- 无标题文档
查看论文信息

论文中文题名:

 数字普惠金融对能源强度影响的空间效应研究    

姓名:

 钟玉祥    

学号:

 20202001009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 020205    

学科名称:

 经济学 - 应用经济学 - 产业经济学    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 产业经济学    

研究方向:

 能源产业经济    

第一导师姓名:

 李朋林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-13    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Study on the Spatial Effect of Digital Financial Inclusion on Energy Intensity    

论文中文关键词:

 数字普惠金融 ; 能源强度 ; 可持续发展 ; 空间效应 ; 影响机制    

论文外文关键词:

 Digital financial inclusion ; Energy Intensity ; Sustainable Development ; Spatial Effects ; Impact Mechanisms    

论文中文摘要:

受益于全球化的快速发展,中国工业发展迅速,逐渐成为国民经济的重要支柱产业。高速工业化引发的过度能源消耗也给中国带来了巨大的环境压力,严重制约了中国的可持续发展。为了控制能源消耗过度增长以及温室气体排放,促进经济高质量增长,中国开始转变经济发展方式,并提出“3060双碳目标”,向世界展示了中国应对资源与环境问题的决心。因此,在可持续发展的背景下推动绿色发展是促进中国经济高质量增长的题中之义。作为可持续发展战略目标下的一个新命题,数字普惠金融已经成为克服环境约束的有效途径,发展数字普惠金融是促进中国经济高质量增长的关键。数字普惠金融可以缓解金融资源的错配,有助于推广可再生能源和清洁技术,降低能源强度并提高绿色经济效率,但数字普惠金融究竟在何种程度上减少能源消耗强度达成绿色发展目标仍未得到充分说明,回答这个问题才能在实践领域更好地深入推广数字普惠金融,因此研究数字普惠金融对能源强度的影响具有重要的现实意义。

本文从空间角度出发,利用2011-2020年中国30个省(市、自治区)的面板数据,通过构建空间计量经济学模型,从全国和地区两个维度实证研究数字普惠金融对能源强度的空间效应,并进一步研究了数字普惠金融对邻近地区能源强度的空间溢出效应;通过中介效应模型揭示了数字普惠金融对能源强度的影响机制。研究结果表明:第一,从空间角度看,数字普惠金融的推广有利于减少能源消耗强度;第二,数字普惠金融不仅有助于抑制本地的能源强度,而且对周边省份能源强度具有明显的负向空间溢出效应;第三,数字普惠金融通过加快技术创新、调整能源消费结构和优化产业结构降低了能源强度。基于上述研究结论,提出以下政策建议:首先,应全力推动数字普惠金融深化发展,加大数字普惠金融与各城市产业发展政策及乡村振兴战略的对接力度;其次,为了实现可持续发展目标,政府应制定与本地区能源消费行为相一致的数字普惠金融减排目标和环境政策;最后,不同地区应审视自身数字化促进节能的困境,准确识别中介渠道,最大限度地实现数字普惠金融的节能增效潜力,以保证节能减排的有效性。

论文外文摘要:

Benefiting from the rapid development of globalization, China's industry is developing rapidly and gradually becoming an important pillar of the national economy. However, excessive energy consumption caused by rapid industrialization has also brought huge environmental pressure to China, which has seriously restricted China's sustainable development. In order to control the excessive growth of energy consumption and greenhouse gas emissions and promote high-quality economic growth, China has started to change its economic development mode and put forward the "3060 double carbon goal", demonstrating to the world China's determination to deal with green development. Therefore, promoting green development in the context of sustainable development is a key issue in promoting high-quality economic growth in China. As a new proposition under the strategic goal of sustainable development, digital financial inclusion has become an effective way to overcome environmental constraints, and the development of digital financial inclusion is the key to promoting high-quality economic growth in China. digital financial inclusion can help alleviate the mismatch of financial resources, promote renewable energy and clean technologies, reduce energy intensity and improve the efficiency of the green economy, but the extent to which digital financial inclusion can reduce energy consumption intensity to achieve green development goals is still not fully explained. Therefore, it is of great practical significance to study the impact of digital financial inclusion on energy intensity.

From a spatial perspective, this paper constructs a spatial econometric model using panel data of 30 Chinese provinces (municipalities and autonomous regions) from 2011 to 2020, and firstly, empirically investigates the spatial effect of digital financial inclusion on energy intensity from the national total sample and regional sub-samples, and secondly, discusses the impact of spatial spillover effects of digital financial inclusion on energy intensity, and finally reveals through a mediating effect model Finally, the mechanism of the impact of digital financial inclusion on energy intensity is revealed through the mediating effect model. The research results show that: first, from the spatial perspective, the promotion of digital financial inclusion is conducive to reducing energy consumption intensity; second, digital financial inclusion not only helps suppress local energy intensity, but also has a significant negative spatial spillover effect on the energy intensity of neighboring provinces; third, digital financial inclusion reduces energy intensity by accelerating technological innovation, adjusting the structure of energy consumption and optimizing industrial structure. Based on the above research findings, the following policy recommendations are proposed: first, all efforts should be made to promote the deepening development of digital financial inclusion and increase the docking of digital financial inclusion with cities and rural revitalization strategies; second, in order to achieve sustainable development goals, the government should formulate digital financial inclusion emission reduction targets and environmental policies that are consistent with the energy consumption behavior of the region; finally, different regions should examine their own digital promotion energy saving dilemma, accurately identify intermediary channels, and maximize the energy saving and efficiency potential of digital financial inclusion to ensure the effectiveness of energy saving and emission reduction.

参考文献:

[1] Danish ,Ulucak R. A revisit to the relationship between financial development and energy consumption: Is globalization paramount?[J]. Energy,2021,227:120-127.

[2] Wigley T . Implications of recent CO2 emission-limitation proposals for stabilization of atmospheric concentrations[J]. Nature,,1997, 390(6657): 267-270.

[3] Smith L V, Tarui N, Yamagata T. Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions[J]. Energy Economics,2021,97(4):105-110.

[4] Ding Q,Khattak S I,Ahmad M. Towards sustainable production and consumption: Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions (CCO2) in G-7 nations[J]. Sustainable Production and Consumption, 2021,27:254-268.

[5] 王冬. 信息技术对能源消费的影响机制与空间效应研究[D].北京理工大学,2017.

[6] 习近平. 高举中国特色社会主义伟大旗帜 为全面建设社会主义现代化国家而团结奋斗——在中国共产党第二十次全国代表大会上的报告[N]. 人民日报, 2022-10-26(1).

[7] 周济.智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,26(17): 2273-2284.

[8] 唐松,伍旭川,祝佳.数字金融与企业技术创新——结构特征、机制识别与金融监管下的效应差异[J].管理世界,2020,36(05):52-66+9.

[9] 孙玉环,张汀昱,王雪妮,李丹阳.中国数字普惠金融发展的现状、问题及前景[J].数量经济技术经济研究, 2021,38(02):43-59.

[10] Zhao H, Yang Y, Li N, et al. How Does Digital Finance Affect Carbon Emissions? Evidence from an Emerging Market[J]. Sustainability,2021,13(21):123-127.

[11] Wang H, Guo J. Impacts of digital inclusive finance on CO2 emissions from a spatial perspective: Evidence from 272 cities in China[J]. Journal of Cleaner Production,2022,355:98-104.

[12] Mielnik O,Goldemberg J. Foreign direct investment and decoupling between energy and gross domestic product in developing countries[J]. Energy Policy,2002,30(2):87-89.

[13] Adom P K. Asymmetric impacts of the determinants of energy intensity in Nigeria[J]. Energy Economics, 2015,49:570-580.

[14] Elliott R, Sun P, Chen S. Energy intensity and foreign direct investment: A Chinese city-level study[J]. Energy Economics,2013,40:484-494.

[15] 张宇,蒋殿春.FDI、环境监管与能源消耗:基于能耗强度分解的经验检验[J].世界经济,2013,36(03):103-123.

[16] 景守武,陈红蕾.外商直接投资是否有助于改善中国能源环境效率?[J].经济问题探索, 2018(12):172-182.

[17] 沈小波,曹芳萍.外商直接投资、技术溢出与中国的能源强度——基于中国省域面板数据的经验研究[J].价格理论与实践,2012(04):36-37.

[18] 王腾,严良,易明.外商直接投资、区域自主创新能力影响能源强度的实证研究[J].科技管理研究,2016, 36(01):67-72.

[19] 昌敦虎,缪琪,原佳倩,陶子怡,董战峰,白雨鑫.“一带一路”沿线国家碳排放:外商直接投资与发展要素的共同影响分析[J].环境科学研究,2022,35(07):1556-1563.

[20] Liddle B. Impact of population, age structure, and urbanization on carbon emissions/energy consumption: evidence from macro-level, cross-country analyses[J]. Population and Environment,2014,35(3):286-304.

[21] 李标,吴贾,陈姝兴.城镇化、工业化、信息化与中国的能源强度[J].中国人口·资源与环境,2015, 25(08):69-76.

[22] 郭文,孙涛.城镇化对中国区域能源消费及居民生活能源消费的影响[J].中国环境科学,2015,35(10): 3166-3176.

[23] 李亚丽,杨宗之,黄和平,王智鹏.多维度高质量城镇化对能源消费碳排放的传导机制研究[J].中国环境管理,2021,13(06):81-89.

[24] 李标,宋长旭,吴贾,吴波.中国新四化对能源强度的影响[J].资源科学,2017,39(08): 1444-1456.

[25] 吴旭晓.节能减排压力下能源环境效率区域差异及其影响机制研究[J].生态经济, 2018, 34(01):49-56+127.

[26] 吕琦,张竞娴,梁松.城镇化对能源强度的影响及区域差异分析——基于空间滞后模型研究[J].生态经济,2019,35(03):87-94+121.

[27] 柳清瑞,唐璐.城镇化过程中能源消费增长轨迹的实证检验[J].统计与决策,2022, 38(09):84-88.

[28] Keller W. Geographic Localization of International Technology Diffusion[J]. The American Economic Review,2002,92(1):120-142.

[29] Fisher-Vanden K,Gary H J,Liu H, et al. What is driving China's decline in energy intensity?[J]. Resource and energy economics,2004,26(1):77-97.

[30] Huang,Yu. Effects of investment on energy intensity: evidence from China[J]. Chinese Journal of Population Resources and Environment,2016,14(3):197-207.

[31] 李香菊,祝丹枫.创新能力、财税政策与能源强度——基于我国省级面板数据的实证检验[J].经济理论与经济管理,2020(02):58-72.

[32] 张跃军,梁安然.本土研发与技术溢出对中国能源强度的异质性影响研究[J].兰州大学学报(社会科学版),2021,49(04):1-12.

[33] Zhang Y J. The impact of financial development on carbon emissions: An empirical analysis in China[J]. Energy Policy,2011,39(4):2197-2203.

[34] Fang Z, Gao X,Sun C. Do financial development, urbanization and trade affect environmental quality? Evidence from China[J]. Journal of Cleaner Production,2020, 259(C):120-126.

[35] 熊灵,齐绍洲.金融发展与中国省区碳排放——基于STIRPAT模型和动态面板数据分析[J].中国地质大学学报(社会科学版),2016,16(02):63-73.

[36] Shen Y,Su Z W,Yousaf M,Umar M,Khan Z,Khan M. Does Green Investment, Financial Development and Natural Resources Rent Limit Carbon Emissions? A Provincial Panel Analysis of China[J]. Science of the Total Environment,2020,755:142-153.

[37] 马留赟,白钦先,李文.中国金融发展如何影响绿色产业:促进还是抑制?——基于空间面板Durbin模型的分析[J].金融理论与实践,2017(05):1-10.

[38] 祝德生,景维民.金融发展、空间溢出与雾霾污染——基于广义空间两阶段最小二乘法的实证研究[J].经济问题探索,2020(08):134-143+179.

[39] 梁海涛,任保平.长三角城市群金融与环境的耦合协调及时空演化[J].统计与决策,2022, 38(06):159-163.

[40] Ouyang Y, Li P. On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach[J]. Energy Economics,2017,71:238-252.

[41] Soni A,Mittal A,Kapshe M. Energy Intensity analysis of Indian manufacturing industries[J]. Resource-efficient technologies,2017,3(3):353-357.

[42] 杨柳,朱慧明,游万海,黄仁存.金融发展与能源强度协整关系的实证分析[J].统计与决策, 2018,34(15):162-165.

[43] Petrović P,Filipović S,Radovanović M. Underlying causal factors of the European Union energy intensity: Econometric evidence[J]. Renewable and Sustainable Energy Reviews,2018,89:216- 227.

[44] 刘畅,崔艳红.中国能源消耗强度区域差异的动态关系比较研究——基于省(市)面板数据模型的实证分析[J].中国工业经济,2008(04):34-43.

[45] Yu H. The influential factors of China's regional energy intensity and its spatial linkages:1988–2007[J]. Energy Policy,2012,45:583-593.

[46] 宁亚东,张世翔,孙佳.基于泰尔熵指数的中国区域能源效率的差异性分析[J].中国人口·资源与环境, 2014,24(S2):69-72.

[47] 周建,陈娟.中国工业行业能源强度异质性特征诊断及其影响机制的实证研究[J].商业研究, 2016(01):1-9.

[48] Wu J,Wu Y,Cheong T S,Yu Y. Distribution dynamics of energy intensity in Chinese cities[J]. Applied Energy, 2018,211:875-889.

[49] Mulder P, Henri L F. Structural change and convergence of energy intensity across OECD countries, 1970-2005[J]. Energy Economics,2012,34(6):1910-1921.

[50] Duro J A. The international distribution of energy intensities: Some synthetic results[J]. Energy Policy,2015,83:257-266.

[51] Wesley B J,Madariaga J. The convergence of U.S. state-level energy intensity[J]. Energy Economics, 2016,62:357-370.

[52] 胡玉敏,杜纲.中国各省区能源消耗强度趋同的空间计量研究[J].统计与决策,2009(11):95-96.

[53] 张华明,王瑜鑫,张聪聪.中国省域能源强度趋同俱乐部存在性及影响因素分析[J].长江流域资源与环境, 2017,26(05):657-666.

[54] 徐如浓,吴玉鸣.中国省域能源强度的趋同性研究[J].统计与决策,2019,35(22):122-126.

[55] Gabor D,Brooks S. The digital revolution in financial inclusion: international development in the fintech era[J]. New Political Economy,2017,22(4):423-436.

[56] 宋晓玲.数字普惠金融缩小城乡收入差距的实证检验[J].财经科学,2017(06):14-25.

[57] Ozili P K. Impact of digital finance on financial inclusion and stability[J]. Borsa Istanbul Review,2017,18(4):329-340.

[58] 蔡璐璐,邢晋嘉,路优.数字普惠金融对企业经营绩效的影响——基于A股上市公司的实证研究[J].技术与创新管理,2021,42(06):674-680.

[59] 葛和平,朱卉雯.中国数字普惠金融的省域差异及影响因素研究[J].新金融,2018(02):47-53.

[60] 何文秀.中国数字普惠金融的区域差异分析[J].统计理论与实践,2020(03):17-22.

[61] 向洁,胡青江,闫海龙.数字普惠金融发展的区域差异及动态演进[J].技术经济与管理研究, 2021(02):65-70.

[62] 张龙耀,邢朝辉.中国农村数字普惠金融发展的分布动态、地区差异与收敛性研究[J].数量经济技术经济研究,2021,38(03):23-42.

[63] 任太增,殷志高.数字普惠金融与中国经济的包容性增长:理论分析和经验证据[J].管理学刊,2022,35(01):23-35.

[64] 中国人民银行衡水市中心支行课题组,王京辉,杜娟.数字普惠金融发展对贫困减缓的实证研究——基于空间杜宾模型的应用[J].河北金融,2019(11):26-31.

[65] 惠献波.数字普惠金融扶贫效应及巩固研究[J].价格理论与实践,2020(03):115-118.

[66] 金发奇,言珍,吴庆田.数字普惠金融减缓相对贫困的效率研究[J].金融发展研究, 2021(01):14-21.

[67] 张晓燕.互联网金融背景下普惠金融发展对城乡收入差距的影响[J].财会月刊, 2016(17):94- 97.

[68] 梁双陆,刘培培.数字普惠金融与城乡收入差距[J].首都经济贸易大学学报,2019, 21(01):33- 41.

[69] 殷贺,江红莉,张财经,蒋鹏程.数字普惠金融如何响应城乡收入差距?——基于空间溢出视角的实证检验[J].金融监管研究,2020(09):33-49.

[70] 杨怡,陶文清,王亚飞.数字普惠金融对城乡居民收入差距的影响[J].改革,2022(05): 64-78.

[71] 冯永琦,蔡嘉慧.数字普惠金融能促进创业水平吗?——基于省际数据和产业结构异质性的分析[J].当代经济科学,2021,43(01):79-90.

[72] 罗新雨,张林.数字普惠金融的创业效应:机制、门槛及政策价值[J].金融理论与实践, 2021(02):17-26.

[73] Baulch B, Duong D T, Le T H. Constraints to the uptake of solar home systems in Ho Chi Minh City and some proposals for improvement[J]. Renewable Energy, 2018, 118:245-256.

[74] Le T H, Le H C, Taghizadeh-Hesary F. Does Financial Inclusion impact CO2 Emissions? Evidence from Asia[J].Finance Research Letters, 2020,34:101-108.

[75] Usman M , Makhdum M , Kousar R. Does financial inclusion, renewable and non-renewable energy utilization accelerate ecological footprints and economic growth? Fresh evidence from 15 highest emitting countries[J]. Sustainable Cities and Society, 2020, 62:125-129.

[76] 贺茂斌,杨晓维.数字普惠金融、碳排放与全要素生产率[J].金融论坛,2021,26(02): 18-25.

[77] 张恒,李璐,赵茂.数字普惠金融与绿色全要素生产率——基于系统GMM的实证检验[J].新金融,2022(03):31-40.

[78] 蒋建勋,唐宇晨,李晓静.双碳背景下数字金融赋能新能源企业绿色创新:基于融资约束视角[J].当代经济管理,2022,44(05):81-89.

[79] 孙慧,王凤逸,丁志勇.数字金融如何影响了区域碳减排能力?[J].首都经济贸易大学学报, 2022,24(02):42-56.

[80] 董直庆,蔡啸,王林辉.技术进步方向、城市用地规模和环境质量[J].经济研究,2014, 49(10): 111-124.

[81] 戚聿东,朱正浩.逆全球化背景下全球生产性服务业FDI新趋势及动力机制分析[J].经济管理,2020,42(07):56-74.

[82] 程云洁,段鑫.数字普惠金融对城市经济高质量发展的影响及其传导机制研究——来自中部地区79个地级市的经验数据[J].调研世界,2022(06):23-37.

[83] Fombrun C,Shanley M. What's in a Name? Reputation Building and Corporate Strategy[J]. The Academy of Management Journal,1990,33(2):233-258.

[84] 李优树,李福平,李欣.环境规制、数字普惠金融与城市产业升级——基于空间溢出效应与调节效应的分析[J].经济问题探索,2022(01):50-66.

[85] 刘潭,徐璋勇,张凯莉.数字金融对经济发展与生态环境协同性的影响[J].现代财经(天津财经大学学报),2022,42(02):21-36.

[86] 郭桂霞,张尧.数字普惠金融与碳减排关系研究[J].价格理论与实践,2022(01):135-138.

[87] 黄益平,黄卓.中国的数字金融发展:现在与未来[J].经济学(季刊),2018,17(04):1489-1502.

[88] 牛余斌. 中国数字普惠金融发展对贫困减缓的实证研究[D].山东大学,2018.

[89] Shaker, Ross R. The spatial distribution of development in Europe and its underlying sustainability correlations[J]. Applied Geography, 2015, 63:304-314.

[90] 张平淡.绿色金融的探索与发展[J].中国高校社会科学,2018(01):43-50+157.

[91] 田杰,谭秋云,靳景玉.数字金融能否改善资源错配?[J].财经论丛,2021(04):49-60.

[92] 解维敏,方红星.金融发展、融资约束与企业研发投入[J].金融研究,2011(05):171-183.

[93] Hsu P , Xuan T, Yan X. Financial development and innovation: Cross-country evidence [J]. Journal of Financial Economics, 2014, 112(1):116-135.

[94] 李苗苗,肖洪钧,赵爽.金融发展、技术创新与经济增长的关系研究——基于中国的省市面板数据[J].中国管理科学,2015,23(02):162-169.

[95] 易信,刘凤良.金融发展、技术创新与产业结构转型——多部门内生增长理论分析框架[J].管理世界,2015(10):24-39+90.

[96] 王书华,姚璐.金融供给对区域创新能力影响的空间效益分析——基于“中心—外围”式的研究视角[J].经济问题探索,2022(04):127-141.

[97] 张璇,刘贝贝,汪婷,李春涛.信贷寻租、融资约束与企业创新[J].经济研究,2017, 52(05): 161-174.

[98] 郭娜.政府?市场?谁更有效——中小企业融资难解决机制有效性研究[J].金融研究, 2013(03):194-206.

[99] 梁榜,张建华.中国普惠金融创新能否缓解中小企业的融资约束[J].中国科技论坛, 2018(11):94-105.

[100] Comin D, Nanda R. Financial Development and Technology Diffusion[J]. IMF Economic Review,2019,67(2):395-419.

[101] 林伯强.碳中和背景下的广义节能——基于产业结构调整、低碳消费和循环经济的节能新内涵[J].厦门大学学报(哲学社会科学版),2022,72(02):10-20.

[102] 李建军,彭俞超,马思超.普惠金融与中国经济发展:多维度内涵与实证分析[J].经济研究, 2020,55(04):37-52.

[103] 马青,傅强.城乡收入差距、能源消耗与环境污染的双向耦合关系——基于经济起因的互动关系[J].技术经济,2019,38(03):67-77.

[104] 凌炼,龙海明.消费金融影响居民消费行为的机制分析[J].求索,2016(05):78-82.

[105] 郭峰,王靖一,王芳,孔涛,张勋,程志云.测度中国数字普惠金融发展:指数编制与空间特征[J].经济学(季刊),2020,19(04):1401-1418.

[106] Antweiler W,Copeland B R,Taylor M S. Is Free Trade Good for the Environment?[J]. The American Economic Review,2001,91(4):877-908.

[107] Walter I,Ugelow J. Environmental Policies in Developing Countries[J]. Ambio,1979, 8(2/3):102-109.

[108] 段宏波,张古鹏,范英,汪寿阳.基于内生能源效率改进的宏观减排结构分析[J].管理科学学报,2016,19(07):10-23.

[109] Wooldridge J M . Econometric analysis of cross section and panel data[J]. MIT Press Books, 2010, 1(2):206-209.

[110] Tobler W R. A computer movie simulating urban growth in the Detroit region[J]. Economic geography, 1970, 46(2): 234-240.

[111] Hajime S. Parameter estimation of the spatial panel stochastic frontier model with random effects[J]. Applied Economics Letters,2020,27(3):248-253.

[112] Wang D,Zhou T,Lan F,Wang M. ICT and socio-economic development: Evidence from a spatial panel data analysis in China[J]. Telecommunications Policy,2021,45(7):102-117.

[113] Paelinck J. Spatial econometrics[J]. Economics Letters,1978,1(1):59-63.

[114] Anselin L. Local Indicators of Spatial Association—LISA[J]. Geographical Analysis, 1995,27(2):93-115.

[115] 温忠麟,叶宝娟.中介效应分析:方法和模型发展[J].心理科学进展,2014,22(05):731-745.

中图分类号:

 F832.5 X196    

开放日期:

 2023-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式