论文中文题名: | 基于Shiryayev多模型假设检验的目标机动检测方法研究 |
姓名: | |
学号: | 21206043040 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 081104 |
学科名称: | 工学 - 控制科学与工程 - 模式识别与智能系统 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 目标机动检测 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-11 |
论文答辩日期: | 2024-06-06 |
论文外文题名: | Research on Target Maneuver Detection Method Based on Shiryayev Multiple Model Hypothesis Testing |
论文中文关键词: | |
论文外文关键词: | Target maneuver detection ; Multiple model hypothesis testing ; Representative model ; SSPRT |
论文中文摘要: |
在机动目标跟踪领域,可靠和及时的目标机动检测是目标运动状态估计的关键。因此,机动检测方法一直被视为目标跟踪的重要前提,目前主要存在以下两方面难题:(1)机动目标运动模型不确定,属于典型的多分布检测(Multiple Distribution Detecton,MDD)问题;(2)目标机动检测最快决策,属于典型的变点检测(Change Point Detection)问题。基于决策的机动目标跟踪对检测速率要求非常高,最小化检测延迟往往可以提高目标跟踪精度。本文融合多模型假设检验(Multiple Model Hypothesis Testing,MMHT)与Shiryayev序贯概率比检验(Shiryayev Sequential Probability Ratio Test,SSPRT)算法框架实现目标机动检测,主要贡献如下: (1)针对现有MMHT方法中模型集似然(Model-Set Likelihood,MSL)不一定具有代表性的问题,本文提出了一种使用代表性模型(Representative Model,RM)来检测可能具有多个分布的未知事件的MMHT方法,称为基于代表性模型的多模型假设检验(MMHT-RM)方法。首先,在特定标准下寻找模型集覆盖区域中最可能接近真实的模型;其次,将寻找到的模型增广至原始模型集;最后,通过运行多模型(Multiple-Model,MM)算法,选择具有最大概率的模型作为模型覆盖区域的RM。它们解决了具有相关观测的复合、多元、相交和错误指定假设集的MMHT等难题。 (2)本文设计了两种适用于不同场景的模型自适应方法提高模型集的覆盖能力,分别为基于RM的期望模型增强(Expected-Mode Augmentation,EMA)和最佳模型增强(Best Model Augmentation,BMA)。提出的RM-EMA使用固定模型的最小均方误差估计来增强基本模型集,适用于处理具有相同物理意义(可加性)参数的模型集。提出的RM-BMA可以处理具有不同结构或参数的候选模型,并且是在模式空间中找到在Kullback-Leiber(K-L)准则下最接近真实的模型。 (3)针对目标机动的变点检测最优决策问题,本文提出一种新的多模型框架下的序贯检测方法,采用著名SSPRT来作为机动检测器,检测器中涉及的似然函数均由MM方法输出的RM的似然近似。基于自适应多模型中不同参数和不同结构模型集的场景,分别提出基于RM-EMA和RM-BMA的Shiryayev多模型假设检验方法:EMA-MMSSPRT和BMA-MMSSPRT。 本文通过设计运动模型的目标机动检测仿真实验进行验证,仿真结果证明了所提出的算法的优效性。与目前流行的MMSSPR、MMCUSUM等多模型机动检测算法相比,提出的检测方法不仅提高目标机动的检测精度,而且可以降低平均检测延迟。 |
论文外文摘要: |
In the field of maneuvering target tracking, reliable and timely target maneuvering detection is the key to estimating target motion states. Therefore, the maneuvering detection method has always been regarded as an important prerequisite for target tracking, and currently there are mainly two challenges: (1) the uncertainty of the maneuvering target motion model, which belongs to the typical Multiple Distribution Detection (MDD) problem; (2) The fastest decision for target maneuvering detection belongs to the typical Change Point Detection problem. Decision based maneuvering target tracking requires very high detection rate, and minimizing detection delay can often improve target tracking accuracy. This article integrates the Multiple Model Hypothesis Testing (MMHT) and Shiryaev Sequential Probability Ratio Test (SSPRT) algorithm frameworks to achieve target maneuver detection. The main contributions are as follows. (1) In response to the problem that Model Set Likelihood (MSL) may not be representative in existing MMHT methods, this paper proposes an MMHT method that uses Representative Model (RM) to detect unknown events that may have multiple distributions. This method is called Representative Model Based Multiple Model Hypothesis Testing (MMHT-RM). Firstly, search for the model that is closest to the real model in the coverage area of the model set under specific standards; Secondly, expand the found model to the original model set; Finally, by running the Multiple Model (MM) algorithm, select the model with the highest probability as the RM for the model coverage area. They solve the challenges of MMHT with composite, multivariate, intersecting, and incorrectly specified hypothesis sets with relevant observations. (2) This paper proposes two model adaptation methods suitable for different scenarios to improve the coverage ability of the model set, namely Expected Model Augmentation (EMA) and Best Model Augmentation (BMA). RM-EMA uses the minimum mean square error estimation of fixed models to enhance the basic model set, suitable for processing model sets with parameters of the same physical meaning (additivity). RM-BMA can handle candidate models with different structures or parameters, and it is the model found in the pattern space that is closest to the real model under the Kullback Leiber (K-L) criterion. (3) This paper proposes a new sequential detection method under a multi model framework for the optimal decision problem of target maneuvering change point detection. The famous SSPRT is used as the maneuvering detector, and the likelihood functions involved in the detector are all approximated by the likelihood of the RM output by the MM method. Based on scenarios with different parameters and structural model sets in adaptive multiple models, we propose Shiryayev multiple model hypothesis testing methods based on RM-EMA and RM-BMA, respectively: EMA-MMSSPRT and BMA-MMSSPRT. This paper verifies the effectiveness of the proposed algorithm by designing a target maneuver detection simulation experiment with a motion model, and the simulation results demonstrate its effectiveness. Compared with current popular multiple model maneuver detection algorithms such as MMSSPR and MMCUSUM, the proposed methods not only improve the detection accuracy of target maneuver, but also reduce the average detection delay. |
参考文献: |
[1] 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合[M]. 北京: 清华大学出版社, 2006. [2] 周弘仁, 敬忠良, 王培德. 机动目标跟踪[M]. 北京: 国防工业出版社, 1991. [8] 赵玉杰, 杨晨, 宋琛. 空基高超声速导弹防御系统关键技术研究[J]. 战术导弹技术, 2020, 10(4): 64-70. [9] 朱自谦. 机载雷达多目标跟踪技术研究[D]. 南京: 南京航空航天大学, 2010. [12] 刘妹琴, 兰剑. 目标跟踪前沿理论与应用[M]. 科学出版社, 2015. [30] 范红旗, 翟庆林, 王胜, 等. 锐截止中频采样滤波器的设计与实现[J]. 电路与系统学报, 2009, 14(5): 31-36. [31] 濮晓龙. 关于累积和(CUSUM)检验的改进[J]. 应用数学学报, 2003, 26(2): 225-241. [38] A. N. Shiryayev, Optimal Stopping Rules[M]. New York: Springer-Verlag, 1977. [52] E. S. Page. Continuous inspection schemes[J]. Biometrika, 41: 100-115. [56] 赵玉杰, 杨晨, 宋琛. 空基高超声速导弹防御系统关键技术研究[J]. 战术导弹技术, 2020, 10(4): 64-70. [62] S. Zacks. The theory of statistical inference[M]. New York, USA:Wiley, 1971. |
中图分类号: | TP957 |
开放日期: | 2025-06-18 |