论文中文题名: | 基于深度学习的排水管道缺陷检测与识别 |
姓名: | |
学号: | 19208088019 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083500 |
学科名称: | 工学 - 软件工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像识别 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Defect Detection and Recognition of Sewer Pipes Based on Deep Learning |
论文中文关键词: | 地下排水管道缺陷 ; 目标检测 ; 目标识别 ; YOLO v4 ; Vision Transformer |
论文外文关键词: | Underground Sewer Pipe Defect Detection ; Object Recognition ; Object Detection ; YOLO v4 ; Vision Transformer |
论文中文摘要: |
排水管道的健康状况影响着城市排水系统的正常运行。现多采用人工判读CCTV检测图像的方法多存在效率低下、误检率高等问题,因此开展排水管道缺陷的智能检测与识别研究具有重要现实意义。为辅助工程人员快速准确的完成排水管道检测,论文基于深度学习理论,系统研究了排水管道缺陷检测及识别算法,取得了以下研究成果。 针对人工缺陷检测方法准确率低、类型识别不全的问题,提出一种优化YOLO v4模型的排水管道缺陷检测与识别算法(YOLO-sewer)。为了提升模型对关键特征信息的捕获能力,算法融合SE通道注意力机制改进了YOLO v4残差单元,构建基于残差注意力单元的残差注意力主干网络。同时引入RFB感受野增强模块扩增感受野范围并减少计算量。实验结果表明:相较于SSD、YOLO v3、YOLO v4等检测算法,YOLO-sewer的平均检测准确率分别提升了22.01%和8.83%和7.54%,对于部分小样本缺陷的检测效果也实现了大幅度提升,实现了对沉积、错口等14种常见排水管道缺陷的检测与有效识别。 针对管道缺陷检测中,小样本、细粒度缺陷目标识别效果不佳的问题,提出一种改进Transformer的排水管道缺陷精确识别算法(LPSST)。算法以Swin Transformer模型为改进的主干网,在浅层网络中新增局部区域建议模块,进一步提高模型对局部特征信息的捕获能力。LPSST使用融合伪标签和一致性正则化的半监督训练方法提升算法泛化性,对改进模型强化训练发挥视觉Transformer架构大体量数据集训练的优势。实验结果表明:相较于Resnet、Efficentnet等其他识别算法,LPSST取得了最佳识别效果,识别准确率达92.65%,超过原始主干网17.25%。算法实现了对错口、变形等四种特征相似性管道结构性缺陷的精确识别。 |
论文外文摘要: |
The health status of drainage pipes affects the normal operation of urban drainage systems. Most of the current mainstream detection methods have some problems, such as low efficiency and a high error detection rate, so it is of great practical significance to carry out intelligent detection and identification of drainage pipeline defects. To assist engineers in completing drainage pipeline detection quickly and accurately, this paper systematically studies the types of drainage pipeline defects and related detection and recognition algorithms based on deep learning theory and has obtained important research results. Aiming at the problems of low detection accuracy and incomplete recognition types of manual defect detection, this paper proposes a drainage pipeline defect detection and recognition algorithm (YOLO-sewer), which optimizes the YOLO v4 model. The algorithm is integrates SE channel attention to improved YOLO v4 residual unit, and build a residual attention backbone network based on residual attention unit to improve the model's ability to capture key feature information. Introduces the RFB receptive field enhancement module to expand the receptive field range and reduce the amount of computation. The experimental results compared with detection algorithms like SSD, YOLO v3, YOLO v4, the average detection accuracy of YOLO-sewer has increased by 22.01 % and 8.83 % and 7.54 %, respectively, and the detection effect of some small sample defects has also greatly improved. The algorithm realizes the detection and identification of 14 common drainage pipeline defects, such as deposition and stagger. Aiming at the poor recognition effect of the drainage pipes defect detection for small samples and fine-grained defect targets, this paper proposes an improved Transformer algorithm (LPSST) for the accurate recognition of drainage pipeline defects. The algorithm takes the Swin Transformer model as the improved backbone network and adds a local area suggestion module in the shallow network to further improve the ability of the model to capture local feature information. In addition, LPSST uses a semi-supervised training method that fuses pseudo labels and consistency regularization to improve the generalization of the algorithm and strengthens the training of the improved model to give full play to the advantages of the visual Transformer architecture in training large datasets. Compared with other recognition algorithms, such as Resnet and Efficentnet, LPSST has achieved the best recognition results, with a recognition accuracy of 92.65 %, exceeding the original backbone network by 17.25 %. The experimental results show that the algorithm can accurately identify the structural defects of pipelines with four similar characteristics, such as staggered and deformation. |
参考文献: |
[1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. [4] 王帅超. 城市地下管道渗漏引起的路面塌陷机理分析与研究[D]. 郑州: 郑州大学, 2017. [5] 张辰. 加强城镇排水管网规划建设管理保障高效安全运行[M]. 北京: 给水排水, 2016, 52(8): 1-3. [7] 侯精明, 康永德, 李轩, 等. 西安市暴雨致涝成因分析及对策[J]. 西安理工大学学报, 2020, 36(03): 269-274. [8] CJJ 181-2012. 城镇排水管道检测与评估技术规程[S]. 北京: 中华人民共和国住房和城乡建设部, 2012. [9] 陈希刚. 市政管道CCTV检测技术应用[J]. 水利水电施工, 2019, 38(1): 102-105. [11] 雷芳芳. CCTV技术在福州市排水管道检测中的应用研究[J]. 给水排水, 2019, 55(S1): 275-276. [12] 肖倩, 王俊然, 陈辉, 等. 深圳市某片区排水管道CCTV检测评估与修复方案[J]. 给水排水, 2019, 55(9): 109-114. [18] 夏娟, 黄民, 李天剑, 等. 排水管道超声波数据采集系统[J]. 北京信息科技大学学报(自然科学版), 2011, 26(3): 69-73. [19] 陈高泉. 排水管道超声波成像检测系统研究与设计[D]. 沈阳:沈阳工业大学, 2005. [20] 魏效国, 黄民. 超声波探测排水管道的可行性研究[J]. 机械工程师, 2016, 51(1): 4-6. [21] 崔英良, 李海明, 王延军, 等. CCTV和探地雷达技术在城市道路病害中的应用[J]. 城市勘测, 2018, 34(S1): 141-143. [22] 户莹. 基于深度学习的地下排水管道缺陷智能检测技术研究[D]. 西安: 西安理工大学, 2019. [25] 马永军, 方凯, 王定成, 等. 基于支持向量机和距离度量的管道内表面图像分类方法研究[J]. 数据采集与处理, 2002(02): 151-155. [27] 孙文雅, 黄民, 李天剑, 等. 基于BP神经网络管道裂缝图像分割[J]. 计算机测量与控制, 2012,20(05): 1363-1364+1368. [30] 刘喆. 基于图像分析的管道缺陷特征提取方法研究[D]. 沈阳: 东北大学, 2014. [32] 李忠虎, 张琳, 闫俊红. 管道腐蚀视觉测量图像边缘检测算法研究[J]. 电子测量与仪器学报, 2017, 31(11): 1788-1795. [33] 黄玉龙. 基于视频图像的管道裂纹缺陷检测方法研究[D]. 西安: 西安理工大学, 2018. [34] 蔡文浩. 城市地下管道视觉检测关键技术及应用研究[D]. 武汉: 湖北工业大学, 2018. [44] 王庆, 姚俊, 谭文禄, 等. 基于Faster R-CNN的排水管道缺陷检测研究[J]. 软件导刊, 2019, 18(10):6. [48] 周倩倩, 司徒祖祥, 腾帅, 等. 基于卷积神经网络的排水管道缺陷智能检测与分类[J]. 中国给水排水, 2021, 37(21): 114-118. [49] 王大成, 陈国强, 秦军,等. 排水管道闭路电视视频智能检测技术的现状与挑战[J]. 工程勘察, 2022, 50(03): 52-56. [50] 李伟, 刘桂雄, 曾成刚. 基于实例分割+CCTV排水管道缺陷检测方法研究[J]. 电子测量技术, 2022, 45(03): 153-157. [51] 王和平, 安关峰, 谢广永. 《城镇排水管道检测与评估技术规程》(CJJ181-2012)解读[J]. 给水排水, 2014, 40(2): 124-127. [54] J. Redmon, A. Farhadi YOLOv3: An Incremental Improvement[J]. arXive-prints, 2018. |
中图分类号: | TP391.41 |
开放日期: | 2022-06-22 |