- 无标题文档
查看论文信息

论文中文题名:

 电力盾构隧道下穿灞河施工控制技术研究    

姓名:

 祁嘉辉    

学号:

 19204209065    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 防灾减灾工程及防护工程    

第一导师姓名:

 郑选荣    

第一导师单位:

 西安科技大学    

第二导师姓名:

 郑伟    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Research on the Construction Control Technology of Power Shield Tunnel Crossing the Bahe River    

论文中文关键词:

 电力盾构 ; 下穿河流 ; 渣土改良 ; 数值模拟 ; 施工控制技术    

论文外文关键词:

 Power shield ; cross the river ; muck improvement ; numerical simulation ; construction control technology    

论文中文摘要:

隧道下穿河流施工时,盾构机在含水量丰富、渗透性较强的富水砂层掘进,施工中地层扰动变形控制难度大,高水位水头压使得施工安全性受到严重挑战。本文依托西安330kV电力盾构下穿灞河工程,采用理论分析、室内试验、数值模拟、现场监测等方法,对电力盾构下穿灞河的重大风险及技术难点展开研究并提出安全控制措施,研究成果为电力盾构下穿灞河施工提供安全指导,积累了相关工程经验,对盾构下穿河流盾构施工提供借鉴和参考意义。主要研究内容及结论如下:
(1)应用层次分析法和模糊综合评价法,对电力盾构下穿灞河施工风险等级进行评价,得到电力盾构施工中具有较高等级水平的风险因素。得到结论:电力盾构下穿灞河施工具有“中等风险”且易上升为“较高风险”,盾构重大风险主要源自施工方法因素和地质水文因素,因此需要采取合理有效的控制措施,降低施工安全风险。
(2)以粉质黏土、砂土为试验对象,泡沫剂、膨润土为改良剂,坍落度试验、黏附性试验、直剪试验、渗透试验为评价指标,进行渣土改良试验。试验结果表明:不同含水率的粉质黏土泡沫最佳注入比差别较大;含水率分别在18%、21%、24%、27%、30%时,最佳泡沫注入比分别为70%、55%、45%、30%、22%,改良粉质黏土可优先添加水提高土体含水率再用泡沫剂改良。砂土采用土水比为1:8的钠基膨润土泥浆可有效降低其渗透性,细砂、中砂、粗砂最佳体积添加比为8%、10%、16%。现场出渣情况显示试验结果用于盾构施工改良效果良好,粉质黏土基本无结泥饼现象,砂土无掌子面或螺旋输送机喷涌发生。
(3)综合使用正交试验和数值模拟方法,建立电力盾构下穿灞河三维模型,研究土仓压力、注浆压力、注浆层厚度对地层变形敏感性程度,确定出电力盾构下穿灞河主要掘进参数。结果表明:分别以地表最大沉降、地层最大竖向位移、地层最大水平位移为评价指标时,三个因素的影响敏感性主次顺序都是注浆压力、注浆层厚度、土仓压力。因此在穿河盾构施工中,应根据监测数据和参数反馈优先控制同步注浆压力、注浆量的变化,及时进行优化调整。
(4)通过理论计算,确定了盾构总推力、刀盘扭矩、土仓压力、注浆压力、同步注浆量等理论值,与现场实测掘进参数对比验证,并针对施工主要风险提出有效控制措施。得出下穿灞河小直径电力盾构掘进参数建议值为:总推力控制在9000kN,刀盘扭矩为1100kN·m,土仓压力为0.15MPa,注浆压力为0.18MPa,同步注浆量为4.05~5.06m3,施工速度保持在20~40mm/min之间。

论文外文摘要:

When the tunnel is constructed under the river, the shield machine is excavated in the water-rich sand layer with rich water content and strong permeability. During the construction, it is difficult to control the disturbance and deformation of the stratum. The high water head pressure makes the construction safety seriously challenged. Relying on the Xi'an 330kV Power Shield Crossing Bahe Project, this paper uses theoretical analysis, laboratory tests, numerical simulation, on-site monitoring and other methods to study the major risks and technical difficulties of power shields crossing the Bahe River, and propose safety control measures. The research results provide safety guidance for the construction of electric shield tunnels under the Bahe River, accumulate relevant engineering experience, and provide reference and reference significance for the shield tunnel construction of shield tunnels under the river. The main research contents and conclusions are as follows:
(1) Apply the analytic hierarchy process and fuzzy comprehensive evaluation method to evaluate the risk level of the construction of the power shield under the Bahe River, and get the main risk factors with a higher level in the construction process, and get the conclusion: the power shield The construction under the Bahe River has "medium risk" and is easy to rise to "high risk". The major risks of shield tunneling are mainly derived from construction method factors and geological and hydrological factors. Therefore, reasonable and effective control measures need to be taken to reduce construction safety risks.
(2) Taking silty clay and sandy soil as test objects, foaming agent and bentonite as modifiers, and slump test, adhesion test, direct shear test, and penetration test as evaluation indicators, the slag soil improvement test was carried out. The test results show that the optimal injection ratios of silty clay foams with different moisture contents are quite different; when the moisture contents are 18%, 21%, 24%, 27%, and 30%, the optimal foam injection ratios are 70%, 70%, and 30%, respectively. 55%, 45%, 30%, 22%, for the improvement of silty clay, water can be added first to increase the moisture content of the soil, and then foaming agent can be used to improve it. Sodium bentonite mud with a soil-water ratio of 1:8 can effectively reduce its permeability for sand, and the optimal volume addition ratios of fine sand, medium sand and coarse sand are 8%, 10%, and 16%. The on-site slag discharge situation shows that the test results are good for shield construction improvement, the silty clay basically has no mud cake phenomenon, and the sandy soil has no face or screw conveyor spouting.
(3) Comprehensively using the orthogonal test and numerical simulation methods, a three-dimensional model of the power shield tunnel passing through the Ba River was established, and the sensitivity of the soil bunker pressure, grouting pressure, and grouting layer thickness to the formation deformation was studied, and the power shield tunnel passing through the Ba River was determined. Main excavation parameters. The results show that when the maximum subsidence of the surface, the maximum vertical displacement of the stratum, and the maximum horizontal displacement of the stratum are used as the evaluation indicators, the primary and secondary order of the sensitivity are grouting pressure, grouting layer thickness, and soil bin pressure. Therefore, in the construction of shield tunneling through the river, the changes of synchronous grouting pressure and grouting amount should be controlled preferentially according to the monitoring data and parameter feedback, and the optimization and adjustment should be carried out in time.
(4) Through theoretical calculation, the theoretical values of the total thrust of the shield, the torque of the cutter head, and the pressure of the soil bin are determined, which are compared and verified with the field-measured excavation parameters, and effective control measures are proposed for the main risks of construction. The recommended values for the tunneling parameters of the small-diameter electric shield tunnel through the Bahe River are: the total thrust is controlled at 9000kN, the cutter head torque is 1100kN m, the soil bin pressure is 0.15MPa, the grouting pressure is 0.18MPa, and the synchronous grouting amount is 4.05~5.06m3, and the construction speed is kept between 20~40mm/min.

参考文献:

[1]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2005,(4):7-9.

[2]李怀用.浅谈微型盾构在市政工程中的发展前景[J].隧道建设,2001,21(4):25-27.

[3]潘荣凯,蒋一德,杨平.富水砂层越江隧道小直径土压盾构施工技术[J].铁道科学与工程学报,2017,14(10):2185-2193.

[4]段亚刚.小直径盾构在综合管廊建设中的关键技术研究[J].铁道工程学报,2017,34(04):65-69.

[5]蔡兵华,冯晓腊,李忠超.小型土压平衡盾构隧道掘进参数研究[J].安全与环境工程,2020,27(02):204-209.

[6]张小颖.北京地区电力盾构隧道设计与施工关键技术研究[D].北京:清华大学,2017.

[7]任新海.城市复杂环境下电力隧道修建关键技术研究[D].成都:西南交通大学,2015.

[8]熊清.中小直径盾构施工隧道特性研究[D].广州:华南理工大学,2014.

[9]张士民.南京云锦路电缆隧道盾构掘进技术[J].隧道建设,2009,29(04):451-454+479.

[10]周金海,周虹霞,王鑫,等.城市电力隧道规划及结构设计研究[J].铁道建筑,2012(01):69-72.

[11]卢庆亮.电力隧道盾构施工技术现状及进展[J].现代制造技术与装备,2019:199+204.

[12]肖明清.我国水下盾构隧道代表性工程与发展趋势[J].隧道建设(中英文),2018,38(03):360-367.

[13]康晓伟,巩晓昕.北京地区电力隧道盾构施工技术[J].电子制作,2014(19):201.

[14]孟昭晖,裴书锋,王松,等.电力盾构隧道下穿河道的安全施工技术[J].市政技术,2012,30(06):99-101+104.

[15]裴书锋.下穿河流电力盾构隧道端头加固机理及施工参数优化[D].北京:北京交通大学,2012.

[16]李周男.小直径土压平衡盾构机关键部件设计[D].石家庄:石家庄铁道大学,2016.

[17]成炜康.成都砂卵石地层大直径盾构下穿建筑物安全控制技术研究[D].西安:西安科技大学,2021.

[18]陈凯.兰州轨道交通盾构隧道下穿黄河施工安全风险控制研究[D].兰州:兰州交通大学,2020.

[19]肖春春.水下隧道盾构施工风险管理研究[D].兰州:兰州交通大学,2017.

[20]Quebaud S,Sibai M,Henry J P. Use of chemical foam for improvement in drilling by earthpressure balanced shields in granular soils[J].Tunneling and Underground Space Technology, 2008,13(2):173-177.

[21]Bezuijen A,Schaminee P E L,Kleinjan J A. Additive testing for earth pressure balance shields[C]//Geotechnical Engineering for Transportation Infrastructure. Balkema:[s.n.], 2009:1991-1996.

[22]Jancsecz S, Krause R, Langmaack L.Using the slump test to assess the behavior of conditioned soil for EPB tunneling [J].Environmental & Engineering Geoscience, 2016,8(3):167-173.

[23]SOTIRIS P. Properties of foam/sand mixtures for tunnelling applications[D]. Oxford: Department of Engineering Science,University of Oxford,2001.

[24]魏康林.土压平衡盾构施工中泡沫和膨润土改良土体的微观机理分析[J].现代隧道技术,2007(01):73-77.

[25]陈中天.基于渗透性试验的土压平衡盾构泡沫渣土改良研究[D].成都:西南交通大学,2019.

[26]肖云之.粉质黏土地层渣土改良试验研究[J].甘肃科技纵横,2019,(9):51-54.

[27]杨洪希,黄伟,王树英,等.粉质黏土地层土压平衡盾构渣土改良技术[J].隧道与地下工程灾害防治,2020,2(2):76-82.

[28]刘飞,杨小龙,冉江陵,等.基于盾构掘进效果的富水砾砂地层渣土改良试验研究[J].隧道建设(中英文),2020,40(10):1426-1432.

[29]李文辉.土压平衡盾构中改良剂对砂土渗透性影响研究[D].北京:中国地质大学(北京),2020.

[30]王晶.复杂环境条件下富水砂地层盾构施工控制技术研究[D].西安:西安建筑科技大学,2018.

[31]张文萃.土压平衡式盾构穿越含砂土层渣土改良试验研究[D].西安:西安建筑科技大学,2013.

[32]于有强.盾构渣土改良用膨润土泥浆试验分析[D].沈阳:沈阳工业大学,2019.

[33]XIE X, YANG Y, JI M. Analysis of ground surface settlement induced by the construction of a large-diameter shield-driven tunnel in Shanghai, China[J]. Tunnelling and Underground Space Technology, 2016, 51: 120−132.

[34]Kasper T, Meschke G. On the influence of facepressure, grouting pressure and TBM design ingroundtunnelling[J]. Tunnelling and Underground Space Technology, 2006, 21(2): 160−171.

[35]Lee K M, Ji H W, Shen C K, et al. Ground Response to the Construction of Shanghai Metro Tunnel-Line 2.[J]. Soils & Foundations, 1999,39(3):113-134.

[36]Yu Liang,Xiangyu Chen,Junsheng Yang,Jian Zhang,Linchong Huang. Analysis of ground collapse caused by shield tunnelling and the evaluation of the reinforcement effect on a sand stratum[J]. Engineering Failure Analysis,2020,115.

[37]Xiongyu Hu,Chuan He,Zuzhao Peng,Wenbo Yang. Analysis of ground settlement induced by Earth pressure balance shield tunneling in sandy soils with different water contents[J]. Sustainable Cities and Society,2019,45.

[38]Ahrens E S A H. Two- and three-dimensional analysis of closely spaced double-tube tunnels[J]. Tunnelling and Underground Space Technology, 2013.

[39]宗树红.超大直径盾构隧道穿越黄河施工控制技术研究[D].济南:山东大学,2018.

[40]陈孝琼.盾构隧道下穿河流引起的地层变形规律研究[D].北京:北京交通大学,2018.

[41]Biot M A.General solution of the equation of elasticityand consolidation for porous material [J] .Jour Appl Mech , 2016, 78: 91- 96.

[42]Zhao Lia,Zujiang Luo,Chenghua Xu. 3D fluid-solid full coupling numerical simulation of soil deformation induced by shield tunnelling[J].Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2019,90:174-182.

[43]Verruijt, A. A COMPLEX VARIABLE SOLUTION FOR A DEFORMING CIRCULAR TUNNEL IN AN ELASTIC HALF-PLANE[J]. International Journal for Numerical &Analytical Methods in Geomechanics, 2007,21(2):77-89.

[44]张远荣.盾构过富水砂层对环境影响的分析研究[D].北京:中国铁道科学研究院,2011.

[45]王伟,辛振省,彭加强.土压平衡式盾构下穿河流施工技术研究[J].铁道标准设计,2011(4): 92-94.

[46]鲍飞翔.盾构施工全过程地表沉降流固耦合分析[D].太原:太原理工大学,2019.

[47]孙建.青岛地区盾构穿越富水地层地面沉降规律及控制技术研究[D].青岛:青岛理工大学,2019.

[48]刘志晟.南昌地铁1号线土压平衡盾构施工沉降控制关键技术研究[D]. 南昌:南昌大学,2015.

[49]曹晶珍,李俊伟.过江隧道盾构法施工风险分析及控制[J].地下空间与工程学报,2012,8(S2):1777-1781.

[50]Hashemi M R, Hatam F. Unsteady seepage analysis using local radial basis function-based differential quadrature method[J]. Applied Mathematical Modelling, 2011, 35(10): 4934-4950.

[51]李自力,潘青,曹志勇,等.盾构长距离下穿越河流数值模拟及施工参数优化设计研究[J].现代隧道技术,2020,57(S1):442-449.

[52]王明胜,姜冲.成都地铁盾构区间隧道下穿锦江关键施工技术研究[J].现代隧道技术,2019,56(S2):619-624.

[53]吴文彪,李锦平,林辉,等.大埋深裂隙岩层中土压平衡盾构下穿水道施工安全性分析[J].铁道建筑,2019,59(08):81-83+107.

[54]胡长明,张延杰,袁一力,等.盾构隧道临近河流始发及过电塔掘进技术[J].长安大学学报(自然科学版),2017,37(06):83-91.

[55]邓如勇,汪辉武,戴兵,等.兰州地铁1号线盾构下穿黄河强透水地层施工安全性研究[J].铁道建筑,2016(09):57-61.

[56]李明华,张娟.盾构下穿桥梁及河流关键技术方案[J].铁道建筑,2015(07):54-57.

[57]曹振,杨锋,张宁.黄土盾构下穿护城河拱桥FLAC3D预测与施工安全防控技术[J].隧道建设,2015,35(12):1264-1270.

[58]傅鹤林,邓皇适,黄震,等.下穿砂土地层掌子面盾构推力大小的极限分析[J].铁道工程学报,2020,37(05):80-86.

[59]颜波,杨国龙,林辉,等.盾构隧道施工参数优化与地表沉降控制研究[J].地下空间与工程学报,2011,7(S2):1683-1687.

[60]Cheng P, Zou J, Luo H, et al. Experimental research on detection method of grouting effect in loose filled soil[J]. Journal of Central South University, 2013,44(9):3800-3806.

[61]Xu Q. W., Zhang L. Y., Zhu H. H., et al. Laboratory tests on conditioning the sandy cobble soil for EPB shield tunnelling and its field application[J]. Tunnelling and Underground Space Technology, 2020, 105:103512.

[62]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例.第2版[M].北京:中国水利水电出版社, 2013.

[63]彭文斌. FLAC 3D实用教程.[M].北京:机械工业出版社, 2008.

[64]戴志仁,时亚昕,雷升祥,等.富水砂卵石地层盾构法隧道设计与施工关键技术.[M].北京:人民交通出版社股份有限公司, 2020.

[65]刘建国,杨云飞,朱军,梅源.土压平衡盾构机在全断面富水砂层穿越高铁道岔区沉降控制技术.[M].北京:中国建筑工业出版社, 2019.

中图分类号:

 U455.43    

开放日期:

 2022-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式