- 无标题文档
查看论文信息

论文中文题名:

 Mg(OH)2-NH4H2PO4复合粉体对瓦斯爆炸火焰传播和光谱特性的影响规律及机理研究    

姓名:

 潘婷    

学号:

 19220089020    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘爆炸防控    

第一导师姓名:

 王秋红    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Effect laws and mechanism research of Mg(OH)2-NH4H2PO4 composite powder on the flame propagation and spectral characteristics of the gas explosion    

论文中文关键词:

 瓦斯爆炸 ; 发射光谱 ; 磷酸二氢铵 ; 氢氧化镁 ; 抑爆机理    

论文外文关键词:

 Gas explosion ; Emission spectrum ; NH4H2PO4 ; Mg(OH)2 ; Explosion    

论文中文摘要:

瓦斯爆炸是矿井安全生产的主要危险之一,研究抑爆减灾技术是瓦斯爆炸防控工作中的重点内容。瓦斯爆炸粉体抑制剂可以减弱瓦斯爆炸灾害的破坏力,从而很大程度降低瓦斯爆炸事故伤亡。Mg(OH)2-NH4H2PO4复合粉体对A类火灾有较好的灭火功效,本文将其用于C类气体爆炸抑制,考察Mg(OH)2-NH4H2PO4复合粉体对瓦斯爆炸的抑爆效果。利用瞬态火焰传播实验系统分别开展Mg(OH)2粉体、NH4H2PO4粉体和Mg(OH)2-NH4H2PO4复合粉体抑制瓦斯爆炸实验,对比分析单一粉体、六种配比复合粉体对瓦斯爆炸的抑爆效能,并结合爆炸火焰瞬态光谱特性分析和TG-DSC热重-差热过程分析,揭示Mg(OH)2-NH4H2PO4复合粉体抑制瓦斯爆炸机理,研究内容对新型抑制材料用于瓦斯爆炸防控领域具有重要意义,主要结论如下:

(1) 六种组分配比Mg(OH)2-NH4H2PO4复合粉体对应的最大爆炸压力、火焰温度峰值和火焰传播速度均小于单一的NH4H2PO4和Mg(OH)2粉体,表现出Mg(OH)2-NH4H2PO4复合粉体相比单一组分的粉体具有协同抑爆作用,且抑爆效果最好的Mg(OH)2-NH4H2PO4复合粉体存在最佳组分配比为20:80。

(2) 无论在上部还是中部光纤位置处,相比10%浓度瓦斯爆炸,Mg(OH)2粉体抑制10%浓度瓦斯爆炸过程中H•的相对辐射强度峰值上升,另外七种中间产物的相对辐射强度峰值下降;NH4H2PO4粉体、20:80组分配比的复合粉体分别抑制10%浓度瓦斯爆炸过程中均出现OH•、CHO•、O2的相对辐射强度峰值下降,CH•、O•、CH2O、C2•、H•的相对辐射强度峰值上升;Mg(OH)2粉体、NH4H2PO4粉体、20:80组分配比的复合粉体抑制10%浓度瓦斯爆炸过程中OH•、O•、CH2O、C2•、O2、H•的存在时间更长,OH•、O•、CH2O、O2、H•的消失时间更长。

(3) Mg(OH)2-NH4H2PO4复合粉体对CH4爆炸起到协同抑制作用。20:80组分配比的复合粉体抑制10%浓度瓦斯爆炸,NH3会首先与H•、OH•和O2反应,当O2、OH•这种关键中间产物相对辐射强度降低时,对应CH3只有相互碰撞脱氢产生C2H2/C2H6,对应的CH•、CH2O、C2•、H•中间产物相对辐射强度增强,同时CO2、CO的体积分数下降为最低。

论文外文摘要:

The gas explosion is one of the main dangers in mine safety production. The study of explosion suppression and disaster mitigation technology is the key content of gas explosion prevention. Powder inhibitors can weaken the destructive power of gas explosion disasters, so as to greatly reduce the casualties of gas explosion accidents. Mg(OH)2-NH4H2PO4 composite powder has a good extinguishing effect on class A fire, in this paper, it was used to inhibit the explosion of class C gas, and investigate the explosion inhibition effect of Mg(OH)2-NH4H2PO4 composite powder on the gas explosion. Combined with the transient flame propagation experimental system, experiments on inhibiting gas explosion by Mg(OH)2 powder, NH4H2PO4 powder and Mg(OH)2-NH4H2PO4 composite powder were carried out respectively, the inhibitory effect of single powder and six kinds of composite powder on the gas explosion was compared and analyzed. Combined with the analysis of transient spectral characteristics of explosion flame and TG-DSC thermogravimetric differential thermal process, the mechanism of Mg(OH)2-NH4H2PO4 composite powder inhibiting gas explosion was deduced, to reveal the mechanism of Mg(OH)2-NH4H2PO4 composite powder inhibiting gas explosion, and the research content is of great significance to the application of new inhibiting materials in gas explosion prevention and control, the main work contents are as follows:

(1) The maximum explosion pressure, flame temperature peak and flame propagation velocity of the six components of Mg(OH)2-NH4H2PO4 composite powder are all smaller than that of the single NH4H2PO4 and Mg(OH)2 powder, indicating that the Mg(OH)2-NH4H2PO4 composite powder has synergistic explosive suppression effect compared with the single component powder. The Mg(OH)2-NH4H2PO4 composite powder with the best explosive suppression effect has the best composition ratio of 20:80.

(2) In both the upper and middle optical fiber locations, compared with the 10% concentration gas explosion, Mg(OH)2 powder inhibited 10% concentration gas explosion the peak of relative radiation intensity of H• increases, while the peak of the other seven intermediates decreased. When NH4H2PO4 powder and 20:80 composite powder inhibited 10% concentration gas explosion, the relative radiation intensity peak of OH•, CHO• and O2 decreased, while the relative radiation intensity peak of CH•, O•, CH2O, C2• and H• increased. The existence time of intermediates OH•, O•, CH2O, C2•, O2, H• and the disappearance time of intermediates OH•, O•, CH2O, O2, H• in the process of Mg(OH)2 powder, NH4H2PO4 powder and 20:80 composite powder suppressing 10% concentration gas explosion are longer.

(3) Mg(OH)2-NH4H2PO4 composite powder has a synergistic inhibition effect on CH4 explosion. 20:80 composite powder suppress 10% concentration of gas explosion, NH3 will first react with H•, OH• and O2, when the relative radiation intensity of key intermediates such as O2 and OH• reduced, C2H2/C2H6 is produced by collision dehydrogenation of CH3, The relative radiation intensity of the intermediates of CH•, CH2O and C2• increased, and the volume fraction of CO2 and CO decreased to the lowest. 

参考文献:

[1] 国家矿山安全监察局事故调查和统计司. 2020年全国煤矿事故特点及原因分析[EB/OL]. https://www.chinamine-safety.gov.cn/zfxxgk/fdzdgknr/sgcc/202202/t20220223_408504.shtml

[2] Kondo S, Takizawa K, Takahashi A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits[J]. Journal of Hazardous Materials, 2006 (A138):1-8.

[3] Xie Y, Wang J, Meng Z, et al. Experimental and Numerical Study on Laminar Flame Characteristics of Methane Oxy-fuel Mixtures Highly Diluted with CO2[J]. Energy and Fuels, 2013, 27(10):6231-6237.

[4] Li H, Li G, Sun Z, et al. Effect of dilution on laminar burning characteristics of H2/CO/CO2/air premixed flames with various hydrogen fractions[J]. Experimental Thermal and Fluid Science, 2016, 74:160-168.

[5] 胡洋, 吴秋遐, 庞磊, 等. 惰性气体抑制瓦斯爆燃火焰传播特性实验研究[J]. 中国安全生产科学技术, 2021, 17(11):72-78.

[6] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017, 37(5):906-912.

[7] Qiao L, Kim C H, Faeth G M, et al. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames[J]. Combustion and Flame, 2005, 143(1):79-96.

[8] Li M, Xu J, Wang C, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment[J]. Fuel, 2019, 255:115747.

[9] Pei B, Yu M, Chen L, et al. Experimental study on the synergistic inhibition effect of gas-liquid two phase medium on gas explosion[J]. Journal of Loss Prevention in the Process Industries, 2017, 49:797-804.

[10] 裴蓓, 韦双明, 余明高, 等. 气液两相介质抑制管道甲烷爆炸协同增效作用[J]. 煤炭学报, 2018, 43(11): 3130-3136.

[11] Wang Y, Meng X, Ji W, et al. The Inhibition Effect of Gas–Solid Two-Phase Inhibitors on Methane Explosion[J]. Energies, 2019, 12(3):398.

[12] Ingram J M, Averill A F, Battersby P N, et al. Suppression of hydrogen/oxygen/nitrogen explosions by fine water mist: part 1. Burning velocity[J]. International Journal of Hydrogen Energy, 2017, 37:19250-19257.

[13] 余明高, 安安, 赵万里, 等. 含添加剂细水雾抑制瓦斯爆炸有效性试验研究[J]. 安全与环境学报, 2011, 11(4):149-153.

[14] Modak A U, Madrid A A, Delplanque J P, et al. The effect of mono-dispersed watermist on the suppression of laminar premixed Hydrogen-methane-and propane-air flames[J]. Combustion and Flame, 2006, 144(1-2):103-111.

[15] 毕明树, 李铮, 张鹏鹏. 细水雾抑制瓦斯爆炸的实验研究[J]. 采矿与安全工程学报, 2012, 29(3):440-443.

[16] 曹兴岩, 任婧杰, 毕明树, 等. 水雾粒径对超细水雾抑制甲烷/空气爆炸过程的影响[J]. 煤炭学报, 2017, 42(9):2378-2386.

[17] 曹兴岩, 任婧杰, 毕明树, 等. 超细水雾雾化方式对甲烷爆炸过程影响的实验研究[J]. 煤炭学报, 2017, 42(7):1795-1802.

[18] 曹兴岩, 任婧杰, 周一卉, 等. 超细水雾增强与抑制甲烷/空气爆炸的机理分析[J]. 煤炭学报, 2016, 41(7):1711-1719.

[19] Jing Q, Wang D, Liu Q, et al. Inhibition effect and mechanism of ultra-fine water mist on CH4/air detonation: Quantitative research based on CFD technology[J]. Process Safety and Environmental Protection, 2021, 148:75-92.

[20] Rajasekar K, Kumar A, Chakravarthy S. Experimental Study of a Downward Directed Water Mist suppressing a Diffusion Flame[J]. Journal of Physics Conference, 2018, 1107:062009.

[21] Palis S, Strubig F, Voigt S, et al. Experimental investigation of the impact of water mist on high-speed non-premixed horizontal methane jet fires[J]. Fire Safety Journal, 2020, 114:103005.

[22] Cao X, Ren J, Bi M, et al. Experimental research on methane/air explosion in hibitionusing ultrafine watermist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:352-360.

[23] Cao X, Ren J, Zhou Y, et al. Suppression of methane/air explosion by ultrafine watermist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285:311-318.

[24] 徐永亮, 王兰云, 余明高, 等. 感应式荷电细水雾对瓦斯爆炸传播速度的影响[J]. 中南大学学报, 2016, 47(8):2884-2890.

[25] 徐永亮, 万少杰, 余明高, 等. 感应式荷电细水雾荷质比影响规律研究[J]. 煤炭技术, 2015, 5:191-193.

[26] Korobeinichev O P, Shmakov A G, Shvartsberg V M, et al. Fire suppression by low-volatile chemically active fire suppressants using aerosol technology[J]. Fire Safety Journal, 2012, 51:102-109.

[27] 王燕, 林森, 李忠, 等.喷粉压力对KHCO3冷气溶胶甲烷抑爆效果影响研究[J]. 中国安全科学学报, 2021, 31(7):70-75.

[28] Liu F, Liu J, Liu F, et al. Numerical simulation of the inhibition process of methane-air explosion under cold aerosol[J]. IOP Conference Series: Earth and Environmental Science, 2020, 446(2):022064.

[29] Krasnyansky M. Prevention and suppression of explossions in gas-air and dust-air mixtures using powder aerosol-inhibitor[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(6):729-735.

[30] Qu L, Wang H Y, Zuo D F, et al. The experimental study of type K or S condensed aerosol on inhibition of gas explosion[J]. Procedia Engineering, 2011, 26:582-587.

[31] 罗振敏. 瓦斯爆炸抑制材料的特性及抑爆作用研究[D]. 西安科技大学, 2009.

[32] Birk A M. Review of expanded aluminum products for explosion suppression in containers holding flammable liquids and gases[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(5):493-505.

[33] Jia Z, Feng T. Numerical simulation on methane explosion propagation in a one-dimensional straight duct with porous metal materials[J]. Computer Modelling and New Technologies, 2014, 18(5):275-282.

[34] 贾宝山, 金珂, 胡如霞, 等. 受限空间内多孔介质材料对瓦斯爆炸特性的抑制作用[J]. 世界科技研究与发展, 2015, 37(5):473-476.

[35] 袁必和, 张玉铎, 员亚龙, 等. 多孔聚丙烯复合材料的抑爆性能研究[J]. 中国安全科学学报, 2021, 31(8):91-96.

[36] Duan Y, Wang S, Yang Y, et al. Experimental Study on Explosion of Premixed Methane-air with Different Porosity and Distance from Ignition Position[J]. Combustion Science and Technology, 2020,193(12):2070-2084.

[37] 魏春荣, 徐敏强, 王树桐, 等. 多孔材料抑制瓦斯爆炸火焰波的实验研究[J]. 中国矿业大学学报, 2013, 42(2):49-56.

[38] 魏春荣, 徐敏强, 孙建华, 等. 多孔材料抑制瓦斯爆炸传播的实验及机理[J]. 功能材料, 2012(16):130-133+138.

[39] 邵继伟, 庄春吉, 王志荣, 等. 组合型多孔材料对容器管道系统内甲烷/空气的抑爆效果[J]. 爆炸与冲击, 2018, 38(4):905-912.

[40] 温小萍, 郭志东, 王发辉, 等. 一维多孔介质和超细水雾协同抑制瓦斯爆炸试验[J]. 安全与环境学报, 2020, 20(2):539-547.

[41] 余明高, 刘梦茹, 温小萍, 等. 超细水雾-多孔材料协同抑制瓦斯爆炸实验研究[J]. 煤炭学报, 2019, 44(5):1562-1569.

[42] 程方明, 南凡, 罗振敏, 等. 瓦斯抑爆材料及机理研究进展与发展趋势[J]. 煤炭科学技术, 2021, 49(8):114-124.

[43] 罗振敏, 苏彬, 王涛, 等. 矿井瓦斯控爆技术及材料研究进展[J]. 中国安全生产科学技术, 2019, 15(2):19-26.

[44] 蔡周全, 张引合. 干粉灭火剂粒度对抑爆性能的影响[J]. 矿业安全与环保, 2001, 4:14-16.

[45] 文虎, 曹玮, 王开阔, 等. ABC干粉抑制瓦斯爆炸的实验研究[J]. 中国安全生产科学技术, 2011, (6):9-12.

[46] 覃欣欣, 司荣军, 李润之. 抑爆剂面密度对瓦斯爆炸传播抑制效果的影响[J]. 煤矿安全, 2016, 47(12):168-171.

[47] 黄子超, 司荣军, 薛少谦. 抑爆粉剂浓度及粒度对瓦斯爆炸抑制效果的影响*[J]. 中国安全生产科学技术, 2018, 14(4):89-94.

[48] Chelliah H K, Wanigarathne P C, Lentati A M, et al. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counter flow flames[J]. Combustion&Flame, 2003, 134(3):261-27.

[49] Huang D, Wang X, Yang J. Influence of Particle Size and Heating Rate on Decomposition of BC Dry Chemical Fire Extinguishing Powders[J]. Particulate Science and Technology, 2015, 33(5):488-493.

[50] 王信群, 王婷, 徐海顺, 等. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸[J]. 化工学报, 2015, 66(12):5171-5178.

[51] 郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J]. 化工学报, 2018, 69(9):4129-4136.

[52] 邓篝, 田志辉, 罗振敏, 等. Mg(OH)2/CO2抑爆瓦斯实验研究[J]. 煤矿安全, 2013, 44(10):4-6.

[53] 王秋红, 邓军, 罗振敏, 等. 超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究[J]. 中国安全科学学报, 2014, 24(12):33-37.

[54] 文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响[J]. 煤炭学报, 2009, 34(11):1479-1482.

[55] 文虎, 王秋红, 罗振敏, 等. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究[J]. 西安科技大学学报, 2009, 29(4):388-390,395.

[56] Chen X, Zhang Y, Zhang Q, et al. Experimental in vestigation on micro-dynamic behavior of gas explosion suppression with SiO2 fine powders[J]. Theoretical and Applied Mechanics Letters, 2011, 1(3):032004.

[57] 丁浩青, 温小萍, 邓浩鑫, 等. 障碍物条件下纳米SiO2粉体抑制瓦斯爆炸特性[J]. 安全与环境学报, 2017, 17(3):958-962.

[58] 王婷, 王信群, 吕岳, 等. 超细活性及惰性粉体对甲烷/空气预混物层流火焰传播的影响[J]. 煤炭学报, 2016, 41(7):1720-1727.

[59] 王燕, 伊宏伟, 孟祥卿, 等. 蒙脱石粉体对瓦斯爆炸特性参数的影响研究[J]. 北京理工大学学报, 2019, 39(2):111-117.

[60] 程方明, 邓军, 罗振敏, 等. 硅藻土粉体抑制瓦斯爆炸的实验研究[J]. 采矿与安全工程学报, 2010, 4:162-165.

[61] 程方明. 超细粉体抑制甲烷-空气预混气爆炸实验研究[D]. 西安科技大学, 2008.

[62] Sun Y, Yuan B, Chen X, et al. Suppression of methane/air explosion by kaolinite-based multi-component in hibitor[J]. Powder technology, 2019, 343:279-286.

[63] Zhang Y, Wang Y, Meng X, et al. The suppression characteristics of NH4H2PO4/redmud composite powders on methane explosion[J]. Applied Sciences, 2018, 8(9):1433.

[64] 戴晓静. 磷酸二氢盐抑爆剂的制备与抑爆作用研究[D]. 南京理工大学, 2013.

[65] 王嘉辉, 曹雄. 磷酸二氢铵与碳酸钙抑制煤尘燃烧试验研究[J]. 煤炭技术, 2015, 8:206-208.

[66] 颜龙, 徐志胜, 徐彧, 等. 典型硼化合物与磷酸二氢铵协效阻燃松木的燃烧性能及热解动力学研究[J]. 中国安全生产科学技术, 2015, 11(03):19-23.

[67] 胡来勇, 俞马宏. 硼酸铵-磷酸氢二铵协效阻燃杨木单板的制备与表征研究[J]. 西南林业大学学报, 2017, 37(2):197-202.

[68] 刘皓, 张天巍, 夏登友, 等. 凝胶型核壳结构粉体抑制A类火的有效性研究[J]. 化工学报, 2019, 70(4):1652-1660.

[69] 邢军, 杜志明, 陈德胜, 等. 超细磷酸二氢铵灭火剂的振动球磨法制备与表面改性[J]. 中北大学学报(自然科学版), 2011, 32(05):613-618.

[70] Du D, Shen X, Feng L, et al. Efficiency characterization of fire extinguishing compound superfine powder containing Mg(OH)2[J]. Journal of Loss Prevention in the Process Industries, 2019, 57:73-80.

[71] 杜德旭, 沈晓辉, 冯立, 等. 复合超细干粉灭火剂灭火性能研究[J].中国安全科学学报, 2018, 28(2):69-74.

[72] 沈晓辉. 超细NH4H2PO4/Mg(OH)2灭火剂配方设计与灭火性能实验研究[D]. 南京工业大学, 2017.

[73] 刘海强. Mg(OH)2粉基灭火介质灭火有效性及其机理研究[D]. 中国科学技术大学, 2016.

[74] GAYDON A.G. Flames-Their structure, radiation and temperature[M]. Chapman & Hall LTD, London, 1974:10-199.

[75] Romero C, Li X, Keyvan S, et al. Spectrometer-based combustion monitoring for flame stoichiometry and temperature control[J]. Applied Thermal Engineering, 2005, 25(5/6):659-676.

[76] 谢伟, 李萍, 张昌华, 等. 利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J]. 光谱学与光谱分析, 2011, 31(2):488-491.

[77] 叶彬, 李萍, 张昌华, 等. 正庚烷燃烧反应中间自由基的光谱测量[J]. 光谱学与光谱分析, 2012, 32(4):898-901.

[78] 李有亮, 何九宁, 张昌华, 等. 发射光谱法研究甲基环己烷燃烧时激发态自由基时间历程[J]. 光谱学与光谱分析, 2016, 36(1):11-14.

[79] Ballester J, Hernández R, Sanz A, et al. Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen[J]. Proceedings of the Combustion Institute, 2009, 32(2):2983-2991.

[80] 刘晅亚, 陆守香, 朱迎春. 水雾作用下甲烷/空气预混火焰的光谱特性[J]. 燃烧科学与技术, 2008, 14(1):44-49.

[81] 刘晅亚. 水雾作用下甲烷/空气层流预混火焰燃烧特性研究[D]. 中国科学技术大学, 2006.

[82] 李孝斌, 李会荣, 何昆, 等. 瓦斯爆炸感应期内CO/H2O/O2/CO2特征光谱实验[J]. 辽宁工程技术大学学报, 2013, 32(10):1314-1318.

[83] 李孝斌, 李会荣, 何昆, 等. 甲烷爆炸感应期内C2自由基及其特征光谱分析[J]. 西安科技大学学报, 2015, 35(2):248-252.

[84] 陈晓坤, 刘著, 王秋红. 瓦斯爆炸CH/CHO/C2自由基光谱特征研究[J]. 西安科技大学学报, 2019, 39(5):745-752.

[85] 罗振敏, 王涛, 文虎, 等. CO对CH4爆炸及自由基发射光谱特性的影响[J]. 煤炭学报, 2019, 44(07):2167-2177.

[86] 罗振敏, 高帅帅, 李逵, 等. 多元可燃性气体爆炸压力与中间产物发射光谱特性的耦合研究[J]. 中国安全生产科学技术, 2020, 16(01):11-17.

[87] 罗振敏, 王子瑾, 苏彬, 等. 多元可燃气体对CH4爆炸及其自由基发射光谱影响试验[J]. 中国安全科学学报, 2020, 30(04):1-7.

[88] 郭晶, 王庆. 多元可燃性混合气体爆炸中间产物发射光谱特性实验研究[J]. 中国安全生产科学技术, 2017, 13(6):167-172.

[89] Wang Q H, Yang S P, Jiang J C, et al. Flame propagation and spectrum characteristics of CH4-air gas mixtures in a vertical pressure relief pipeline[J]. Fuel, 2022, 317:123413.

[90] 杨翔.甲烷爆炸初期NH4H2PO4粉体抑爆机理及应用研究[D].中国人民武装警察部队学院, 2017.

[91] 杨剑. 超细粉体作用下甲烷扩散火焰燃烧及辐射光谱特性研究[D]. 中国计量学院, 2015.

[92] 李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J]. 爆炸与冲击, 2020, 40(3):10-20.

[93] 贾泉升, 司荣军, 李润之,等. 定容条件下瓦斯爆炸超压及爆后气体成分试验研究[J]. 煤矿安全, 2019, 50(12):1-5.

[94] 余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究[J]. 安全与环境学报, 2014, 14(6):85-90.

[95] Su B, Luo Z, Wang T, et al. Experimental and numerical evaluations on characteristics of vented methane explosion[J]. Journal of Central South University, 2020, 27(8):2382-2393.

[96] 崔海滨. 船舶机舱火灾中纳米MgO与烟气作用研究[D]. 江苏科技大学, 2019.

[97] 罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理[J]. 煤炭学报, 2016, 41(4):876-883.

[98] 王彬彬, 蒋勇, 邱榕. CSP分析方法在简化燃烧化学反应系统中的应用[J]. 物理化学学报, 2008, 24(12):2221-2228.

[99] 胡贤忠, 于庆波, 李延明. 甲烷在O2/CO2气氛下的框架和总包简化机理[J]. 高等学校化学学报, 2018, 39(1):95-101.

[100] GREGORY P SMITH,DAVID M Golden,Michael Frenklach,et al. Gri-Mech 3.0[EB /OL].http: / /www.me.berkeley. edu /gri_mech /,2019-12-05.

[101] 董清丽, 蒋勇, 邱榕. 基于浓度敏感性分析和遗传算法的甲烷燃烧机理简化与优化[J]. 火灾科学, 2014, 23(1):41-49.

[102] 梁运涛. 封闭空间瓦斯爆炸过程的反应动力学分析[J]. 中国矿业大学学报, 2010, 39(2):196-200.

[103] 李祥春, 聂百胜, 杨春丽, 等. 封闭空间内瓦斯浓度对瓦斯爆炸反应动力学特性的影响[J]. 高压物理学报, 2017, 31(2):135-147.

中图分类号:

 X932;TD712.7    

开放日期:

 2023-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式