- 无标题文档
查看论文信息

论文中文题名:

 CO2注入煤体渗流特征与储集 机理研究    

姓名:

 杨金晓    

学号:

 21209226065    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 CO2地质封存    

第一导师姓名:

 郭晨    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-21    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Study on seepage characteristics and reservoir mechanism of CO2 injection into coals    

论文中文关键词:

 CO2地质封存 渗流特征 CO2-水-煤作用 储集状态 预测模型 碳减排    

论文外文关键词:

 CO2 geological storage ; Seepage characteristics ; CO2-water-coal interaction ; Reservoir state ; Prediction model ; Carbon emission reduction    

论文中文摘要:

    CO2地质封存及其资源化利用是我国实现“双碳”战略目标的必然趋势与选择,煤层具有较强的CO2吸附和容纳能力,是CO2封存的有利地质体,因此向煤体注入CO2是实现CO2地质封存的重要途径。从张家峁、大河边和寺河煤矿采集不同变质程度的煤样(分别命名为ZJM、DHB和SH),开展煤样孔隙结构表征实验、CO2渗流实验、CO2等温吸附实验和CO2-水-煤相互作用实验,重点研究CO2注入煤层的渗流特征与注入煤层后的赋存状态,探索CO2-水-煤共存条件下的反应机理,并以此为基础构建不同煤阶下CO2注入煤体渗透率预测模型和CO2储集量预测模型,为评估目标煤层注入CO2的可行性以及封存能力提供理论依据。主要结论如下:

(1)3个煤样均以微孔发育为主,其次为小孔;ZJM煤样孔隙最为发育,连通性好;DHB煤样由于构造作用导致中、大孔较为发育,连通性较好;SH煤样微孔极其发育,连通性较差。CO2注入煤体绝对渗透率DHB>ZJM>SH,受控于煤阶和孔隙发育特征;煤体渗透率随有效应力增加呈指数降低,依据渗透率损害率曲线形态,将渗透率-有效应力关系划分为三个阶段:快速变化、缓慢变化与稳定阶段;煤样应力敏感性SH>DHB>ZJM。煤体渗透率随温度增加呈幂函数降低,煤样渗透率的温度敏感性弱于应力敏感性,随着温度升高(>70℃),3个煤样的温度敏感性有趋同性;利用曲面拟合方法构建了有效应力与温度双重制约下的煤储层渗透率综合预测模型。

(2)压力对CO2吸附量为正效应,温度会抑制煤样对CO2的吸附;随着煤阶增高,CO2吸附能力增强;随着镜质组和固定碳含量增加,煤样对CO2吸附能力增强;灰分增加减弱煤样对CO2吸附能力。随含水饱和度增大,煤样CO2吸附量先快速下降,后缓慢下降;Langmuir模型、BET模型对CO2的吸附拟合准确性较低,D-R模型对含水条件下的结果拟合误差较大,D-A模型最适合预测煤样在各种条件下对CO2的吸附量。

(3)受控于煤阶、压力、温度和时间的综合影响,CO2-水-煤相互作用后,煤样大分子结构脂肪链长度或支链化程度整体呈下降的趋势,同时伴随着不同程度的加成反应,富氢程度增加,生烃潜力变大,煤样润湿性增强。反应后煤样石英、高岭石和黄铁矿相对含量变化较小,方解石在反应过程中变化剧烈。CO2-水-煤反应对微孔改造效果明显。

(4)CO2注入煤体后,主要以吸附态、游离态和溶解态储集于煤储层;基于实验结果和含水饱和度建立煤储层CO2储集量预测模型。根据模型计算结果,吸附态为主要的储集状态,占比最高可达77%,随着埋深增加先上升后下降,下降到50-63%之间;游离态含量占比从0%最高增加到34%,随着埋深增加始终呈增加趋势;溶解态CO2比例随吸附态和游离态比例变化而变化。

    上述研究成果有助于深化认识煤层对CO2的封存机理,为评估CO2注入煤层可行性、预测CO2封存潜力提供理论依据。

论文外文摘要:

CO2 geological storage and utilization of resources are a necessary development and choice for China for accomplishing its lofty objective of "double carbon." Coal seams have excellent CO2 adsorption and capacity, which makes them an ideal geological body for CO2 storage. As a result, injecting CO2 into a coal body is an essential approach for achieving CO2 geological storage. Coal samples with varying metamorphic degrees (called ZJM, DHB, and SH, respectively) were collected from Zhangjiamao, Dahebian, and Sihe coal mines. The pore structure characterization, CO2 seepage experiment, CO2 isothermal adsorption experiment, and CO2-water-coal interaction experiment of coal samples have been carried. The seepage features of CO2 injected into coal seams and the occurrence state of CO2 injected into coal seams are primarily researched, and the response mechanism under coal-water-CO2 coexistence conditions is studied. Based on this, the permeability prediction model of CO2 injection different coal ranks and CO2 storage capacity prediction model were developed, providing a theoretical foundation for assessing the feasibility and storage capacity of CO2 injected into the target coal seams. The key findings are as follows:

(1) The three types of coal samples are primarily microporous, followed by tiny pores; the ZJM coal sample has the most developed pores and excellent relationship. DHB coal sample's tectonism ended up resulting in more developed medium and large pores, as well as improved connectivity. The micropores of SH coal samples are well developed, and relationship is minimal. In terms of the seepage properties of CO2-injected coal, the absolute permeability DHB>ZJM>SH is determined by coal ranks and pore development characteristics; coal permeability falls exponentially as effective stress increases. According to the permeability damage rate curve, the connection between permeability and effective stress has three stages: rapid change, gradual change, and stability. The stress sensitivity of coal samples: SH>DHB>ZJM. The permeability of coal decreases with temperature increase in a power function, and the temperature sensitivity of coal sample permeability is less than the stress sensitivity. As the temperature rises over 70 °C, the temperature sensitivity of the three coal samples tends to remain constant. The surface fitting approach is used for developing a complete prediction model for coal reservoirs permeability under the dual constraints of effective stress and temperature.

(2) Pressure has a favorable influence on the quantity of CO2 adsorption, but temperature inhibits CO2 adsorption by coal samples; With the increase of coal ranks, the CO2 adsorption capacity increases; Coal samples' CO2 adsorption capability enhances as their vitrinite and fixed carbon content increases. The increase in ash content reduces the CO2 adsorption capability of coal samples. As water saturation increases, the CO2 adsorption capacity of coal samples drops quickly, then slowly. The Langmuir and BET models have weak fitting accuracy for CO2 adsorption, but the D-R model has a high fitting error for water content. The D-A model is best suited for estimating coal samples' CO2 adsorption capacity under a variety of situations.

(3) After the interaction of CO2-water-coal, the length of aliphatic chain or the degree of branching of macromolecular structure of coal samples showed a negative trend, which was controlled by the complete impact of coal rank, pressure, temperature, and time. At the same time, with varying degrees of addition reaction, the degree of hydrogen enrichment rose, as did the potential for hydrocarbon formation and coal sample wettability. After the reaction, the relative concentration of quartz, kaolinite, and pyrite in coal samples changed slightly, while the calcite minerals altered significantly. The influence of the CO2-water-coal interaction on micropore alteration is clear.

(4) After being injected into the coal body, CO2 is mostly kept in the reservoir in three states: adsorption, free, and dissolved. Based on the experimental results and considering the water saturation, the prediction model of CO2 reservoir amount in coal reservoirs was established. The model's calculation results show that the adsorption state is the most significant reservoir state, accounting for up to 77%. The burial depth increases at first, then lowers, with drop to 50-63%. The fraction of free CO2 concentration grew from 0% to 34%, and it increased in proportion to burial depth. The proportion of dissolved CO2 fluctuates according to the proportion of adsorbed and free CO2.

The following study findings contribute to a better understanding of the process of CO2 storage in coal seams and give a theoretical foundation for assessing the feasibility of CO2 injection into coal seams and forecasting CO2 storage capacity.

参考文献:

[1]邹才能, 吴松涛, 杨智, 等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发, 2023, 50(01): 190-205.

[2]BP集团. BP 世界能源统计年鉴 [EB/OL]. BP中国, 2022−06−28.

[3]Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419.

[4]桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5): 1-9.

[5]何学秋, 田向辉, 宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术, 2022, 50(01): 212-219.

[6]邹才能. 碳中和学[M]. 北京: 地质出版社, 2022.

[7]中华人民共和国2023年国民经济和社会发展统计公报, 2024, 国家统计局网, 2024-02-29.

[8]Liu S, Harpalani S, Pillalamarry M. Laboratory measurement and modeling of coal permeability with continued methane production; part1: laboratory results[J]. Fuel, 2012, 94:110-116.

[9]刘永强. CO2煤层地质处置技术[J]. 煤炭技术, 2014, 33(04): 78-81.

[10]Basanta K P. Sorption of Methane and CO2 for Enhanced Coalbed Methane Recovery and Carbon Dioxide Sequestration[J]. Journal of Natural Gas Chemistry (India), 2008, 17(1): 29-38.

[11]张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议 [J]. 地质通报, 2005, 24(12): 1107-1110.

[12]黄中伟, 李国富, 杨睿月, 李根生. 我国煤层气开发技术现状与发展趋势 [J].煤炭学报, 2022, 47(09): 3212-3238.

[13]Fulton, P F, Pparente, C A, Rogers, B A et al. A Laboratory Investigation of Enhtanced Recovery of Methane from Cal by Carbon Dioxide lnjeoctn [J]. Society of Petroleum Engineers, 1980, Texas.

[14]朱立. CO2地下封存煤/盖层变形和破裂演化特征研究[D]. 徐州: 中国矿业大学, 2014.

[15]牛庆合, 曹丽文, 周效志. CO2注入对煤储层应力应变与渗透率影响的实验研究[J]. 煤田地质与勘探, 2018, 46(5): 43-48.

[16]张臣, 周世新, 陈科, 等. 高压条件下 CO2对页岩微观孔隙结构影响及其在页岩中的吸附特征[J].地球科学, 2019, 44(11): 3773-3782.

[17]Niu Q H, Cao L W, Sang S X, et al. Experimental study of permeability changes and its influencing factors with CO2 injection in coal[J]. Journal of Natural Gas Science and Engineering, 2019, 61: 215-225.

[18]Pashin J C , Clark P E , Mcintyre-Redden M R,et al. SECARB CO2 injection test in mature coalbed methane reservoirs of the Black Warrior Basin, Blue Creek Field, Alabama[J]. International Journal of Coal Geology, 2015, 144-145.

[19]张春杰, 申建, 秦勇, 等. 注CO2提高煤层气采收率及CO2封存技术[J].煤炭科学技术, 2016, 44(06): 205-210.

[20]秦勇, 申建, 王宝文, 等. 深部煤层气成藏效应及其耦合关系[J].石油学报, 2012, 33(01): 48-54.

[21]秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(01): 125-136

[22]桑树勋, 牛庆合, 曹丽文, 等. 深部煤层CO2注入煤岩力学响应特征及机理研究进展[J]. 地球科学, 2022, 47(05): 1849-1864.

[23]邓存宝, 凡永鹏, 张勋. 煤层中封存CO2的流-固-热耦合数值模拟研究[J]. 工程热物理学报, 2019, 40(12): 2879-2886.

[24]Mohsen S, Masoudian. Multiphysics of carbon dioxide sequestration in coalbeds: a review with a focus on geomechanical characteristics of coal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, (1): 93-112.

[25]He X, Liu X, Nie B, et al. FTIR and raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.

[26]杜秋浩. CO2-水-煤作用对煤渗透性和力学特性影响的试验研究[D]. 北京: 清华大学, 2019.

[27]李超. 模拟地层条件下CO2流体对煤体理化性质及吸附性能的作用规律[D]. 昆明: 昆明理工大学, 2021.

[28]张倍宁. 超临界CO2在不同阶煤层中的渗流规律及煤体变形特征研究[D]. 太原: 太原理工大学, 2019.

[29]Wang Q, Zhang D, Wang H, et al. Influence of CO2 Exposure on High-Pressure Methane and CO2 Adsorption on Various Rank Coals: Implications for CO2 Sequestration in Coal Seams[J]. Energy & Fuels, 2015, 29(6): 3785-3795.

[30]Li W, Liu H, Song X. Influence of Fluid Exposure on Surface Chemistry and Pore Fracture Morphology of Various Rank Coals: Implications for Methane Recovery and CO2 Storage[J]. Energy & Fuels, 2017, 31(11): 12552-12569.

[31]高莎莎, 王延斌. 煤层碳封存的物理化学反应及选址启示[J]. 煤炭技术, 2016, 35(02): 12-15.

[32]Wang K R, Xu T F, Wang F G, et al. Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154: 265-274.

[33]Xu T F, Pruess K. Reactive transport modeling to study fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid in Proceedings[C], World Geothermal Congress, 2010.

[34]杜艺, 桑树勋, 王文峰. 超临界CO2注入煤岩地球化学效应研究评述[J]. 煤炭科学技术, 2018, 46 (3): 10-18.

[35]Du Y, Fu C Q, Pan Z J, et al. Geochemistry effects of supercritical CO2 and H2O on the mesopore and macropore structures of high-rank coal from the Qinshui Basin, China[J]. International Journal of Coal Geology, 2020, 223: 103467.

[36]杜秋浩, 刘晓丽, 王维民, 等. 超临界CO2-水-煤相互作用后冲击载荷下煤的动态响应[J]. 煤炭学报, 2019, 44(11): 3453-3462.

[37]Karacan C O. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology, 2007, 72(3-4): 209-220.

[38]Sampath K H S M, Perera M S A, Ranjith P G, et al. Qualitative and quantitative evaluation of the alteration of micro-fracture characteristics of supercritical CO2-interacted coal[J]. The Journal of Supercritical Fluids, 2019, 147: 90-101.

[39]Liu C, Wang G X, Sang S X, et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel, 2010, 89(10): 2665-2672.

[40]王开然. 煤层系统CO2-水-煤(岩)地球化学作用及其对盖层封闭性演化的影响[D]. 长春: 吉林大学, 2016.

[41]Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242: 96-108.

[42]Zhang K, Sang S X, Liu C J, et al. Experimental study the influences of geochemical reaction on coal structure during the CO2 geological storage in deep coal seam[J]. Journal of Petroleum Science and Engineering, 2019, 178: 1006-1017.

[43]Zhou X Z, Sang S X, Niu Q H, et al. Changes of Multiscale Surface Morphology and Pore Structure of Mudstone Associated with Supercritical CO2-Water Exposure at Different Times[J]. Energy & Fuels, 2021, 35(5): 4212- 4223.

[44]文虎, 李珍宝, 王旭, 等. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报, 2017, 37(2): 149-153.

[45]刘长江, 桑树勋, Victor Rudolph. 模拟CO2埋藏不同煤级煤孔隙结构变化实验研究[J]. 中国矿业大学学报, 2010, 39(4): 496-503.

[46]Su E L, Liang Y P, Zou Q L. Structures and fractal characteristics of pores in long-flame coal after cyclical supercritical CO2 treatment[J]. Fuel, 2021, 286: 119305.

[47]Ya M, Li Z P, Lai F P. Experimental study on porosity and permeability of anthracite coal under different stresses[J]. Journal of Petroleum Science and Engineering, 2015,133: 810-817.

[48]Zhang G L, Ranjith P G, Wu B S, et al. Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO2 injection at in-situ conditions[J]. Fuel, 2019, 255: 115696.

[49]杜艺. ScCO2 注入煤层矿物地球化学及其储层结构响应的实验研究[D]. 徐州: 中国矿业大学, 2018.

[50]张晓阳. 郑庄区块煤层气直井定量化排采制度优化模型[D]. 徐州:中国矿业大学, 2018.

[51]傅雪海, 秦勇, 姜波, 等. 高煤级煤储层煤层气产能“瓶颈”问题研究[J]. 地质论评, 2004, 50(5): 507-513.

[52]傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社, 2007: 76-81.

[53]张政. 沁水盆地南部太原组含煤层气系统及其排采优化[D]. 徐州:中国矿业大学, 2016.

[54]Ya M, Li Z P, Lai F P. Experimental study on porosity and permeability of anthracite coal under different stresses[J]. Journal of Petroleum Science and Engineering, 2015,133:810-817.

[55]Chen S D, Tang D Z, Gao L J, et al. Control of effective stress on permeability in high-rank coal reservoirs[J]. Coal Geology & Exploration, 2017,45(4):76-80.

[56]Ranathunga A S, Perera M S A, Ranjith P G, et al. A macro-scale view of the influence of effective stress on carbon dioxide flow behaviour in coal: an experimental study. Geomech[J]. Geomechanics and Geophysics for Geo-energy and Geo-resources, 2017, 3: 13–28.

[57]Lin Y B, Qin Y, Ma D M, et al. Experimental Research on Dynamic Variation of Permeability and Porosity of Low-Rank Inert-Rich Coal Under Stresses[J]. ACS Omega, 2020, 5: 28124−28135.

[58]陈术源, 秦勇, 申建, 等. 高阶煤渗透率温度应力敏感性试验研究[J]. 煤炭学报, 2014, 39(9): 1845-1851.

[59]Zhao J L, Tang D Z, Lin W J, et al. Permeability dynamic variation under the action of stress in the medium and high rank coal reservoir[J]. Journal of Natural Gas Science & Engineering, 2015, 26: 1030-1041.

[60]Ferian A, Kyuro S, Sugai Y C. The correlation between coal swelling and permeability during CO2 sequestration: A case study using Kushiro low rank coals[J]. International Journal of Coal Geology, 2016, 166: 62-70.

[61]Wu S, Tang D Z, Li S, et al. Liu W Q. Effects of geological pressure and temperature on permeability behaviors of middle-low volatile bituminous coals in eastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 153: 372-384.

[62]陈世达, 汤达祯, 高丽军, 等. 有效应力对高煤级煤储层渗透率的控制作用[J]. 煤田地质与勘探, 2017, 45(4): 76-80.

[63]李波波, 王斌, 杨康, 等. 应力与温度综合作用的煤岩渗透机理[J]. 中国矿业大学学报, 2020, 49(05): 844-855.

[64]Ji X F, Song D Y, Yu S K, et al. Control Mechanism of the Effective Stress on Nano-Micro Pores and the Permeability of High-Rank Coals[J]. Journal of Nanoscience and Nanotechnology, 2021, 21: 484–494.

[65]高政. 考虑温度与应力作用下煤岩吸附—渗透机理研究[D]. 贵阳: 贵州大学, 2021.

[66]姚冠霖, 唐明云, 郑鹏先, 等. 孔隙压力和温度对煤岩中氮气渗流影响的实验研究[J]. 煤矿安全, 2021, 52(03): 19-24.

[67]Han J, Wu C, Cheng L. Experimental study on the coupling effect of pore-fracture system and permeability controlled by stress in high-rank coal[J]. Frontiers of Earth Science, 2022, 17(1): 135-144.

[68]Yu Y N, Meng Z P, Li J J, et al. Laboratory investigation of coal sample permeability under the coupled effect of temperature and stress[J]. Frontiers of Earth Science, 2022, 16: 963–974.

[69]刘顺喜, 樊坤雨, 金毅, 等. 深部煤储层应力敏感性特征及其对煤层气产能的影响[J]. 煤田地质与勘探, 2022, 50(06): 56-64.

[70]张磊, 田苗苗, 卢硕, 等. 不同含水率煤体液氮致裂渗透率变化规律及应力敏感性分析[J]. 岩土力学, 2022, 43(S1): 107-116.

[71]Manab M, Santanu M. A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410.

[72]Shang X J, Wang J G, Zhang Z Z, et al. A three-parameter permeability model for the cracking process of fractured rocks under temperature change and external loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 123: 104106.

[73]Teng, T., Wang, J., Gao, F., et al. Complex thermal coal-gas interactions in heat injection enhanced CBM recovery[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1174-1190.

[74]Mukherjee, M., Misra, S. A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration[J]. Earth-Science Reviews, 2018, 179: 392-410.

[75]Wang, C., Feng, J., Liu, J., et al. Direct observation of coal–gas interactions under thermal and mechanical loadings[J]. International Journal of Coal Geology, 2014, 131: 274-287.

[76]孙光中, 王公忠, 张瑞林. 构造煤渗透率对温度变化响应规律的试验研究[J]. 岩土力学, 2016, 37(04): 1042-1048.

[77]曾泉树, 汪志明. 鄂东盆地煤岩渗透率应力和温度敏感性分析[C]//中国石油学会石油地质专业委员会, 中国煤炭学会煤层气专业委员会, 煤层气产业技术创新战略联盟. 煤层气勘探开发技术新进展——2018年全国煤层气学术研讨会论文集. 石油工业出版社, 2018.

[78]Zhu W C, Wei, C H, Liu J, et al. A model of coal gas interaction under variable temperatures[J]. International Journal of Coal Geology, 2011, 86(2/3), 213-221.

[79]Shang, X, Wang, J, Zhang, Z, et al. A three-parameter permeability model for the cracking process of fractured rocks under temperature change and external loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104106.

[80]蔡炳心. 基础物理化学[M]. 北京: 科学出版社, 2001.

[81]李树刚, 白杨, 林海飞, 等. CH4, CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(09): 2476-2483.

[82]叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(01): 149-155.

[83]王满, 姜永东, 王英伟, 等. 煤吸附CH4/CO2混合气体的试验研究[J]. 煤矿安全, 2022, 53(05): 1-6+12.

[84]Clarkson C R, Bustin R M, Levy J H. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure[J]. Carbon, 1997, 35(12): 1689-1705.

[85] Harpalani S, Prusty B K, Dutta P. Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration[J]. Energy & Fuels, 2006, 20(4): 1591-1599.

[86]蔺金太, 郭勇义, 吴世跃. 煤层气注气开采中煤对不同气体的吸附作用[J]. 太原理工大学学报, 2001, 32(01): 18-20.

[87]Dutta P, Harpalani S, Prusty B. Modeling of CO2 sorption on coal[J]. Fuel, 2008, 87: 2023–2036.

[88]简星, 关平, 张巍. 煤中CO2的吸附和扩散:实验与建模[J]. 中国科学:地球科学, 2012, 42(04): 492-504.

[89]杨景芬, 徐宏杰, 刘会虎, 等. 晋城无烟煤储存游离态CO2理论容量及其影响因素[J].煤田地质与勘探, 2018, 48(5): 49-54.

[90]Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419.

[91]Zhao X, Liao X, He L. The evaluation methods for CO2 storage in coal beds, in China[J]. Journal of the Energy Institute, 2016, 89(3): 389-399.

[92]Bachu S, Bonijoly D, Bradshaw J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.

[93]De Silva P N K, Ranjith P G, Choi S K. A study of methodologies for CO2 storage capacity estimation of coal[J]. Fuel, 2012, 91(1): 1-15.

[94]郭涛. 深部煤层气赋存态及其含量预测模型[D]. 徐州: 中国矿业大学, 2022.

[95]Aihua Liu, Xuehai Fu, Kexin Wang, et al. Investigation of coalbed methane potential in low-rank coal reservoirs–Free and soluble gas contents[J]. Fuel, 2013, 112: 14-22.

[96]代旭光. 页岩CO2地质封存空间演化及分子动力学作用机理 [D]. 徐州: 中国矿业大学, 2023.

[97]Wang K, Pan J N, Wang E Y, et al. Potential Impact of CO2 Injection into Coal Matrix in Molecular Terms[J]. Chemical Engineering Journal, 2020, 401: 126071.

[98]Niu Q, Wang W, Liang J, et al. Investigation of the CO2 Flooding Behavior and Its Collaborative Controlling Factors[J]. Energy Fuels, 2020, 34(9): 11194−11209.

[99]Niu Q H, Cao L W, Sang S X, et al. Experimental Study on the Softening Effect and Mechanism of Anthracite with CO2 Injection[J]. Interrnational Journal of Rock Mechanics and Mining Science, 2021, 138: 104614.

[100]Liu S M; Zhang R, Karpyn Z, et al. Investigation of Accessible Pore Structure Evolution under Pressurization and Adsorption for Coal and Shale Using Small-Angle Neutron Scattering[J]. Energy & Fuels, 2019, 33 (2): 837−847.

[101]Pan J N, Zhu, H T, Hou, Q L, et al. Macromolecular and Pore Structures of Chinese Tectonically Deformed Coal Studied by Atomic Force Microscopy[J]. Fuel, 2015,139: 94−101.

[102]Li Z, Liu D, Cai Y, et al. Adsorption Pore Structure and Its Fractal Characteristics of Coaltion and FESEM Image Analyses[J]. Fuel, 2019, 257: 116031.

[103]Mou P W, Pan J N, Niu Q H. Coal Pores: Methods, Types, and Characteristics[J]. Energy & Fuels, 2021, 35: 7467−7484.

[104]Zhou L; Wu C. Pore Characteristics of The Main Coal Seams in Bide-Santang Basin in Western Guizhou Province[J]. Journal of China Coal Society, 2012, 37 (11): 1878−1884.

[105]Ding S L; Zhu J G, Zhen B P, et al. Characteristics of High Rank Coalbed Methane Reservoir From the Xiangning Mining Area, Eastern Ordos Basin, China[J]. Energy Exploration & Exploitation, 2011, 29 (1): 33−48.

[106]Xue G W, Liu H F, Li W. Deformed Coal Types and Pore Characteristics in Hancheng Coal mines in Eastern Weibei Coalfields[J]. International Journal of Mining Science and Technology, 2012, 22(5): 681−686.

[107]Mastalerz M, Drobniak A; Strapoc D, et al. Variations in Pore Characteristics in High Volatile Bituminous Coals: Implications for Coal Bed Gas Content[J]. International Journal of Coal Geology, 2008, 76(3): 205−216.

[108]Moore, T. A. Coalbed Methane: A Review[J]. International Journal of Coal Geology, 2012, 101: 36−81.

[109]Liu S Q, Sang S X, Liu H H, et al. Growth Characteristics and Genetic Types of Pores and Fractures in a High-rank Coal Reservoir of the Southern Qinshui Basin[J]. Ore Geology Reviews, 2015, 64: 140−151.

[110]Liu S Q; Sang S X; Pan Z J; et al. Study of Characteristics and Formation Stages of Macroscopic Natural Fractures in Coal Seam for CBM Development in the East Qinnan Block, Southern Quishui Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1321−1332.

[111]B. B 霍多特著, 宋士钊等译. 煤与瓦斯突出[M]. 北京: 中国工业出版社, 1966.

[112]Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[C]. Pure and Applied Chemistry 1985, 57 (4), 603-619.

[113]Washburn E. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.

[114]Klinkenberg L J. The Permeability of Porous Media to Liquids and Gases[J]. Drilling and Production Practice, 1941, 200-213.

[115]Mckee Chester R, BUNB Amar C, KOENIG Robert A. Stress-dependent permeability and porosity of coal[C]. Proceedings of Coalbed Methane Symposium. Tuscaloosa, Alabama, 1987: 183-193.

[116]汪岗, 秦勇, 申建, 等. 基于变孔隙压缩系数的深部低阶煤层渗透率实验[J]. 石油学报, 2014, 35(03): 462-468.

[117]马如英, 王猛, 阿斯亚·巴克, 等. 准东南低阶煤覆压孔渗试验研究[J]. 中国矿业大学学报, 2020, 49(06): 1182-1192.

[118]程鸣, 傅雪海, 张苗, 等. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J].天然气地球科学, 2018, 29(08): 1163-1171.

[119]许江, 张丹丹, 彭守建, 等. 三轴应力条件下温度对原煤渗流特性影响的实验研究[J]. 岩石力学与工程学报, 2011, 30(09): 1848-1854.

[120]东振, 申瑞臣, 薛华庆, 等. 考虑滑脱效应的低阶煤动态渗透率预测新模型[J]. 岩土力学, 2019, 40(11): 4270-4278.

[121]White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review[J]. Energy & Fuels, 2005, 19(3): 659-724.

[122]刘会虎, 吴海燕, 徐宏杰, 等. 沁水盆地南部深部煤层超临界CO2吸附特征及其控制因素[J]. 煤田地质与勘探, 2018, 46(5): 37-42.

[123]Shi Q M, Cui S D, Wang S M, et al. Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment[J]. Energy, 2022, 254: 0360-5442.

[124] Langmuir I. The constitution and fundamental properties of solids and liquids. part I. solids[J]. Journal of the American Chemical Society, 1917, 38(5): 102-105.

[125]Brunauer S, Emmet P H, Teler E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.

[126]Dubinin M M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces[J]. Chemical Reviews,1960, 60 (2): 235-241.

[127]Dubinin M M, Astakhov V A. Development of the concepts of volume filling of micropores in adsorption of gases and vapors by microporous adsorbents[J]. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science, 1971, 20 (1): 3-7.

[128]韩思杰. 深部无烟煤储层CO2-ECBM的CO2封存机制与存储潜力评价方法[D]. 徐州: 中国矿业大学, 2020.

[129]刘成龙. 煤层CO2埋藏主控地质因素及对储层影响研究[D]. 北京: 中国矿业大学(北京), 2017.

[130]Gao Z Y, Ding Y. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface[J]. Journal of Molecular Modeling, 2017, 23(6): 187.

[131]Ozdemir E, Schroeder K. Effect of moisture on adsorption isotherms and adsorption capacities of CO2 on coals[J]. Energy & Fuel, 2009, 23: 2821–2831.

[132]Okolo G N, Everson R C, Roberts M J, et al. Chemical–structural properties of South African bituminous coals: insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel, 2015, 158: 779–792.

[133]Shi Q M, Mi Y C, Wang S M, et al. Pyrolysis behavior of tar-rich coal with various coal-forming environments: A TGA and in-situ transmission FTIR study[J]. Fuel, 2024, 358: 0016-2361.

[134]王恬. ScCO2与煤中有机质作用及其孔隙结构响应的实验研究[D]. 徐州: 中国矿业大学, 2018.

[135]Ibarra J, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Org Geochem, 1996, 24: 725–35.

[136]Painter P C, Snyder R W, Starsinic M, et al. Concerning the Application of FTIR to the Study of Coal: A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs[J]. Applied Spectroscopy, 1981, 35(5): 475-485.

[137]曾梦茹. 不同温度超临界CO2条件下煤微观结构特征及改造机理研究[D]. 重庆: 重庆大学, 2020.

[138]屈争辉. 构造煤结构及其对瓦斯特征的控制机理研究[D]. 徐州:中国矿业大学, 2010.

[139]柳先锋. 煤表面微结构特征与电磁辐射机理研究[D]. 北京: 中国矿业大学(北京), 2018.

[140]Day S, Sakurovs R, Weir S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology, 2008, 74(3/4): 203-214.

[141]姚艳斌, 孙晓晓, 万磊. 煤层CO2地质封存的微观机理研究[J]. 煤田地质与勘探, 2023, 51(2): 146−157.

[142]Zhang B, Liang W, Ranjith P G, et al. Coupling Effects of Supercritical CO2 Sequestration in Deep Coal Seam[J]. Energy & Fuels, 2018, 33(1): 460-473.

[143]Ranathunga A S, Perera M S A, Ranjith P G, et al. Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling with Different CO2 Properties and Reservoir Depths[J]. Energy & Fuels, 2017, 31(5): 5297-5305.

[144]Mastalerz M, Drobniak A, Walker R, et al. Coal lithotypes before and after saturation with CO2 insights from micro- and mesoporosity, fluidity, and functional group distribution[J]. International Journal of Coal Geology, 2010, 83(4): 467-474.

[145]Espinoza D N, Santamarina J C. Water- CO2-mineral systems: Interfacial tension, contact angle, and diffusion—Implications to CO2 geological storage[J]. Water resources research, 2010, 46(7).

[146]Sun X, Yao Y, Liu D, et al. Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation[J]. Scientific Reports, 2016, 6: 19919.

[147]刑俊旺. 超临界CO2与CH4吸附解吸引起煤体变形特性的对比研究[D]. 太原: 太原理工大学, 2018.

[148]李英杰, 左建平, 姚茂宏, 等. 页岩气超临界等温吸附模型及储量计算优化[J]. 中国矿业大学学报, 2019, 48(02): 322-332.

[149]林元华, 邓宽海, 宁华中等. 二氧化碳在地层水中的溶解度测定及预测模型[J]. 中国石油大学学报(自然科学版), 2021, 45(01): 117-126.

[150]李航航. 致密砂岩气开发动态分析与产能评价[D]. 西安: 西安石油大学, 2022.

[151]莫有新. 中阶煤储层气水流动特征与合层排采模拟研究[D]. 徐州: 中国矿业大学, 2023.

中图分类号:

 P618.13    

开放日期:

 2025-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式