论文中文题名: |
曹家滩井田富油煤地球化学特征及成煤环境研究
|
姓名: |
董伸培
|
学号: |
21209226125
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0857
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
地质工程
|
研究方向: |
富油煤地质与开发
|
第一导师姓名: |
乔军伟
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-26
|
论文答辩日期: |
2024-06-02
|
论文外文题名: |
Study on geochemical characteristics and coal-forming environment of tar-rich coal in Caojiatan mine field
|
论文中文关键词: |
富油煤 ; 煤相分析 ; 地球化学 ; 成煤环境 ; 曹家滩井田
|
论文外文关键词: |
tar-rich coal ; coal phase analysis ; geochemistry ; coal-forming environment ; Caojiatan mine field
|
论文中文摘要: |
︿
富油煤是一种集煤、油、气属性于一体的特殊矿产资源,通过热解可以产生半焦、焦油和煤气。然而不同成煤环境下的富油煤产出的焦油具有较大差异,甚至同一区域同一煤层的不同层位的焦油产率亦有较大差异。为了探索陕北地区富油煤的成煤环境及主要影响因素,本次研究以榆神矿区的曹家滩井田为研究对象,通过矿井下刻槽煤样和定向钻探煤样的方法采集了主采煤层2-2煤的垂向剖面样品。对采集的样品开展了煤岩煤质、地球化学等分析,研究了2-2煤层煤岩煤质、地球化学组成在垂向上的变化特征和规律,分析了2-2煤层的成煤环境和指示成煤环境的煤相参数、地球化学参数与焦油产率间的关系,提出了富油煤在显微组分、无机元素组成等方面的主要特征和判识条件,揭示了曹家滩井田富油煤的主要控制因素。本次研究取得的主要成果如下:
(1)曹家滩井田主采煤层2-2煤显微煤岩组成主要以惰质组为主、镜质组次之,矿物组成主要为方解石、白云石、黏土矿物和石英等;常量元素以Ca、Si、Fe、Al、S、Mg和Na为主;微量元素大部分为亏损状态,小部分处于正常状态,仅有Cs、Ba两个元素是轻度富集。稀土元素含量明显低于中国煤均值,稀土元素分配模型呈左高右低的“V”型曲线,反映物源来源一致和供应的稳定。2-2煤层总体上属于低水分、低灰分产率、中高-高挥发分、特低-低硫、高发热量的富油煤。
(2)2-2煤层主要形成于干燥森林沼泽和潮湿森林沼泽中,成煤植物以低木本植物为主,整体属于盐度略高、还原的陆相淡水成煤环境,水动力条件弱,沉积期以温湿和干热的半干热气候为主。垂向上,指示成煤环境的煤相参数、地球化学参数与焦油产率之间有明显的相关关系,结构保存指数(TPI)和植被指数(VI)与焦油产率呈负相关关系,凝胶化指数(GI)与焦油产率呈正相关关系,指示湿润气候的参数、指示还原环境的参数与焦油产率呈正相关关系,即凝胶化程度高、木本组织低、湿润深覆水的还原沼泽环境对焦油产率控制性强,还原程度越高越有利于富油煤的生成。
(3)通过富油煤的显微组分、无机元素组成特征判识分析,得出曹家滩井田2-2煤中的富油煤主要分布范围是:镜质组含量>30%、惰质组含量<60%;煤相参数TPI值介于0.99~1.64、GI值介于0.63~1.76;常量元素Al2O3含量介于5%~15%、CaO含量介于13%~52%、Fe2O3含量介于0%~25%、MnO2含量介于0%~0.6%;微量和稀土元素Sr/Ba<0.58、V/Zn<1.18、V/Cr>1.99、Ni/Co>3.43、(V+Ni)>0.82且Ce/La>1.55。即中高等含量镜质组、中高凝胶化程度、植物组织保存程度低、低木本组分、有适量的陆源碎屑物质供应、低盐度的还原环境更有利于富油煤的形成。
﹀
|
论文外文摘要: |
︿
Tar-rich coal is a special mineral resource that integrates the properties of coal, oil and gas. It can produce semi-coke, tar and gas by pyrolysis. However, the tar produced by tar-rich coal under different coal-forming environment is very different, and even the tar yield of different strata of the same coal seam in the same region is also very different. In order to explore the coal-forming environment and main influencing factors of tar-rich coal in northern Shaanxi province, this study takes Caojiatan well field in Yusheng Mining area as the research object, and takes the vertical profile samples of 2-2 coal in the main coal seam through the methods of coal groove sample and directional drilling sample. The collected samples were analyzed in terms of coal, rock and coal quality and geochemistry, and the characteristics and rules of vertical changes of coal, rock and coal quality and geochemical composition in 2-2 coal seam were studied. The relationship between the coal-forming environment and the coal-phase parameters and geochemical parameters indicating the coal-forming environment of 2-2 coal seam and the tar yield were analyzed. The main characteristics and identification conditions of tar-rich coal in terms of maceral and inorganic elements are presented, and the main controlling factors of tar-rich coal in Caojiatan well field are revealed. The main achievements of this study are as follows:
(1) 2-2 coal seam is mainly formed in dry forest marshes and wet forest marshes, and the coal-forming plants are mainly low woody plants. The whole coal formation environment belongs to the terrestrial freshwater coal-forming environment with slightly high salinity and reduction. The hydrodynamic conditions are weak, and the sedimentary period is dominated by semi-dry hot climate with warm wet and dry hot. Vertical, coal phase parameters and geochemical parameters indicating coal-forming environment are significantly correlated with tar yield. Structure preservation index (TPI) and vegetation index (VI) are negatively correlated with tar yield, while gelling index (GI) is positively correlated with tar yield. The parameters indicating wet climate and reducing environment are positively correlated with tar yield, that is, the reducing swamp environment with high gelation degree, low woody tissue and wet deep water cover has strong control over tar yield, and the higher the reduction degree, the more favorable the formation of tar-rich coal.
(2) 2-2 coal seam is mainly formed in dry forest marshes and wet forest marshes, and the coal-forming plants are mainly low woody plants. The whole coal formation environment belongs to the terrestrial freshwater coal-forming environment with slightly high salinity and reduction. The hydrodynamic conditions are weak, and the sedimentary period is dominated by semi-dry hot climate with warm wet and dry hot. Vertical, coal phase parameters and geochemical parameters indicating coal-forming environment are significantly correlated with tar yield. Structure preservation index (TPI) and vegetation index (VI) are negatively correlated with tar yield, while gelling index (GI) is positively correlated with tar yield. The parameters indicating wet climate and reducing environment are positively correlated with tar yield, that is, the reducing swamp environment with high gelation degree, low woody tissue and wet deep water cover has strong control over tar yield, and the higher the reduction degree, the more favorable the formation of tar-rich coal.
(3) According to the identification and analysis of the maceral and inorganic elements composition characteristics of tar-rich coal, the main distribution range of tar-rich coal in Caojiatan mine field 2-2 is: vitrinite content >30%, inertinite content <60%; The TPI values of coal phase parameters are 0.99~1.64, and the GI values are 0.63~1.76. The content of Al2O3 is between 5% and 15%, the content of CaO is between 13% and 52%, the content of Fe2O3 is between 0% and 25%, and the content of MnO2 is between 0% and 0.6%. Trace and rare earth elements Sr/Ba<0.58, V/Zn<1.18, V/Cr>1.99, Ni/Co>3.43, (V+Ni) >0.82 and Ce/La>1.55. That is, the medium and high content of vitrinite, the medium and high degree of gelation, the low degree of plant tissue preservation, the low woody component, and the moderate supply of terrigenous detritus, the reduction environment with low salinity is more conducive to the formation of tar-rich coal.
﹀
|
参考文献: |
︿
[1] 田倩茹. 我国能源对外依存度现状分析及对策研究[J]. 行政事业资产与财务, 2020, 15(12):33-34. [2] 张一鸣. 中国油气对外依存度首次下降[N]. 中国经济时报, 2023-02-06(2). [3] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5):1365-1377. [4] 王陆新, 王越, 娄钰. 我国能源资源供应安全风险研究[J]. 中国能源, 2021, 43(3):59-63+82. [5] 严晓辉, 杨芊, 高丹, 等. 我国煤炭清洁高效转化发展研究[J]. 中国工程科学, 2022, 24(6):19-25. [6] 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24(03):49-57. [7] Qiao J W, Wang C j, Su G, et al. Application research on the prediction of tar yield of deep coal seam mining areas based on PSO-BPNN machine learning algorithm [J]. Frontiers in Earth Science, 2023, 11:1227154. [8] Qiao J W, Du F P, Wang S M, et al. Enrichment and Occurrence of Mn in 5−2 Coal from Qinglongsi Coal Mine, Northern Ordos Basin, China [J]. ACS Omega, 2020, 5:20202-20214. [9] 宋强. 富油煤热解与赤铁矿石还原协同处理基础研究[D]. 北京: 中国矿业大学, 2019. [10] 马丽, 王双明, 段中会, 等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(02):1-8. [11] Parkash S, Carson D, Ignasiak B. Petrographic composition and liquefaction behaviour of North Dakota and Texas lignites[J]. Fuel, 1983, 62(6): 627-631. [12] Lu S T, Kaplan I R. Hydrocarbon-generating potential of humic coals from dry pyrolysis[J]. AAPG bulletin, 1990, 74(2): 163-173. [13] Liu P, Le J, Wang L, et al. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Applied Energy, 2016, 183: 470-477. [14] 汪寅人, 刘品双, 陈文敏. 我国若干褐煤及烟煤的化学组成与低温焦油产率的关系[J]. 燃料学报, 1958, (01):35-41. [15] 张军, 袁建伟, 徐益谦. 矿物质对煤粉热解的影响[J]. 燃烧科学与技术, 1998, (01):66-71. [16] 师庆民, 王双明, 王生全, 等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(05):2057-2066. [17] 雷亚军, 乔军伟, 李增林, 等. 曹家滩煤矿煤质特性及清洁利用途径分级研究[J]. 能源与环保, 2023, 45(08):155-162. [18] 孙晔伟, 唐跃刚, 李正越, 等. 中国特高挥发分特高油产率煤的分布及其特征[J]. 煤田地质与勘探, 2017, 45(05):6-12. [19] 谢青, 李宁, 姚征, 等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭, 2020, 46(11):83-90. [20] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12):192-197. [21] 李华兵, 姚征, 李宁, 等. 神府矿区5~(-2)煤层富油煤赋存特征及资源潜力评价[J]. 煤田地质与勘探, 2021, 49(03):26-32+41. [22] 杨甫, 段中会, 马丽等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术, 2023, 51(03):171-181. [23] 许婷, 李宁, 姚征, 等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术, 2022, 50(3):161-168. [24] Shi Q, Li C, Wang S, et al. Variation of molecular structures affecting tar yield: A comprehensive analysis on coal ranks and depositional environments[J]. Fuel, 2023, 335: 127050. [25] 张宁, 许云, 乔军伟, 等. 陕北侏罗纪富油煤有机地球化学特征[J]. 煤田地质与勘探, 2021, 49(03):42-49. [26] Liu G, Zheng L, Gao L, et al. The characterization of coal quality from the lining coalfield[J]. Energy, 2005, 30(10): 1903-1914. [27] 魏迎春, 贾煦, 刘志飞, 等. 鸳鸯湖矿区延安组煤岩煤质特征及成煤环境研究[J]. 煤炭科学技术, 2018, 46(7)201-209. [28] Arnold B J, Aplan F F. The hydrophobicity of coal macerals[J]. Fuel, 1989,68(5): 651-658. [29] Huang W H, Wei H A, Weng C M, et al. Characteristics of Coal Petrology and Genesis of Jurassic Coal in Ordos Basin[J]. Geoscience, 2010. [30] Yossifova M G, Eskenazy G M, Eva S P V. Petrology, mineralogy, and geochemistry of submarine coals and petrified forest in the Sozopol Bay, Bulgaria[J]. International Journal of Coal Geology, 2011, 87(3-4): 212-225. [31] 李文华, 白向飞, 杨金和, 等. 烟煤镜质组平均最大反射率与煤种之间的关系[J]. 煤炭学报, 2006(03):342-345. [32] 刘桂建, 杨萍月. 济宁煤田煤中微量元素的地球化学研究[J]. 地球与环境, 1999(4):77-82. [33] 王迪, 田继军, 冯烁, 等. 塔里木盆地东南缘下—中侏罗统煤层煤岩、煤质特征分析[J]. 现代地质, 2018, 32(05): 975-984. [34] 付黎明, 庄新国, 李建伏, 等. 内蒙古早白垩世五间房含煤盆地煤层煤相分析[J]. 煤田地质与勘探, 2011, 39(03):1-6. [35] 高青海. 煤层成因和煤相研究历史回顾及其研究现状[J]. 中国煤田地质, 2006(02):18-21. [36] 代世峰, 任德贻, 李生盛, 等. 内蒙古准格尔黑岱沟主采煤层的煤相演替特征[J]. 中国科学(D辑:地球科学), 2007(S1): 119-126. [37] Sen S. Review on coal petrographic indices and models and their applicability in paleoenvironmental interpretation[J]. Geo-sciences Journal, 2016, 20(5): 719-729. [38] Diessel C F K. On the correlation between coal facies and depositional environment [A]. Advances in the Study of the Sydney Basin [C]. Newcastle, 1986. 19-22. [39] Calder J H, Gibling M R, Mukhopadhyay P K. Peat foamation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: implication for the maceral-based interpretation of rheotrophic and raised paleomires [J]. Bulletin de la Societe Geologique de France, 1991, 162(2): 283-298. [40] Petersen H I, Ratanasthien B. Coal facies in a Cenozoic paralic lignite bed, Krabi Basin, southern Thailand: Changing peat-forming conditions related to relative sealevel controlled watertable variations [J]. International Journal of Coal Geology, 2011, 87(1): 127-298. [41] Dai S F, Bechtel A, Eble C F, et al. Recognition of peat depositional environments in coal: A review[J]. International Journal of Coal Geology, 2020, 219: 103383. [42] 田景春, 张翔. 沉积地球化学[M]. 地质出版社, 2016, 1-197. [43] 衣姝. 西大滩矿区煤中微量元素研究[D]. 邯郸: 河北工程大学, 2016. [44] 黄文辉, 久博, 李媛. 煤中稀土元素分布特征及其开发利用前景[J]. 煤炭学报, 2019, 44(01):287-294. [45] 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12):1470-1483. [46] Vasconcelos L D S E. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition) [J]. International Journal of Coal Geology, 1999, 40(1):27-58. [47] 赵继尧, 唐修义, 黄文辉. 中国煤中微量元素的丰度[J]. 中国煤炭地质, 2002, 14(S1):5-13. [48] 程爱国, 曹代勇, 袁同兴, 等. 中国煤炭资源赋存规律与资源评价 [M]. 北京:科学出版社, 2016:1-352. [49] 唐修义, 赵继尧, 黄文辉. 中国煤中的九种金属元素[J]. 中国煤炭地质, 2002, 14(b07):43-54. [50] 任德贻, 赵峰华. 煤中有害微量元素富集的成因类型初探[J]. 地学前缘, 1999, 6(b05):17-22. [51] 孙玉壮, 赵存良, 李彦恒, 等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报, 2014, 39(4):744-748. [52] Brownfield M E, Affolter R H, Cathcart J D, et al. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA[J]. International Journal of Coal Geology, 2005, 63(3-4): 247-275. [53] Юдович Я Э, Кетрис М П, Мерц А В. Элементы-примеси в ископаемых углях[M]. Ленинград: Наука, 1985. [54] Bouška V, Pešek J. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite[J]. International Journal of Coal Geology, 1999, 40(2–3): 211-235. [55] Valkovik V. Trace Element of coal[M]. elorida:CRC Press, 1983. 2-223. [56] 许琪, 韩德馨. 论煤中伴生元素的成因分布类型[J]. 地球化学, 1990(1): 64-71. [57] 任德贻. 煤的微量元素地球化学[M]. 2006. [58] 王运泉, 任德贻, 王隆国. 煤中微量元素的赋存状态[J]. 煤田地质与勘探, 1996(2):9-13. [59] 冯新斌, 曹晓斌, 付学吾, 等. 环境地球化学研究近十年若干新进展[J]. 矿物岩石地球化学通报, 2021, 40(02):1007-2802. [60] 任德贻, 许德伟, 张军营, 等. 沈北煤田煤中伴生元素分布特征[J]. 中国矿业大学学报, 1999, 28(1):5-8 [61] 庄新国, 向才富, 曾荣树, 等. 三种不同类型盆地煤中微量元素对比研究[J]. 岩石矿物学杂志, 1999, 18(3):255-263. [62] 黄文辉, 杨起, 汤达祯, 等. 华北晚古生代煤的稀土元素地球化学特征[J]. 地质学报, 2000(1):360-369. [63] 黄文辉, 赵志根. 华北晚古生代煤的稀土元素地球化学特征[J]. 地质学报, 1999(4):360-369. [64] 代世峰, 任德贻, 李生盛. 内蒙古准格尔超大型镓矿床的发现[J]. 科学通报, 2006, 51 (2):177-185. [65] 代世峰, 周义平, 任德贻, 等. 重庆松藻矿区晚二叠世煤的地球化学和矿物学特征及其成因[J]. 中国科学:地球科学, 2007, 37(3):353-362. [66] 代世峰, 任徳贻, 周义平, 等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学 报, 2014, 39(8):1707-1715. [67] Dai S, Liu J, Ward CR., Hower JC, et al. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit[J]. Ore Geology Reviews, 2015b, 71:318-349. [68] Dai, Shifeng, Li, et al. Mineralogical and geochemical anomalies of late Permian coals from the;Fusui Coalfield, Guangxi Province, southern China: Influences of;terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology, 2013, 105(1):60-84. [69] 宁树正, 邓小利, 李聪聪, 等. 中国煤中金属元素矿产资源研究现状与展望[J]. 煤炭学报, 2017, 42(9):2214-2225. [70] 刘东娜, 周安朝, 常泽光. 大同煤田8号原煤及风化煤中常量元素和稀土元素地球化学特征[J]. 煤炭学报, 2015, 40(2):422-430. [71] Finkelman RB, Palmer C A, Wang P. Quantification of the modes of occurrence of 42 elements in coal. Int J Coal Geol 2018; 185:138-160. [72] Dai S, Ren D, Chou C L, et al. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94(3):3-21. [73] Dai S, Finkelman R B. Coal geology in China: an overview[J]. International Geology Review, 2017, 60(5-6):1-4. [74] Xu Y, Uhl D, Zhang N, et al. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559: 109819. [75] Scott A C. Coal petrology and the origin of coal macerals: a way ahead? [J]. International Journal of Coal Geology, 2002, 50(1): 119-134. [76] Gmur D, Kwiecińska B K. Facies analysis of coal seams from the Cracow sandstone series of the upper Silesia Coal Basin, Poland[J]. International Journal of Coal Geology, 2002, 52(1-4): 29-44. [77] 王旭影, 姜在兴. 苏北东台坳陷古新统阜宁组三段微量、稀土元素地球化学特征及其地质意义[J]. 地质论评, 2021, 67(2):355-366. [78] 李宝庆. 黔西上二叠统龙潭组煤的矿物学及地球化学特征研究[D]. 北京: 中国地质大学, 2015. [79] 苑坤, 方欣欣, 林拓, 等. 桂中坳陷西北部中泥盆统页岩地球化学特征及沉积环境[J]. 地质与勘探, 2017, 53(1):179-186. [80] 周国庆, 姜尧发, 高峰, 等. 伊宁矿区ZKJ502钻孔早侏罗世煤层煤岩煤质特征[J]. 新疆地质, 2015(2):284-288. [81] 刘东娜. 大同煤田石炭二叠纪煤的煤岩学和煤地球化学研究[D]. 太原理工大学, 2007. [82] Finkelman R. B. Modes of oeeurrenee of environmentally sensitive traee elements in coal [A]. In: Swaine D.J. and Goodarzi F., Environmental Aspects of Trace Elements in Coal [C]. Dordrecht: Kluwer Aeademie Publishers, 1995, 24-50. [83] 李卫旭. 内蒙古伊敏煤田五牧场区12j#煤的地球化学特征[D]. 邯郸: 河北工程大学, 2017. [84] Gong X, Wang Z, Deng S, et al. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy & Fuels, 2014, 28(8): 4942-4948. [85] 苑坤, 方欣欣, 林拓, 等. 桂中坳陷西北部中泥盆统页岩地球化学特征及沉积环境[J]. 地质与勘探, 2017, 53(1):179-186. [86] 邹建华, 刘东, 田和明, 等. 内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J]. 煤炭学报, 2013, 38(6):1012-1018. [87] 刘玲. 黔西县晚二叠世主采煤层煤的地球化学特征初步研究[D]. 贵州大学, 2009. [88] Kalkreuth W D, Marchioni D L, Calder J H, et al. The relationship between coal petrography and depositional environments from selected coal basins in Canada. International Journal of Coal Geology, 1991, 19(1-4):21-76. [89] 陶振鹏, 杨瑞东, 程伟, 等. 贵州贞丰龙头山煤矿晚三叠世煤的元素地球化学特征及富集成因分析[J]. 中国煤炭, 2015, 04(6):45-50. [90] 沈立建, 刘成林, 王立成, 等. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义[J]. 地质学报, 2015(11):2036-2045. [91] Sen S. Review on coal petrographic indices and models and their applicability in paleoenvironmental interpretation. Geosciences Journal, 2016, 20(5):719-730. [92] 代世峰, 任德贻, 唐跃刚, 等. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探, 2005, 33(2):1-5. [93] 杜铭华, 戴和武, 安丰刚. 大同云岗煤显微组分的挥发分及元素组成[J]. 煤炭学报, 1986(03):95-103. [94] 赵志根, 唐修义, 李宝芳. 淮北煤田煤的稀土元素地球化学[J]. 地球化学, 2000, (06):578-583. [95] 赵岩, 刘池洋, 张东东, 等. 宁南盆地古近纪沉积岩地球化学特征对沉积环境的反映[J]. 地质科技情报, 2016, 35(05):27-33. [96] Lu J, Shao L Y, Yang M F, et al. Depositional model for peat swamp and coal facies evolution using sedimentology, coal macerals, geochemistry and sequence stra tigraphy. Journal of Earth Science, 2017, 28(6):1163-1177. [97] 陈泽升. 鄂尔多斯盆地东北部延安组第二岩段顶部煤层煤相特征分析[J]. 中国石油和化工标准与质量, 2011, 31(08):157-178. [98] 谭聪, 袁选俊, 于炳松, 等. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质, 2019, 33(3):615-628. [99] 刘灿. 山西兴县石炭系本溪组煤岩特征及成煤环境[D]. 成都理工大学, 2020. [100] 胡晓峰, 刘招君, 柳蓉等. 桦甸盆地始新统桦甸组黏土矿物和无机地球化学特征及其古环境意义[J]. 煤炭学报, 2012, 37(03):416-423. [101] 程伟, 杨瑞东, 崔玉朝, 等. 贵州毕节地区晚二叠世煤质特征及其成煤环境意义[J]. 地质学报, 2013, 87(11):1763-1777. [102] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Blackwell Scientific Pub., 1985. [103] 袁月, 李彦恒. 内蒙古唐公塔煤矿6号煤层煤岩学特征及煤相研究[J]. 煤炭与化工, 2015, 38(03):12-15. [104] 赵师庆. 我国腐植煤的还原性质及其与沉积环境的关系[J]. 沉积学报, 1984, 2(2):53-65. [105] 范玉海, 屈红军, 王辉, 等.微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 39(2):382-389. [106] Lu J, Shao L, Yang M, et al. Depositional Model for Peat Swamp and Coal Facies Evolution Using Sedimentology, Coal Macerals, Geochemistry and Sequence Stratigraphy [J]. Journal of Earth Science, 2017, 28(6):1163-1177. [107] Zhang C, Cao C, Sui Y, et al. A Chinese time ontology for the Semantic Web [J]. Knowledge-Based Systems, 2011, 24(7):1057-1074. [108] 陈云云. 山西平朔矿区4号煤地球化学特征及古环境意义[D]. 北京: 中国地质大学(北京), 2017. [109] 蒋文博, 陈中红, 柳金城, 等. 地球化学元素方程的建立及对沉积环境的指示[J]. 矿物岩石地球化学通报, 2018, 37(5):916-921. [110] 龙宇, 罗顺社, 吕奇奇. 贵州织金县大明矿区龙潭组煤中元素地球化学特征及其沉积环境指示意义[J]. 贵州地质, 2022, 39(02):108-114. [111] 李得路. 鄂尔多斯盆地南部三叠系延长组长7油页岩地球化学特征及古沉积环境分析[D]. 长安大学, 2018. [112] Shao L, Wang X, Wang D, et al. Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China [J]. International Journal of Coal Science, 2020, 7(2): 240-262. [113] 何伟, 吴亮, 魏向成, 等. 宁东煤田中侏罗统延安组稀有稀散稀土元素地球化学特征及其对沉积环境的指示意义[J]. 岩矿测试, 2022, 41(06):962-977. [114] 琚惠姣. 平山湖地区7-2层煤煤质特征及其成煤环境意义[J]. 煤质技术, 2015(04): 42-44. [115] 车青松, 黄文辉, 久博, 等. 沁水盆地霍州矿区石炭-二叠纪煤中微量元素地球化学特征及沉积环境分析[J]. 煤炭科学技术, 2022, 50(09):138-146. [116] 王峰, 刘玄春, 邓秀芹, 等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报, 2017, 35(6):1265-1274. [117] 刘欢, 李怀坤, 张健, 等. 豫西地区汝阳群碎屑岩地球化学特征及其对沉积环境与构造背景的指示[J]. 地质通报, 2023, 42(12):2142-2155. [118] 刘善德. 永陇矿区南缘煤岩煤质特征及成煤环境分析[J]. 煤田地质与勘探, 2018, 46(1):11-15. [119] 曹泊, 吴国强, 王双美, 等. 鱼卡五彩煤矿5号煤中微量元素地球化学特征及沉积环境[J]. 中国煤炭地质, 2021, 33(11):19-27. [120] 杨旭, 刘志臣, 秦先进, 等. 黔北煤田吴家寨地区晚二叠世煤层地球化学特征及聚煤环境分析[J]. 贵州地质, 2021, 38(03):299-308. [121] Dill H. Metallogenesis of early Paleozoic graptolite shales from the graefenthal horst (northern Bavaria-Federal Republic of Germany) [J]. Economic Geology, 1986, 81:889-903. [122] Kortenski J. Carbonate minerals in Bulgarian coals with different degrees of coalification [J]. International journal of coal geology, 1992, 20(3-4):225-242. [123] 张倩. 淮南深部山西组煤中矿物环境学特征研究[D]. 合肥: 安徽大学, 2022. [124] 谢涛, 张光超, 乔军伟. 陕北及黄陇侏罗纪煤田煤中硫分、灰分成因探讨[J]. 中国煤炭地质, 2012, 24(06): 11-14. [125] 史航, 靳立军, 魏宝勇, 等. 大柳塔煤及显微组分在不同气氛下的热解行为[J]. 煤炭学报, 2019, 44(01):316-322. [126] 张天福, 孙立新, 张云, 等. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 2016, 90(12):3454-3472. [127] 杜芳鹏. 鄂尔多斯盆地延安组煤岩学及煤元素地球化学特征[D]. 西安: 西北大学, 2019. [128] 柳磊, 汪立今, 田继军, 等. 新疆托克逊煤田侏罗系成煤环境及沉积特征分析[J]. 地球学报, 2011, 32(05): 549-558. [129] 王国权. 宁武煤田东露天11#煤的地球化学特征及成煤环境分析[D]. 太原理工大学, 2022. [130] 刘震. 彬长矿区胡家河井田4号煤层沉积环境及聚煤规律研究[J]. 科技和产业, 2024, 24(03):166-171. [131] 贺丹, 杨甫, 马丽, 等. 古城矿区富油煤赋存特征及主控因素分析[J]. 煤炭技术, 2024, 43(02):97-103. [132] 郑顺利, 黄鹏程, 祁风华, 等. 宁夏红墩子矿区红四井田沉积古环境对富油煤焦油产率控制作用[J/OL]. 煤炭技术, 1-5[2024-04-09]. [133] 李焕同, 朱志蓉, 张战波, 等. 柠条塔煤矿富油煤赋存特征及其成煤环境控制[J]. 煤炭技术, 2022, 41(04):63-66. [134] 王双明, 鲍园, 郝永辉, 等. 富油煤研究进展与趋势[J/OL]. 煤田地质与勘探:1-11[2024-04-09]. [135] 宁树正, 张莉, 徐小涛, 等. 新疆北部早、中侏罗世富油煤分布规律及控制因素[J]. 煤炭科学技术, 2024, 52(01):244-254. [136] 晁伟, 苏展, 李东涛, 等. 一种预测煤焦油产率的新方法[J]. 煤炭转化, 2011, 34(02):64-68. [137] 李华兵, 李宁, 姚征, 等. 陕北三叠纪煤田子长矿区瓦窑堡组特高焦油产率煤富集规律分析[J]. 中国煤炭地质, 2021, 33(01):22-25+79. [138] Man C K, Jacobs J, Gibbins J R. Selective maceral enrichment during grinding and effect of particle size on coal devolatilisation yields[J]. Fuel Processing Technology, 1998, 56(3): 215-227. [139] Gülbin Gürdal. Abundances and modes of occurrence of trace elements in the an coals (Miocene), anakkale-Turkey[J]. International Journal of Coal Geology, 2011, 87(2):157-173. [140] 杨亦男, 陈冰如, 钱琴芳, 等. 我国一百个煤矿煤中微量元素的分布趋势及其相关性[J]. 微量元素与健康研究, 1984(1):49-51. [141] 张博, 杨维. 贵州黔西市长江煤矿可采煤层中常量元素地球化学特征及成煤环境分析[J]. 资源信息与工程, 2023, 38(06):18-21. [142] 郑雪. 滇东晚二叠世煤中矿物质组成及其对区域地质演化的响应[D]. 北京: 中国矿业大学(北京), 2018. [143] 郭文牧. 吉林珲春古近纪煤中矿物及微量元素富集分异机理[D]. 北京: 中国矿业大学(北京), 2020. [144] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3-4):373-391. [145] 刘晶晶. 低阶煤中矿物质赋存特征及其对地质过程的指示意义[D]. 北京: 中国矿业大学(北京), 2020. [146] 朱亚茹. 大同煤田东边缘太原组3-5号煤中稀土元素分布特征[J]. 稀土, 2023, 44(02):139-145.
﹀
|
中图分类号: |
P618.11
|
开放日期: |
2024-06-27
|