- 无标题文档
查看论文信息

论文中文题名:

 考虑颗粒形状影响的可破碎粒状材料本构模型研究    

姓名:

 王小婵    

学号:

 19204053039    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 岩土工程    

第一导师姓名:

 郅彬    

第一导师单位:

 西安科技大学建筑与土木工程学院    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Research on the constitutive model of crushable granular materials considering the effect of particle shape    

论文中文关键词:

 可破碎粒状材料 ; 颗粒形状 ; 颗粒破碎 ; 二元介质模型 ; 强度准则    

论文外文关键词:

 Crushable granular material ; Particle shape ; Particle crushing ; Binary medium model ; Strength criterion    

论文中文摘要:

在水利工程的坝体修建中,以粒状材料作为工程主体的土石坝是主要的形式之一。从而,了解粒状材料的力学特性成为评价坝体工程稳定性的关键点。同时,颗粒形状和颗粒破碎对粒状材料的力学特性影响较大。在此背景下,开展颗粒形状和颗粒破碎对粒状材料变形特性和强度特征的研究显得尤为迫切。针对于此,本文建立了颗粒形状量化参数—球形模数 ,并以此为基础,开展了不同颗粒形状粒状材料试样的常规三轴压缩试验,研究了颗粒形状对变形和强度特性的影响规律,并深入分析了变形过程中的局部颗粒破碎规律,进而基于二元介质理论提出了能够反映此因素的弹塑性本构模型和强度准则,最终合理预测了试验数据。主要研究成果如下:

(1)研究了颗粒形状对压缩变形和强度特性的试验规律。首先,提出了颗粒形状量化参数-球形模数 以及由若干颗粒组成的粒状材料集合体形状量化参数-平均球形模数 ,并给出了计算方法;发展了一种人工制备可破碎粒状材料的制样方法,将人工制备的均质、可破碎颗粒材料(粒状、片状)通过调节片状颗粒掺入比,制备成五种不同 (0.777、0.701、0.668、0.625、0.573)的粒状材料试样,并分别将其在不同围压(200、300、400、500、600kPa)下进行三轴压缩试验。在三轴压缩试验中,可破碎粒状材料表现出硬化、体缩的特性,随着平均球形模数 的减小,粒状材料强度包络线的非线性表现的越明显,且随着 的增大,低围压下的应力莫尔圆呈先增大后减小的趋势,较高应力下表现为逐渐增大,这是由于粒状材料在低围压下发生颗粒转动和滑动,而在高围压下,粒状材料来不及发生颗粒转动和滑动,直接发生颗粒破碎。

(2)研究了粒状材料在变形过程中的颗粒局部破碎规律。通过对三轴试验前后试样进行筛分,确定了其粒径分布曲线的变化情况,从而得到了相对颗粒破损率随着颗粒形状和围压的变化关系,建立了相对颗粒破损率的计算模型;与此同时,通过绘制不同形状粒状材料的 曲线及 曲线,对粒状材料的临界状态进行了分析,建立了考虑颗粒形状和颗粒破碎情况的粒状材料临界孔隙比计算模型。

(3)建立了能够反映颗粒破碎的二元介质弹塑性本构模型。以二元介质理论为基础,将未发生变形及颗粒破碎的粒状材料集合体视为胶结元,而将达到极限破碎状态的粒状材料集合体视为摩擦元,受荷变形中的颗粒破碎过程即为胶结元向摩擦元的转化;同时,为提高模型计算的准确性,提出类摩擦元概念用于描述含有少量胶结元的破碎后重塑试样,并引入摩擦元削弱系数,消除少量胶结元对计算的影响;通过给出考虑颗粒形状和颗粒破碎的体积破损率,建立了可破碎粒状材料的二元介质本构模型,最终成功预测了试验数据,表明该本构模型的合理性。

(4)建立了一个考虑颗粒形状的二元介质强度准则。粒状材料及破碎后重塑试样的强度包络线均表现出明显的非线性,为此本文基于二元介质模型理论,引入了受颗粒形状影响的摩擦元抗剪强度分量削弱系数,建立了一个能考虑颗粒破损和形状二元介质强度准则,并通过对比理论预测和试验结果,表明了该强度准则的合理性。

论文外文摘要:

In the construction of dams in water conservancy projects, earth-rock dams with granular materials as the main body of the project are one of the main forms. Therefore, understanding the mechanical properties of granular materials has become a key point in evaluating the stability of dam engineering. Meanwhile, particle shape and particle breakage have a greater impact on the mechanical properties of granular materials. In this context, it is urgent to carry out research on the deformation and strength characteristics of granular materials on particle shape and particle breakage. In view of this, the particle shape quantification parameter-spherical modulus  is established, then the conventional triaxial compression test (CD) of particle-shaped granular material specimens with different particle shapes is carried out. The influence law of particle shape on deformation and strength characteristics is studied, and the local particle breakage law during deformation process is deeply analyzed. Based on the binary media theory, an elastoplastic constitutive model and strength criterion that can reflect this factor are proposed, and the experimental data is finally reasonably predicted. The main research results are introduced as follows:

(1) The experimental rules of particle shape on compression deformation and strength characteristics were studied. Firstly, the quantitative parameter describing particle shape-spherical modulus  and the quantitative parameter describing the shape of granular material aggregates composed of several particles-average spherical modulus  are established respectively, and the calculation method is given. Secondly, a method for artificially prepared crushable granular materials was developed. The artificially prepared homogeneous and crushable granular materials (Granules and Flakes) were prepared into five different  (0.777、0.701、0.668、0.625、0.573) granular material samples by adjusting the incorporation ratio of flake particles. Lastly, the triaxial compression tests were carried out under different confining pressures (200、300、400、500、600kPa). In the triaxial shear test, the crushable granular material exhibits the hardening and shrinkage deformation characteristics. With the decrease of the average spherical modulus , the nonlinear property of the strength law of the granular material is more obvious; with the increase of , the Mohr circle of stress under low confining pressure first increases and then decreases, and it increases gradually under higher stress. Further analysis, the granular material rotates and slides under low confining pressure, butthe granular material does not have time to rotate and slide under high confining pressure,, and particle breakage occurs directly.

(2) The local crushing law of particles in the deformation process of granular materials was studied. By sieving the samples before and after the triaxial test, the change of the particle size distribution curve was determined, and the relationship between the particle breakage rate and the particle shape and confining pressure was obtained, and the calculation model of the particle breakage rate was established. At the same time, the  curves and  curves of granular materials with different shapes was given, and the critical state of granular materials was analyzed, then a calculation model for the critical void ratio of granular materials was established that considered the particle shape and particle breakage.

(3) A binary medium elastoplastic constitutive model that reflects particle breakage was derived. Based on the binary medium theory, the granular material samples that have not been deformed and particles are crushed are regarded as bonded elements, and the aggregate of granular materials reaching the ultimate crushing state is regarded as a frictional elements. The broken of bonded elements is transformed into frictional elements. Meanwhile, in order to improve the calculation accuracy, the concept of friction-like elements is proposed to describe the remodeling specimen after crushing containing a small amount of cement elements, and the weakening coefficient of frictional elements is introduced to eliminate the influence of a small number of bonded elements on the calculation. By giving the volume breakage ratio considering the particle shape and particle crushing, a binary medium constitutive model was derived, and the experimental data was successfully predicted, which indicatied the rationality of the constitutive model.

(4) A binary medium strength criterion considering particle shape was established. The strength envelope of the granular material and the remodeled specimen after crushing showed obvious nonlinearity. Based on the binary media model theory, the shear strength component weakening coefficient of the friction element affected by the shape of the particle was introduced, and a criterion for considering the strength of the particle damage and shape binary medium was established. By comparing theoretical predictions and experimental results, the rationality of this strength criterion is demonstrated.

参考文献:

[1] 张博庭.从历史的脉络看“十四五”水电发展[J].能源,2020(10):43-46.

[2] 米占宽,李国英,陈铁林.考虑颗粒破碎的堆石体本构模型[J].岩土工程学报,2007(12):1865-1869.

[3] 王晓鹤. 颗粒形状对堆石料强度和变形特性试验研究[D].大连理工大学,2019.

[4] 沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003(03):253-257.

[5] 沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002(04):1-6.

[6] 沈珠江,陈铁林.岩样变形和破坏过程的二元介质模拟[J].水利水运工程学报,2004(01):1-5.

[7] N.C.Janke. The shape of rock particles, a critical review[J]. Sedimentology, 1981,28:737-738.

[8] 田健秋. 不同颗粒形状粒状材料细观结构演化及宏-细观力学性质研究[D].四川大学,2019.

[9] Tutumluer, Pan Tongyan. Aggregate morphology affecting strength and permanent deformation behavior of unbound aggregatematerials [J]. Journal of Materials in Civil Engineering, 2008,20(9):617-627.

[10] K Shinohara, Oida M, Golman B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(1-2):31-136.

[11] B Sukumaran, A K Ashmawy. Quantitative characterisation of the geometry of discrete paraticles[J]. Geotechnique, 2004,51(7): 619-627.

[12] Eyad Masad, Joe W. Button. Unified imaging approach for measuring aggregate angularity and texture[J]. Computer-Aided Civil and Infratructure Engineering, 2000,15: 273-280.

[13] A.K.H. Kwan, C.F. Mora, H.C. Chan. Particle shape analysis of coarse aggregate using digital image processing[J]. Cement and Concrete Research, 1999,29:1403-1410.

[14] Nouguier-Lehon C. Effect of the grain elongation on the behaviour of granular materials in biaxial compression[J]. Comptes Rendus Mecanique, 2010, 338(10–11): 587–595.

[15] Hidalgo R C, Zuriguel I, Maza D, et al. Role of particle shape on the stress propagation ingranular packings[J]. Physical Review Letters, 2009, 103(11): 118001.

[16] Lunlun Zhou, Xihua Chu, Yuanjie Xu. DEM investigation on characteristics of rolling resistance for modelling particle shape[J]. Construction and Building Materials, 2019, 221, 730-744.

[17] Xiaoling Zhang, Xiaoli Wang, Shong loong Chen elt. Biaxial compression test and application considering interparticle rolling resistance and particle shape effects[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106394.

[18] Cho G-C, Dodds J, Santamarina J C. Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591–602.

[19] Zhihong Nie, Chuanfeng Fang, Jian Gong elt. Exploring the effect of particle shape caused by erosion on the shear behaviour of granular materials via the DEM[J]. International Journal of Solids and Structures, 2020, 202(1):1-11.

[20] 孙壮壮,马刚,周伟等.颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J].岩土力学,2021,42(02):430-438.

[21] Jianqiu Tian, Enlong Liu. Effect of particle shape on micro-and mesostructure evolution of granular assemblies under biaxial loading conditions[J]. Comptes Rendus Mecanique,2018,346,1233-1252.

[22] Jianqiu Tian, Enlong Liu Lian Jiang elt. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials [J]. Comptes Rendus Mecanique,2018,346,460-476.

[23] Jianqiu Tian, Enlong Liu. Influences of particle shape on evolutions of force-chain and micro-macro parameters at critical state for granular materials [J]. Powder Technology,2019,354,906-921.

[24] Xiaoqiong Jiang, Enlong Liu elt . Evolution of meso-structures and mechanical properties of granylar materials under triaxial compression state from complex network perspective [J] . Granular Matter,2018,20:54.

[25] MATSUI T, BAHR M, ABE N. Estimation of shearcharacteristic degradation and stress-strain relationship of saturated clays after cyclic loading[J]. Soils and Foundations, 1992, 32(1): 161-172.

[26] YASUHARA K, MURAKAMI S, SONG B W, et al. Post cyclic degradation of strength and stiffness for low plasticity silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(8): 756-769.

[27] 张家发,焦赳赳.颗粒形状对多孔介质孔隙特征和渗流规律影响研究的探讨[J].长江科学院院报,2011,28(03):39-44.

[28] 张家发,叶加兵,陈劲松等.碎石颗粒形状测量与评定的初步研究[J].岩土力学,2016,37(02):343-349.

[29] 彭家奕,张家发,沈振中等.颗粒形状对粗粒土孔隙特征和渗透性的影响[J].岩土力学,2020,41(02):592-600.

[30]石修松,程展林.堆石料颗粒破碎的分形特性[J].岩石力学与工程学报,2010,29(S2):3852-3857.

[31] 付乐,丛晓明,李刚等.强夯作用下碎石土颗粒破碎细观机理研究[J].岩土工程技术,2020,34(05):303-307.

[32] 张季如,胡泳,张弼文等.石英砂砾破碎过程中粒径分布的分形行为研究[J].岩土工程学报,2015,37(05):784-791.

[33] 张季如,华晨,罗明星等.三轴排水剪切下钙质砂的颗粒破碎特性[J].岩土工程学报,2020,42(09):1593-1602.

[34] 吕亚茹,王冲,黄厚旭等.珊瑚砂细观颗粒结构及破碎特性研究[J].岩土力学,2021,42(02):352-360.

[35] 邵晓泉,迟世春.堆石料变形参数的粒径尺寸相关性研究[J].岩土工程学报,2020,42(09):1715-1722.

[36] 王兆南,王刚,叶沁果等.考虑颗粒破碎的钙质砂边界面循环本构模型[J/OL].岩土工程学报,2021,4(07),1-8.

[37] 刘恩龙,陈生水,李国英等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J].岩土力学,2011,32(S2):148-154.

[38] 武颖利,皇甫泽华,郭万里等.考虑颗粒破碎影响的粗粒土临界状态研究[J].岩土工程学报,2019,41(S2):25-28.

[39] 王刚,杨俊杰,王兆南.钙质砂临界状态随颗粒破碎演化规律分析[J].岩土工程学报,2021,43(08):1511-1517.

[40] 郭万里,蔡正银,武颖利等.粗粒土的颗粒破碎耗能及剪胀方程研究[J].岩土力学,2019,40(12):4703-4710.

[41] 王永鑫,邵生俊,王智.砂质卵砾石力学行为与颗粒破碎的试验研究[J].岩石力学与工程学报,2020,39(06):1287-1296.

[42]Schmertmann J H. The mechanical agring of soils. Proc. ASCE, 1991,117(GT9):1288~1330.

[43] 沈珠江,陈铁林. 岩土破损力学:基本概念、目标和任务[A]. 中国岩石力学与工程学会.岩石力学新进展与西部开发中的岩土工程问题—中国岩石力学与工程学会第七次学术大会论文集[C].中国岩石力学与工程学会:中国岩石力学与工程学会,2002:4.

[44] Zhang De, Liu Enlong. Binary-medium-based constitutive model of frozen soils subjected to triaxial loading [J]. Results in Physics, 2019, 12:1999-2008.

[45] Yu Di, Liu Enlong, Sun Ping, etl. Mechanical properties and binary-medium constitutive model for semi-through jointed mudstone samples [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104376

[46] Liu Y.N., Liu E.L., Yin Z.Y. Constitutive model for tailing soils subjected to freeze–thaw cycles based on meso-mechanics and homogenization theory[J]. Acta Geotech, 2020, 15: 2433–2450.

[47] Z. J. Shen. Binary medium modeling of geological material. [J] In:International Conference of Heterogeneous Materials Mechanics Chongqing: 2004:581-584.

[48] 喻豪俊.人工胶结模拟坝基覆盖层土的动力性质与二元介质动本构模型[D].四川大学,2019.

[49] 沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005(05):489-494.

[50] 刘恩龙, 沈珠江. 结构性土的强度准则[J]. 岩土工程学报,2006, 28(10):1248-1252.

[51] 刘恩龙, 沈珠江. 结构性土强度准则探讨[J]. 工程力学,2007, 24(2):50-55.

[52] Enlong Liu, Qing Nie, Jianhai Zhang. A new strength criterion for structured soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(2):156-161.

[53] Liu E L, Yu H S, Zhou C, et al. A Binary-Medium Constitutive Model for Artificially Structured Soils Based on the Disturbed State Concept and Homogenization Theory[J]. International Journal of Geomechanics, 2016, 17(7): 04016154.

[54] Pan Wang, Enlong Liu, Bin Zhi, etl. A macro-micro viscoelastic-plastic constitutive model for saturated frozen soil, Mech. Mater. 2020, 147,103411.

[55] Pan Wang, Enlong Liu, Bin Zhi, An elastic-plastic model for frozen soil from micro to macro scale, Applied Mathematical Modelling. 2021, 91, 125-148.

[56] Idriss I M, Seed H B.Seismic Response of Horizontal Soil Layers.Journal of Soil Mechanics and Foundations engineering, 1968, 94(4):1003-1034.

[57] Ishihara K, Yoshida N, Tsujino S.Modeling of stress-strain relations of soils in cyclic loading. Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics, 1985, 1:373-380.

[58] Muravskii G, Frydman S. Site response analysis using a non-linear hysteretic model[J]. Soil Dynamics & Earthquake Engineering, 1998, 17(4):227-238.

[59] 沈珠江. 一个计算砂土液化变形的等价粘弹性模式[A]. 中国土木工程学会.中国土木工程学会第四届土力学及基础工程学术会议论文选集[C].中国土木工程学会:中国土木工程学会,1983:9.

[60] 迟世春,吕小龙,贾宇峰.堆石料的动力残余应变模型[J].岩土工程学报,2016,38(02):

370-376.

[61] 张凌凯,王睿,张建民等.考虑颗粒破碎效应的堆石料静动力本构模型[J].岩土力学,2019,40(07):2547-2554+2562.

[62] 张凌凯,王睿,张建民等.不同应力路径下堆石料的动力变形特性试验研究[J].工程力学,2019,36(03):114-120+130.

[63] 张玉伟,翁效林,宋战平等.考虑黄土结构性和各向异性的修正剑桥模型[J].岩土力学, 2019,40(03):1030-1038.

[64] 王庭博,傅中志,陈生水等.堆石料动力残余应变模型研究[J].岩土工程学报,2016,38(08):1399-1406.

[65] 钱劲松,陈康为,张磊.粒料固有各向异性的离散元模拟与细观分析[J].力学学报,2018,50(05):1041-1050.

[66] 魏婕,魏玉峰,黄鑫.颗粒形状对粗粒土剪切变形影响的细观研究[J].水文地质工程地质,2021,48(01):114-122.

[67] 罗明星,张季如,刘晓璇.考虑应力路径和颗粒破碎影响的钙质砂剪胀特性及剪胀方程研究[J].岩土工程学报,2021,43(08):1453-1462.

[68] 李广信. 高等土力学[M].北京:清华大学出版社,2016.

[69] JGJ52-2006,普通混凝土用砂、石质量及检验方法标准:中国建筑科学研究院,2006.

[70] Altuhafi F, O’Sullivan C, Cavarretta I. Analysis of an Image-Based Method to Quantify the Size and Shape of Sand Particles[J]. Journal of Geotechnical and Geo7environmental Engineering, 2013, 139(8): 1290–1307.

[71] GB/T 50123-2019, 土工试验方法标准:中国计划出版社,2019.

[72] 刘恩龙,覃燕林,陈生水等.堆石料的临界状态探讨[J].水利学报,2012,43(05):505-511+519.

[73] 屈智炯,刘恩龙. 土的塑性力学[M].北京:科学出版社,2011.

[74] 童晨曦,张升,李希等.单一粒径组颗粒材料破碎规律及破碎极限研究[J].岩土力学,2015,36(S1):260-264.

[75] Enlong Liu, Shengshui Chen, Yuanming Lai, Particle breakage of artificially crushable materials subject to drained cyclic triaxial loading[J], Soil Dynamics and Earthquake Engineering. 2016, 89, 262-268.

[76] Hardin B O, Crushing of soil particles[J], Journal of geotechnical engineering. 1985, 111(10):1177-1192.

[77] Burland J B. The yielding and dilation of clay[J]. Geotechinique, 1965, 15(2): 211-214.

中图分类号:

 TU43    

开放日期:

 2022-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式