30(12): 9200-9208.

[70] Lu W, Luo X, Huang B, et al. Excellent thermal stability and their origins in γ′ precipitation-strengthened medium-entropy alloys[J]. Scripta Materialia, 2022, 212: 114576.

[71] Sudbrack C K, Ziebell T D, Noebe R D, et al. Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy[J]. Acta Materialia, 2008, 56(3): 448-463.

[72] Heidloff A J, Van Sluytman J, Pollock T M, et al. Structural stability of platinum-group-metal-modified γ+ γ′ Ni-base alloys[J]. Metallurgical and Materials Transactions A, 2009, 40: 1529-1540.

[73] Zhang P, Yuan Y, Yan J B, et al. Morphological evolution of γ′ precipitates in superalloy M4706 during thermal aging[J]. Materials Letters, 2018, 211: 107-109.

[74] 丁银萍. A-USC用镍基高温合金Haynes 282微观组织及疲劳/蠕变性能研究[D]. 浙江: 浙江工业大学, 2021.

中图分类号:

 TG407    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式