- 无标题文档
查看论文信息

论文中文题名:

 基于嵌套阵列的波达方向 估计方法研究    

姓名:

 李雪    

学号:

 21207040029    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081002    

学科名称:

 工学 - 信息与通信工程 - 信号与信息处理    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 雷达信号处理    

第一导师姓名:

 贺顺    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Research on Estimation Method of Direction of Arrival for Nested Array    

论文中文关键词:

 嵌套阵列 ; 波达方向估计 ; 平均化去冗余 ; 协方差矩阵重构 ; 矩阵填充    

论文外文关键词:

 Nested Array ; Direction of Arrival estimation ; Averaging de-redundancy ; Covariance matrix reconstruction ; Matrix completion    

论文中文摘要:

波达方向(Direction of Arrival,DOA)估计是阵列信号处理中的关键研究领域之一,被广泛应用于卫星导航、雷达、通信等各个方面。嵌套阵列(Nested array, NA)由于能够在相同的物理阵元下获得更大的阵列孔径和更高的自由度,因此基于嵌套阵的DOA估计成为研究热点问题之一。二级嵌套阵列和广义嵌套阵列是嵌套阵列中的常用阵型,然而在二级嵌套阵列的DOA估计方法中,往往忽略了对冗余信息的利用;广义嵌套阵列虽然具有更大的虚拟阵列孔径和自由度,但是虚拟阵列存在空洞,同时考虑到实际环境为非均匀噪声时DOA估计性能会下降,本文主要围绕二级嵌套阵列和广义嵌套阵列展开研究,主要研究内容如下:

1.针对二级嵌套阵列的DOA估计方法忽略了冗余信息的问题,提出一种基于平均化去冗余的二级嵌套阵列无网格实值DOA估计算法。所提算法首先设计矩阵变换对二级嵌套阵列的冗余虚拟阵元进行平均化去冗余处理,建立虚拟阵列接收信号模型;然后利用原子范数最小化方法估计接收信号的协方差矩阵;最后结合实值化与MUSIC算法进行高精度的DOA估计。仿真实验结果表明:该算法在信噪比较低和快拍数较小的情况下,提高了DOA估计的精度,对临近信号的分辨概率更高,并且具有更快的角度估计速度,实时性更好。

2.针对广义嵌套阵列的差分联合阵列存在空洞导致DOA估计算法性能降低的问题,同时考虑到非均匀噪声背景,提出一种基于协方差矩阵重构和加权截断核范数的广义嵌套阵列DOA估计算法。该算法首先将阵列接收数据的协方差矩阵分开表示为两个矩阵,用其中的对角矩阵中的最小值代替其他对角线元素。然后,采用截断核范数最小化的方法对重构后的协方差矩阵进行空洞加权填充,以增强DOA估计的准确性和稳健性。最后,通过子空间方法对填充后的协方差矩阵进行处理,实现DOA估计。通过仿真实验表明,该算法能够有效地填充空洞,提高了虚拟阵元的利用率,并且能够有效地抑制非均匀噪声,提高了小快拍、低信噪比下的DOA估计精度与分辨概率。

论文外文摘要:

Direction of Arrival (DOA) estimation is an important problem in the field of array signal processing, which has a wide range of applications in radar, sonar, wireless communication and other military and civilian fields. In recent years, Nested array (NA) has been proposed to solve the contradiction between the performance and cost of Uniform Linear Array (ULA). However, the utilization of redundant information is neglected in the DOA estimation method of two-level nested arrays. Although the generalized nested array has a larger virtual array aperture and degrees of freedom, there are voids in the virtual array, also considering the non-uniform noise background. Therefore, the main research of this thesis is as follows:

1. Aiming at the problem that the DOA estimation method of the two-level nested array ignores the redundant information, a gridless real-valued DOA estimation algorithm for the two-level nested array based on averaging and de-redundancy is proposed. The proposed algorithm firstly designs the matrix transform to averaging and de-redundancy the redundant virtual array elements of the two-level nested array, and establishes the virtual array received signal model; then estimates the covariance matrix of the received signal by using the atomic norm minimization method; and finally combines the real-valued and MUSIC algorithms to carry out the high-precision DOA estimation. The results of simulation experiments show that the algorithm improves the accuracy of DOA estimation with lower signal-to-noise ratio and smaller number of snapshots, has a higher resolution probability of the neighboring signals, and has a faster angle estimation speed and better real-time performance.

2. Aiming at the problem of the performance degradation of DOA estimation algorithm due to the existence of holes in the difference joint array of generalized nested arrays, and taking into account the non-uniform noise background, a DOA estimation algorithm based on covariance reconstruction and matrix filling is proposed. The algorithm first decomposes the received data covariance matrix to obtain a diagonal array containing non-uniform noise terms, selects the minimum value in the diagonal elements to replace the remaining diagonal elements, and obtains the reconstructed covariance matrix; then uses the truncated nuclear norm minimization method to fill in the holes weighted covariance matrix of the reconstructed covariance matrix of the virtual array; and finally, utilizes the subspace method to carry out DOA estimation. The simulation experimental results show that the algorithm avoids the effect of holes on DOA estimation, improves the utilization rate of virtual array elements and can effectively suppress non-uniform noise, and improves the DOA estimation accuracy and resolution probability under small snapshot and low signal-to-noise ratio.

参考文献:

[1] Abdi M, Kahaei M H, Naeeni B H B, et al. DOA estimation of coherent signals in underdetermined problems using sparse-based Toeplitz covariance reconstruction[J]. Physical Communication, 2024, 63: 102271.

[2] 刘振, 苏晓龙, 师俊朋等. 稀疏阵列波达方向估计研究进展[J]. 信息对抗技术, 2023, 2(Z1): 1-15.

[3] Shi J, Hu G, Zhang X, et al. Generalized nested array: Optimization for degrees of freedom and mutual coupling[J]. IEEE Communications Letters, 2018, 22(6): 1208-1211.

[4] Pal P, Vaidyanathan P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181.

[5] Liu C L, Vaidyanathan P P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16): 4203-4217.

[6] Han K, Nehorai A. Improved source number detection and direction estimation with nested arrays and ULAs using jackknifing[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 6118-6128.

[7] Liu C L and Vaidyanathan P P. Remarks on the Spatial Smoothing Step in Coarray MUSIC[J]. IEEE Signal Processing Letters, 2015, 22(9): 1438-1442.

[8] 刘鲁涛, 韩丽, 张明等. 基于nested阵列的高分辨DOA估计[J]. 沈阳工业大学学报, 2016, 38(05): 531-536.

[9] Han X D, Shu T, He J, et al. Polarization-Angle-Frequency Estimation with Linear Nested Vector Sensors[J]. IEEE Access, 2018, 6: 36916-36926.

[10] Zhang Y D, Amin M G, Himed B. Sparsity-Based DOA Estimation Using Co-prime Arrays [C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013: 3967-3971.

[11] Yang J, Liao G, Li J. An efficient off-grid DOA estimation approach for nested array signal processing by using sparse Bayesian learning strategies[J]. Signal Processing, 2016, 128: 110-122.

[12] 王洪雁, 于若男, 潘勉等. 基于协方差矩阵重构的离网格DOA估计方法[J]. 电子与信息学报, 2021, 43(10): 2863-2870.

[13] Chandrasekaran V, Recht B, Parrilo P A, et al. The convex geometry of linear inverse problems[J]. Foundations of Computational mathematics, 2012, 12(6): 805-849.

[14] Bhaskar B N, Tang G, Recht B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987-5999.

[15] Pal P, Vaidyanathan P P. A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising[J]. IEEE Signal Processing Letters, 2014, 21(6): 737-741.

[16] Jiang H, Tang W G, Pang S X. Off-grid DOA estimation for nested array using atomic norm minimisation[J]. Electronics Letters, 2018, 54(23): 1344-1346.

[17] Wu X H, Zhu W P and Yan J. A Toeplitz Covariance Matrix Reconstruction Approach for Direction-of-Arrival Estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223-8237.

[18] Wang M, Zhang Z, Nehorai A. Grid-less DOA estimation using sparse linear arrays based on Wasserstein distance[J]. IEEE Signal Processing Letters, 2019, 26(6): 838-842.

[19] Tang W G, Jiang H, Pang S X. Coprime array interpolation for direction of arrival estimation based on atomic norm minimization[C]//2019 IEEE Radar Conference (RadarConf). IEEE, 2019: 1-5.

[20] Wagner M, Park Y, Gerstoft P. Gridless DOA estimation and root-MUSIC for non-uniform linear arrays[J]. IEEE Transactions on Signal Processing, 2021, 69: 2144-2157.

[21] Park Y, Gerstoft P. Gridless sparse covariance-based beamforming via alternating projections including co-prime arrays[J]. The Journal of the Acoustical Society of America, 2022, 151(6): 3828-3837.

[22] 李兴花, 郭沐然, 刘鲁涛. 基于矩阵重构的DOA阵元位置误差校正方法[J]. 航空兵器, 2022, 29(1): 79-83.

[23] Gao S, Zhang Z, Wang M, et al. Efficient Gridless DoA Estimation Method of Non-uniform Linear Arrays with Applications in Automotive Radars[J]. arXiv preprint arXiv: 2303.04374, 2023.

[24] Liu C L, Vaidyanathan P P, Pal P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]//2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016: 2639-2642.

[25] Hosseini M R, Sebt M A. Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array[J]. IEEE Signal Processing Letters, 2017:1063-1067.

[26] Chen T, Guo M, Guo L. A direct coarray interpolation approach for direction finding[J]. Sensors, 2017, 17(9): 2149.

[27] Qiao H, Pal P. Unified analysis of co-array interpolation for direction-of-arrival estimation[C]//2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017: 3056-3060.

[28] Wu X, Zhu W P, Yan J. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223-8237.

[29] Zhou C, Gu Y, Fan X, et al. Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22):5956-5971.

[30] Zhou C, Gu Y, Shi Z, et al. Off-grid direction-of-arrival estimation using coprime array interpolation[J]. IEEE Signal Processing Letters, 2018, 25(11): 1710-1714.

[31] Wu X, Zhu W P, Yan J. A high-resolution DOA estimation method with a family of nonconvex penalties[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4925-4938.

[32] Al Mahmud T H, Ye Z, Shabir K, et al. Off-grid DOA estimation aiding virtual extension of coprime arrays exploiting fourth order difference co-array with interpolation[J]. IEEE Access, 2018, 6: 46097-46109.

[33] Wang X, Wang X. Hole identification and filling in $ k $-times extended co-prime arrays for highly efficient DOA estimation[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2693-2706.

[34] Zheng Z, Huang Y, Wang W Q, et al. Direction-of-Arrival Estimation of Coherent Signals via Coprime Array Interpolation[J]. IEEE Signal Processing Letters, 2020, 27(99):585-589.

[35] Yadav S K, George N V. Fast direction-of-arrival estimation via coarray interpolation based on truncated nuclear norm regularization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 68(4): 1522-1526.

[36] 陈金立, 蒋志军, 朱熙铖等. 基于矩阵因子重构的MIMO雷达角度估计方法[J]. 雷达科学与技术, 2023, 21(06): 653-660+669.

[37] Zhang Y, Hu G, Zhou H, et al. Direction of Arrival Estimation of Generalized Nested Array via Difference–Sum Co-Array[J]. Sensors, 2023, 23(2): 906.

[38] 孙兵. 非理想条件下的互质阵列波达方向估计方法研究[D]. 国防科技大学, 2021.

[39] He Z Q, Shi Z P and Huang L. Covariance sparsity-aware DOA estimation for nonuniform noise[J]. Digital Signal Processing, 2014, 28: 75-81.

[40] He Z Q, Shi Z P, Huang L, et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting[J]. IEEE Signal Processing Letters, 2014, 22(4): 435-439.

[41] Tian Y, Shi H and Xu H. DOA estimation in the presence of unknown nonuniform noise with coprime array[J]. Electronics Letters, 2017, 53(2): 113-115.

[42] Wang H, Wang X, Wan L, et al. Robust sparse Bayesian learning for off-grid DOA estimation with non-uniform noise[J]. IEEE access, 2018, 6: 64688-64697.

[43] Liu K, Zhang Y D. Coprime array-based DOA estimation in unknown nonuniform noise environment[J]. Digital Signal Processing, 2018, 79: 66-74.

[44] 吴晨曦, 张旻, 王可人. 非均匀噪声背景下的欠定DOA估计方法[J]. 系统工程与电子技术, 2018, 40(03): 498-503.

[45] Tan W, Feng X. Covariance matrix reconstruction for direction finding with nested arrays using iterative reweighted nuclear norm minimization[J]. International Journal of Antennas and Propagation, 2019, 2019:1-13.

[46] Huang Y, Zheng Z, Wang W Q. Doa estimation using coprime array in the presence of unknown nonuniform noise[J]. Circuits, Systems, and Signal Processing, 2022, 41(5): 3000-3010.

[47] 宋鹏, 吴云韬, 巩朋成等.色噪声条件下基于矩阵补全的互质阵列DOA估计[J]. 武汉工程大学学报, 2023, 45(01): 87-93.

[48] Huarng K C, Yeh C C. A unitary transformation method for angle-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 975-977.

中图分类号:

 TN958    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式