- 无标题文档
查看论文信息

论文中文题名:

 陕北侏罗纪富镜煤与富惰煤的分子结构差异及结构模型构建    

姓名:

 朱志蓉    

学号:

 19209071013    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 煤炭清洁利用    

第一导师姓名:

 李焕同    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Structural differences and molecular structure model construction of Jurassic-aged vitrinite-cich and inertinite-rich coals in northern Shaanxi province    

论文中文关键词:

 低阶煤 ; 显微组分 ; 煤大分子结构 ; 陕北侏罗纪    

论文外文关键词:

 Low rank coals ; Maceral ; Molecular modeling ; Jurassic-aged of Northern Shaanxi    

论文中文摘要:

本论文选取陕北侏罗纪煤田张家峁煤矿、柠条塔煤矿、凉水井煤矿、小保当煤矿、曹家滩煤矿的低阶煤为研究对象,采用管式炉加热、格金低温干馏、X射线衍射分析(XRD)、傅立叶红外光谱(FTIR)、固体核磁共振(13C NMR)、X射线光电子能谱分析(XPS)等实验测试手段,以镜质组与惰质组的结构差异为切入点,分析对比在不同温度下镜质组与惰质组的结构变化与差异,探究两者与焦油产率的关系。

对于不同显微组分煤种,富惰煤的γ峰、002峰的峰位、峰强度均比富镜煤高。富镜煤的d002、La/Lc明显大于富惰煤,Lc、Nc小于富惰煤。富镜煤在吸收振动区域中以苯环四取代为主,苯环五取代次之。富惰煤以苯环四取代、苯环五取代为主;在含氧官能团的吸收区域以各种C-O为主,C=O含量最少。且富镜煤的芳烃C=C、醌或酸酐中的C=O峰含量较低;在脂肪族区域,富镜煤、富惰煤的CH2峰面积百分比含量皆为最高,且占脂肪族全区域面积的50%以上,CH3与CH的含量值相近。各煤样的芳香单元取代烷烃含量最高。富镜煤表面的“C-C、C-H”的质量分数较富镜煤明显偏低,而“C-O”、“C=O”、“COO-”的质量分数比富镜煤高;在氧谱中以“C-O”为主,“C=O”、“COO-”次之且含量相近。富惰煤的“C=O”、羧基“COO-”的相对质量分数较富镜煤明显偏高,但是“C-O”的相对质量分数较富镜煤低,这与碳谱的规律相反;在氮谱中富惰煤的吡咯型氮的相对质量分数比富镜煤高。这是由于富惰煤在成煤过程中经历了较大程度的芳烃化和缩合作用,致使富惰煤的芳香层片在空间上排列更规则紧密,微晶结构单元较大,芳香环缩合度较大。

富镜煤的焦油产率值比富惰煤高,表明对于不同的显微组分来说,富镜煤对焦油产率的贡献更大。随着温度的增加,与焦油产率值关联度较大的官能团含量几乎都在降低,其中关联度最大的苯环四取代(810cm-1)在600~700℃时含量减少最多,3280cm-1处的“OH-O”在400~500℃时含量大幅度减少,2850cm-1与2922cm-1处的CH2在700℃时含量最低,这表明在热解过程中焦油产率在400℃时开始出现大幅度减少。在建立的多元回归模型中,复相关系数R皆在0.9以上,预测值与实测值非常接近。

经模拟计算富镜煤的密度值小于富惰煤,富镜煤的孔体积和表面积均大于富惰煤,孔隙均分布于模型的内部空间,但是富惰煤的孔隙连通性更好。

论文外文摘要:

This paper selects Zhangjiamao coal mine, Korshintiaota Coal mine, Liangshuijing coal mine, Xiaobaodang coal mine, Caojiatan coal mine and other coal as the research object. Using tubular furnace heating, Grgold low temperature redistillation, X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), solid nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy (XPS) and other experimental testing methods, starting from the structural differences between vitrinite-cich and inertinite-rich, The structural changes and differences of vitrinite-cich and inertinite-rich at different temperatures were analyzed and compared to explore the relationship between them and tar yield.

In different maceral coals, the peak position of γ peak, 002 peak and peak intensity of inert coal are higher than that of vitrinite-cich coal. The d002 and La/Lc of vitrinite-cich are obviously larger than that of vitrinite-cich, while the Lc and Nc of vitrinite-cich are smaller than that of vitrinite-cich. Rich vitrinite-cich in absorbing vibration area is given priority to with four replace benzene, benzene ring five instead of The Times. Inert coal is given priority to with four replace benzene, benzene ring five replace; The absorption region of oxygen-containing functional groups is dominated by various C-O, and the content of C=O is the least. The C=O peak content of aromatic C=C, quinone or anhydride in vitrinite-cich-cich rich coal is low. In the aliphatic region, the CH2 peak area percentage of vitrinite-cich-cich and inert coal is the highest, accounting for more than 50% of the total aliphatic area. The content values of CH3 and CH are similar. The content of aromatic unit substituted alkanes in all coal samples is the highest. The mass fraction of C-C and C-H on the surface of rich specularite is much lower than that of rich specularite, while the mass fraction of C-O, C=O and COO- on the surface of rich specularite is higher than that of rich specularite. In the oxygen spectrum, C-O is dominant, followed by C=O and COO- with similar content. The relative mass fraction of C=O and carboxyl COO- of rich inertinite-rich coal is much higher than that of rich specularite coal, but the relative mass fraction of C-O is much lower than that of rich specularite coal, which is contrary to the law of carbon spectrum. The relative mass fraction of pyrrole type nitrogen in inert coal is higher than that in vitrinite-cich coal in nitrogen spectrum. In the process of coal forming, inert coal has experienced a large degree of aromatization and condensation, resulting in more regular and close spatial arrangement of aromatic sheets, larger microcrystalline structure units, and larger degree of condensation of aromatic rings.

The tar yield value of vitrinite-cich coal is higher than that of inertinite-rich coal, indicating that for different macerals, vitrinite-cich coal contributes more to the tar yield. With the increase of temperature, the content of functional groups with greater correlation with the yield value of tar almost all decreased, among which the benzene ring tetrasubstituent (810cm-1) with the greatest correlation decreased the most at 600-700℃, the content of OH-O at 3280cm-1 decreased significantly at 400-500℃. The CH2 content at 2850cm-1 and 2922cm-1 was the lowest at 700℃. The results showed that the tar yield decreased significantly at 400℃ during pyrolysis. In the established multiple regression model, the complex correlation coefficient R is above 0.9, and the predicted value is very close to the measured value.

Through the simulation calculation, the density value of vitrinite-cich is lower than that of inertinite-rich coal, and the pore volume and surface area of vitrinite-cich are both larger than that of inertinite-rich coal. The pores are distributed in the inner space of the model, but the pore connectivity of inertinite-rich coal is better.

参考文献:

[1] 马丽,王双明,段中会,等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(2):1-8.

[2] 霍雷克,莫汉蒂. 利用浮选柱对煤显微组分的分离[J]. 煤质技术, 1999(01): 36-39.

[3] 杜开欢. 不同沉积环境下煤的热解与成浆性研究[D]. 华东理工大学, 2011.

[4] 葛岭梅,李建伟. 神府煤低温氧化过程中官能团结构演变[J].西安科技学院学报,2003(02):187-190.

[5] 叶翠平. 煤大分子化合物结构测定及模型构建[D].太原理工大学,2008.

[6] 易鑫. 小红沟煤组分分离与热解焦油产率影响因素研究[D].西安科技大学,2016.

[7] 叶翠平. 煤大分子化合物结构测定及模型构建[D].太原理工大学,2008.

[8] 曲星武,王金城. 煤的X射线分析[J]. 煤田地质与勘探, 1980(02): 33-40.

[9] Lu L,Sahajwalla V,Kong C,et al. Quantitative X-ray diffraction analysis and its application tovarious coals[J]. Carbon, 2001, 39(12):1821-1833.

[10] 唐方头. 煤的X射线分析在渣渡矿区滑动构造中的应用[J]. 煤田地质与勘探, 2002(01): 1-3.

[11] 李小明,曹代勇,张守仁,等. 构造煤与原生结构煤的显微傅立叶红外光谱特征对比研究[J].中国煤田地质, 2005(03): 9-11.

[12] 李小诗,琚宜文,侯泉林,等. 不同变形机制构造煤大分子结构演化的谱学响应[J].中国科学:地球科学, 2012, 42(11): 1690-1700.

[13] H Kawashima,T Takanohashi. Modification of Model Structures of Upper Freeport CoalExtracts Using13C NMR Chemical Shift Calculations[J]. Energy & Fuels, 2001(15): 591-598.

[14] T Takanohashi. Construction of a model structure for Upper Freeport coal using 13C-NMR chemical shift calculations[J]. Energy & Fuels, 2002(16): 379-387.

[15] 琚宜文,姜波,侯泉林,等. 构造煤~(13)CNMR谱及其结构成分的应力效应[J].中国科学(D辑:地球科学), 2005(9): 51-65.

[16] 郭德勇,叶建伟,王启宝,等. 平顶山矿区构造煤傅里叶红外光谱和~(13)C核磁共振研究[J].煤炭学报, 2016, 41(12): 3040-3046.

[17] 相建华,曾凡桂,梁虎珍,等. 兖州煤大分子结构模型构建及其分子模拟[J].燃料化学学报, 2011, 39(7): 481-488.

[18] 周星宇,曾凡桂,相建华,等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J].化工学报, 2020, 71(4): 1-14.

[19] 李鹏鹏. 杜儿坪2号煤结构模型构建及其分子模拟[D].太原理工大学, 2014.

[20] 高晋生. 煤的热解、炼焦和煤焦油加工[M].北京:化学工业出版社, 2010.

[21] 刘巧霞. 陕北中低温煤焦油中酚类化合物的提取研究[D].西北大学, 2010.

[22] 吕京鹏,曹祖宾,李建华,等. 中低温煤焦油馏分油的酚抽提精制工艺研究[J].煤化工,2007(01):55- 57.

[23] 吕子胜,王守峰. 用低温煤焦油生产柴油的研究[J].燃料与化工,2002(02): 81-82.

[24] 郭宪厚. 陕西中低温煤焦油的分离与分析[D].中国矿业大学, 2019.

[25] 何国锋,陈贵锋,关北锋,等. 低温热解焦油馏分加氢精制的研究[J].煤炭转化,1998(01): 49-53.

[26] 王汝成,孙鸣,刘巧霞,等. 陕北中低温煤焦油中酚类化合物的提取与GC/MS分析[J].煤炭学报, 2011, 36(4): 664-669.

[27] Al-muhareb e m Karaca-F-Morgan-T-J-et-al. Size exclusion chromatography for the unambiguous detection of aliphatics in fractions from petroleum vacuum residues, coal liquids, and standard materials, in the presence of aromatics[J]. Energy Fuels, 2006, 20(3):1165-1174.

[28] 王世宇,白效言,张飏,等. 低温煤焦油柱层析色谱族组分分离及GC/MS分析[J].洁净煤技术, 2010, 16(4): 59-62.

[29] George Anthe,Morgan Trevor-J.,Alvarez Patricia,et al. Fractionation of a coal tar pitch by ultra-filtration, and characterizationby size exclusion chromatography, UV-fluorescence and laserdesorption-mass spectroscopy[J]. Fuel, 2010, 89(10): 2953-2970.

[30] Lafleur Arthur-L.,Wornat Mary-J.. Multimode Separation of Polycyclic Aromatic Compounds by Size Exclusion Chromatography with Poly(diviny1benzene)[J]. Fuel, 1998, 68(6): 741-752.

[31] Cristadoro Anna,Kulkarni Sourabh-U.,Burgess Ward-A.,et al. Structural characterization of the oligomeric constituentsof petroleum pitches[J]. Carbon, 2009, 47(10): 2358-2370.

[32] Morgan Trevor-J.,Millan Marcos,Behrouzi Mahtab,et al. On the Limitations of UV-Fluorescence Spectroscopy inthe Detection of High-Mass Hydrocarbon Molecules[J]. Energy & Fuels An American Chemical Society Journal, 2005, 19(1): 164-169.

[33] Morgan T.-J.,Alvarez-rodriguez P.,George A.,et al. Characterization of Maya Crude Oil Maltenes and Asphaltenes in Terms of StructuralParameters Calculated from Nuclear Magnetic Resonance (NMR) Spectroscopy andLaser Desorption-Mass Spectroscopy (LD-MS)[J]. Energy & Fuels, 2010, 24(7): 3977-3989.

[34] Sun Ming,Ma Xiao-xun,Lv Bo,et al. Gradient separation of P300 °C distillate from low-temperature coal tarbased on formaldehyde reactions[J]. Fuel, 2015, 160(15): 16-23.

[35] Islas C.-A.,Suelves I.,Carter J.-F.,et al. Pyrolysis-gas chromatography/mass spectrometry offractions separated from a low-temperature coal tar: anattempt to develop a general method for characterisingstructures and compositions of heavy hydrocarbonliquids[J]. Rapid Commun Mass Spectrom, 2002, 16(8): 774-784.

[36] Sun Ming,Lv Bo,Dai Xiaomin,et al. Modification with formaldehyde on the thermalreactivity of >300°C distillation fraction from low-temperature coal tar[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(15): 2282-2289.

[37] 王西奎,金祖亮,徐晓白. 鲁奇煤气化工艺低温煤焦油中酚类化合物的GC-MS研究[J].环境化学, 1989(04):16-22.

[38] 于亚如,樊星,赵云鹏,等. 大气压光电离质谱分析霍林郭勒褐煤中的有机质[J].分析化学,2017, 45(7): 1005-1011.

[39] Koolen Hector-H.-F.,Swarthout Robert-F.,Nelson Robert-K.,et al. Unprecedented insights into the chemical complexity of coal tar fromcomprehensive two-dimensional gas chromatography mass spectroscopyand Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2015, 29(2): 641-648.

[40] Gallacher Christopher,Thomas Russell,Taylor Christopher,et al. Comprehensive composition of Creosote using comprehensivetwo-dimensional gas chromatography time-of-flight massspectrometry (GCxGC-TOFMS)[J]. Chemosphere, 2017, 178: 34-41.

[41] Tessarolo Nathalia-S.,Silva Raquel-V.S.,Vanini Gabriela,et al. Characterization of thermal and catalytic pyrolysisbio-oils by high-resolution techniques:1H NMR,GC×GC-TOFMS and FT-ICR MS[J]. J Anal Appl Pyrol, 2015, 117: 257-267.

[42] Xiu chen Chunming-Xu-Weilai-Zhang-Chao-Ma-Xuxia-Liu-Suoqi-Zhao-and-Quan-Shi. Separation and Molecular Characterizationof Ketones in a Low Temperature Coal Tar[J]. Energy Fuels, 2018, 32(4): 4662-4670.

[43] Yao Qiuxiang,Li Yabo,Tang Xing,et al. Separation of petroleum ether extracted residue of low temperature coal tarby chromatography column and structural feature of fractions by TG-FTIRand PY-GC/MS[J]. Fuel, 2019, 245(1): 122-130.

[44] Long Haiyang,Shi Quan,Pan Na,et ai. Characterization of Middle-Temperature Gasification Coal Tar. Part 2:Neutral Fraction by Extrography Followed by Gas Chromatography−Mass Spectrometry and Electrospray Ionization Coupled with FourierTransform Ion Cyclotron Resonance Mass Spectrometry[J]. Energy Fuels, 2012, 12(6): 3424-3431.

[45] Pan Na,Cui Dechun,Li Ruili,et al. Characterization of Middle-Temperature Gasification Coal Tar. Part 1:Bulk Properties and Molecular Compositions of Distillates and BasicFractions[J]. Energy Fuels, 2012, 26(9): 5719-5728.

[46] 李焕同,曹代勇,张卫国,等. 高煤级煤石墨化轨迹阶段性的XRD和Raman光谱表征[J].光谱学与光谱分析, 2021, 41(8): 2491-2498.

[47] 李霞,曾凡桂,王威,等. 低中煤级煤结构演化的FTIR表征[J].煤炭学报, 2015, 40(12): 2900-2908.

[48] 赵孟浩,张守玉,郑红俊,等. 低阶煤低温干燥官能团的演变[J].煤炭转化, 2016, 39(2): 1-5, 19.

[49] 刘大锰,金奎励,毛鹤龄,等. 烃源岩显微组分的显微傅利叶红外光谱研究[J].岩石学报, 1998,(2): 95-104.

[50] 常海洲,王传格,曾凡桂,等. 不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报, 2006(4): 389-394.

[51] 相建华,曾凡桂,梁虎珍,等. 不同变质程度煤的碳结构特征及其演化机制[J].煤炭学报, 2016, 41(6): 1498-1506.

[52] 孙庆雷,李文,李东涛,等. 神木煤有机显微组分的结构特征与热转化性质的关系[J].燃料化学学报, 2003(2): 97-102.

[53] 王丽,张蓬洲,郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构[J].燃料化学学报, 1996(6): 539-543.

[54] 李朝阳,牛胜利,韩奎华,等. 次烟煤与半焦富氧混燃特性热重分析(英文)[J].燃料化学学报,2022: 1-17.

[55] 贺新福,杨蕾,吴红菊,等. 生物质型煤的热解特性研究[J].煤炭科学技术, 2016, 44(9): 185-191.

[56] 杨甫,段中会,马丽,等. 陕西省富油煤分布及受控地质因素[J].煤炭科学技术, 2021: 1-14.

[57] 汪寅人,刘品双,陈文敏. 我国若干褐煤及烟煤的化学组成与低温焦油产率的关系[J].燃料学报, 1958,(1): 35-41.

[58] 孙晔伟,唐跃刚,李正越,等. 中国特高挥发分特高油产率煤的分布及其特征[J].煤田地质与勘探, 2017(5): 6-12.

[59] 许婷,李宁,姚征,等. 陕北榆神矿区富油煤分布规律及控制因素[J].煤炭科学技术,2022: 1-9.

[60] 吴文金. 南华北地区不同成煤环境中煤的组成和性质差异[J].中国煤炭, 2000(4): 17-19.

[61] 虞晓芬,傅玳. 多指标综合评价方法综述[J].统计与决策, 2004(11): 119-121.

[62] 谢克昌. 煤的结构与反应性[M].北京:科学出版社, 2002.

中图分类号:

 TQ53    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式