- 无标题文档
查看论文信息

论文中文题名:

 掘进面粉尘控集除智能控制方案获取研究    

姓名:

 李宇杰    

学号:

 21205224130    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 矿井智能通风    

第一导师姓名:

 龚晓燕    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-05-31    

论文外文题名:

 Research on the acquisition of intelligent control scheme of dust control collection and removal in heading face    

论文中文关键词:

 掘进面 ; 粉尘控集除 ; 智能控制方案 ; 自适应免疫遗传算法 ; 数值模拟    

论文外文关键词:

 Heading face ; Dust control collection and removal ; Intelligent control scheme ; Adaptive immune genetic algorithm ; Numerical simulation    

论文中文摘要:

随着煤矿智能化建设进入快速发展阶段,目前传统掘进面通风系统不能根据实际需求动态精细化智能通风,造成了风流分布不合理,导致粉尘聚集及尘肺病发病率居高不下等问题。针对以上问题,建立掘进面粉尘控集除系统,对系统智能控制方案获取方法进行研究,为系统提供理论依据。对系统工作原理及智能控制需求进行分析,利用数值模拟手段获取样本数据,建立智能控制方案获取的自适应免疫遗传算法,并研发方案获取软件系统。基于该软件系统以某矿掘进面为对象进行应用分析,获取最佳智能控制方案,搭建相应实验测试平台,对方案获取方法的准确性及降尘效果进行测试验证。具体研究内容如下:

(1)粉尘控集除系统设计及智能控制方案获取方法。根据掘进面通风系统国内外研究现状及井下实际调研,对粉尘控集除系统进行布局设计,对系统工作原理及智能控制需求进行分析。分析风流瓦斯与粉尘气固耦合数值模拟计算方法及参数化程序实现方法,确定粉尘控集除智能控制方案获取算法及软件系统开发工具。

(2)智能控制方案获取算法建立及程序开发。根据《煤矿安全规程》对风速和瓦斯浓度的要求及卡方分箱算法,开发样本数据筛选及离散化子程序,并设计分段式二进制编码方法。建立方案获取的自适应免疫遗传算法实现流程,对适应度函数、抗体促进与抑制方法及根据抗体适应度值对交叉和变异概率进行自适应调整方法进行设计,最后利用Matlab开发粉尘控集除智能控制方案获取的算法程序。

(3)智能控制方案获取软件系统研发。对系统各功能模块的需求及实现方法进行分析,建立系统整体框架、系统用例图及用户活动流程,对信息库系统中知识库、数据库和模型库三个子系统进行详细设计。采用Visual Studio开发平台、C#语言和SQL Server数据库,对系统数值模拟求解计算、样本数据获取与智能控制方案获取各模块、主界面及数据库进行集成设计开发。

(4)利用研发的软件系统对某矿掘进面进行应用分析。建立某矿掘进面粉尘控集除系统,对智能控制方案获取软件系统应用流程进行分析。利用数值模拟求解计算模块,建立风流瓦斯与粉尘气固耦合有限元计算模型,设计数值模拟方案,并进行模拟分析,之后利用样本数据获取模块,获取风速瓦斯及粉尘浓度关联关系的样本数据,并存储在数据库中,最后利用智能控制方案获取模块,对样本数据进行筛选、离散化及分段式编码,获取某矿掘进面粉尘控集除智能控制方案。

(5)粉尘控集除智能控制方案获取方法实验测试验证。基于相似模化理论搭建实验测试平台,并设计实验测试方案,对粉尘控集除智能控制方案获取方法的准确性及方案的降尘效果进行实验测试验证。

论文外文摘要:

With the intelligent construction of coal mines entering a stage of rapid development, At present, the traditional excavation surface ventilation system cannot dynamically fine and intelligent ventilation according to the actual demand, resulting in an irrational distribution of air flow, it leads to dust accumulation and high incidence of pneumoconiosis. Given the above problems, the dust control collection and removal system of the heading face is established, and the acquisition method of the intelligent control scheme of the system is studied to provide a theoretical basis for the system. Analyze the working principle and intelligent control requirements of the system, using numerical simulation to obtain sample data, the adaptive immune genetic algorithm obtained by intelligent control scheme is established, and develop solutions to acquire software systems. Based on the software system, the application research is carried out on the heading face of a mine, get the best intelligent control solution, build the corresponding experimental test platform, the accuracy of the scheme acquisition method and the dust removal effect are tested and verified. The specific research contents are as follows:

(1) Dust control collection and removal system design and intelligent control scheme acquisition method. According to the research status of ventilation system at home and abroad and the actual underground investigation, layout design of dust control collection and removal system, the working principle and intelligent control requirements of the system are analyzed. The numerical simulation calculation method of gas-solid coupling of airflow gas and dust and the realization method of parametric program are analyzed, and the acquisition algorithm of intelligent control scheme of dust control and software system development tool are determined.

(2) Intelligent control scheme acquisition algorithm and program development, according to the requirements of wind speed and gas concentration in Coal mine Safety Regulations and the Chi-square classification algorithm, develop sample data preprocessing and discretization subroutines, a segmented binary coding method is designed. The implementation process of the adaptive immune genetic algorithm for scheme acquisition is established, the fitness function, antibody promotion and inhibition methods and adaptive adjustment of crossover and mutation probability according to antibody fitness values were designed, finally, an algorithm program for obtaining intelligent control scheme of dust control collection and removal set is developed by using Matlab.

(3) Intelligent control scheme acquisition software system development. The requirements and implementation methods of each functional module of the system are analyzed, establish the overall system framework, system use case diagram and user activity flow, the three subsystems of knowledge base, database and model base in the information base system are designed in detail. Using Visual Studio development platform, C# language and SQL Server database, the system numerical simulation calculation, sample data acquisition and intelligent control scheme modules, main interface and database integrated design and development.

(4) The software system is used to analyze the application of a mining face. The dust control collection and removal system of a mine's heading face was established, the application flow of the intelligent control scheme acquisition software system is analyzed. Using numerical simulation to solve the calculation module, the gas-solid coupling finite element model of air flow gas and dust was established, design numerical simulation scheme and carry out simulation analysis. after that, the sample data acquisition module is used to obtain the sample data of the correlation between wind speed, gas and dust concentration, and is stored in the database. Finally, the intelligent control scheme acquisition module is used to preprocess, discretization and segmental coding the sample data, and the intelligent control scheme of dust control collection and removal on a heading face is obtained.

(5) The acquisition method of the intelligent control scheme for dust control collection and removal is verified by experimental test. Build an experimental test platform based on the similar modeling theory, and design an experimental test scheme, the accuracy of the acquisition algorithm and the dust removal effect of the intelligent control scheme are tested and verified.

参考文献:

[1] 王国法. “十四五”煤矿智能化和煤炭高质量发展的思考[J]. 智能矿山, 2021, 2(1): 1-6.

[2] 陶冉, 尚军梅. 年产煤首超47亿吨,意味着什么?[N]. 中国煤炭报, 2024-03-19(1).

[3] 中国石化集团经济技术研究院. 中国能源展望2060[M]. 北京: 中国石化出版社, 2022.

[4] 陈佳贵, 黄群慧, 吕铁, 等. 工业化蓝皮书:中国工业化进程报告 (1995—2010)[M]. 北京: 社会科学文献出版社, 2012.

[5] 王国法, 刘合, 王丹丹, 等. 新形势下我国能源高质量发展与能源安全[J]. 中国科学院院刊, 2023, 38(1): 23-37.

[6] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(7): 2599-2612.

[7] 王国法, 杜毅博, 徐亚军, 等. 中国煤炭开采技术及装备50年发展与创新实践−纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术, 2023, 51(1): 1-18.

[8] 袁亮, 薛生, 郑晓亮, 等. 煤矿井下空气质量革命技术现状与展望[J]. 工矿自动化, 2023, 49(6): 32-40.

[9] 贾改妮, 蒋方, 杨明, 等. 煤矿井下不同作业场所的职业健康损害研究[J]. 中国安全科学学报, 2023, 33(4): 221-229.

[10] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2022: 78-113.

[11] 卫生健康委网站. 2022年我国卫生健康事业发展统计公报[EB/OL]. http://www.gov.cn/xinwen/2023-10/12/content_5700670.htm, 2023-10-12/2024-03-17.

[12] 聂武, 孙新. 中国职业病防治70年回顾与展望[J]. 中国职业医学, 2019, 46(5): 527-532.

[13] 龚晓燕, 秦少妮, 张永强, 等. 基于改变风筒出风口参数的综掘工作面风流场优化研究[J]. 煤矿安全, 2017, 48(12): 168-171+175.

[14] 李雨成, 李智, 高伦. 基于风流及粉尘分布规律的机掘工作面风筒布置[J]. 煤炭学报, 2014, 39(S1): 130-135.

[15] 代江娇, 黄家海, 荔军, 等. 掘进巷道除尘系统风筒参数的数值优化[J]. 煤矿安全, 2016, 47(2): 180-183.

[16] 周全超, 杨胜强, 蒋孝元, 等. 综掘工作面粉尘分布规律及通风除尘优化研究[J]. 工矿自动化, 2019, 45(11): 70-74+92.

[17] Pengfei Wang, Yongjun Li, Ronghua Liu, et al.Effects of forced-to-exhaust ratio of air volume on dust control of wall-attached swirling ventilation for mechanized excavation face[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2019, 90: 194-207.

[18] Lidian Guo, Wen Nie, Shuai Yin, et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling[J]. Building and Environment, 2020, 178: 1-17.

[19] Gang Zhou, Bin Jing, Zhuo Xu, et al. Simulation study on gas-bearing dust and its application combined with air curtain in development heading, a case study[J]. Process Safety and Environmental Protection, 2022, 163: 601-612.

[20] 陈举师, 蒋仲安, 谭聪. 岩巷综掘工作面通风除尘系统的数值模拟[J]. 哈尔滨工业大学学报, 2015, 47(2): 98-103.

[21] 王昊, 撒占友, 王春源, 等. 综掘工作面通风条件对径向旋流风幕阻尘效果的影响[J]. 煤矿安全, 2022, 53(3): 186-192.

[22] 贾宝山, 汪伟, 祁云, 等. 综掘工作面风幕集尘风机除尘系统设计及试验研究[J]. 煤炭科学技术, 2018, 46(4): 141-145+152.

[23] 刘荣华, 朱必勇, 王鹏飞, 等. 综掘工作面双径向旋流屏蔽通风控尘机理[J]. 煤炭学报, 2021, 46(12): 3902-3911.

[24] 马明星. 吹吸式卷吸控尘技术旋流特性及控尘机理研究[D]. 阜新: 辽宁工程技术大学, 2023.

[25] 贾鑫. 综掘工作面涡旋吹吸集聚式控尘技术研究[D]. 阜新: 辽宁工程技术大学, 2022.

[26] 于海明, 叶宇希, 程卫民, 等. 高瓦斯煤矿模块化分风控尘方法及其排瓦斯规律分析[J/OL]. 煤炭学报, 1-9[2024-03-19].

[27] 杨征, 庄学安, 陈真, 等. 快掘工作面粉尘污染规律模拟及防尘技术探讨[J]. 煤矿机械, 2022, 43(2): 79-82.

[28] 孙健, 胡胜勇, 郭舒云, 等. 岩巷掘进工作面控风净化除尘系统设计与应用[J]. 金属矿山, 2024, (3): 237-243.

[29] 龚晓燕, 费颖豪, 牛虎明, 等. 掘进面出风口风流与风幕调控下的粉尘分布响应曲面优化研究[J]. 中国安全生产科学技术, 2022, 18(12): 80-88.

[30] 蒋仲安, 王露露, 张中意. 掘进巷道中长压短抽条件下附壁风筒的实验研究[J]. 现代矿业, 2015, 31(3): 129-133.

[31] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50(1): 1-27.

[32] 周福宝, 魏连江, 夏同强, 等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报, 2020, 45(6): 2225-2235.

[33] 张景钢, 王清焱, 何鑫. 矿井智能通风现状与智能控制系统构建[J]. 矿业安全与环保, 2023, 50(5): 37-42.

[34] 卢新明, 尹红. 矿井通风智能化理论与技术[J]. 煤炭学报, 2020, 45(6): 2236-2247.

[35] 孙峰, 李红波, 张金. 王家岭煤矿掘进工作面智能通风管控系统[J]. 煤矿安全, 2022,53(9): 239-243.

[36] 王磊, 王凯. 长距离掘进工作面局部通风智能联动调控研究[J]. 工矿自动化, 2023, 49(9): 55-63.

[37] 王斌, 王永宝, 郝继宝, 等. 王楼煤矿智能通风系统优化[J]. 煤矿安全, 2019, 50(2): 105-108.

[38] 蒋仲安, 杨向东. 基于环境参数协同预测风速的掘进面智能变频通风控制系统[J]. 金属矿山, 2023, (7): 57-65.

[39] 程晓之, 王凯, 郝海清, 等. 矿井局部通风智能调控系统及关键技术研究[J]. 工矿自动化, 2021, 47(9): 18-24.

[40] Zhigang Zhu, Hongbao Wang, Jie Zhou. Monitoring and control model for coal mine gas and coal dust[J]. Chemistry and Technology of Fuels and Oils, 2020, 56(3): 1-12.

[41] 崔博文. 智能变频技术在矿井通风系统中的应用[J]. 内蒙古煤炭经济, 2016, (8): 3-4.

[42] 杨琦. 煤矿井下局部通风机智能调控系统研究[D]. 西安: 西安科技大学, 2021.

[43] 宋国庆, 王书满, 杨旭东. 基于T-S模型的局部通风机风量模糊预测控制算法[J]. 南京理工大学学报, 2017, 41(5): 591-595+601.

[44] 韩艳杰. 基于ANFIS-PID控制的局部通风机风量自动调节系统仿真研究[D]. 衡阳: 南华大学, 2015.

[45] 王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报, 2018, 43(2): 295-305.

[46] 周福宝, 辛海会, 魏连江, 等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术, 2023, 51(1): 313-328.

[47] MT/T441-2020. 巷道掘进混合式通风技术规范[S].北京: 应急管理出版社, 2020.

[48] 龚晓燕, 侯翼杰, 赵宽, 等. 综掘工作面风筒出风口风流智能调控装置研究[J]. 煤炭科学技术, 2018, 46(12): 8-14.

[49] GONG Xiaoyan, ZHANG Xinyi, XIA Zhixin. Adjustment for the optimal distribution of dust and gas in fully mechanized heading face[J]. Applied ecology and environmental research, 2018, 4(16): 4985-5003.

[50] 李艳强. 综掘工作面分风降尘理论及应用研究[D]. 北京: 中国矿业大学(北京), 2013.

[51] Zhuwei X, Chao R, Zhongtai Z, et al.Effect of ventilation parameters on dust pollution characteristic of drilling operation in a metro tunnel[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2023, 132: 1-12.

[52] 吴望一. 流体力学(第二版)[M]. 北京: 北京大学出版社, 2021.

[53] Mendoza-Escamilla X V, Alonzo-García A, Mollinedo R H, et al.Assessment of k-ε models using tetrahedral grids to describe the turbulent flow field of a PBT impeller and validation through the PIV technique[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 942-956.

[54] 王开德, 宁洪进, 刘茂喜. 综掘工作面快速掘进流场与粉尘数值分析[J]. 煤炭科技, 2017, (3): 71-74.

[55] 任国辉. 复杂条件下长大斜井隧道爆破期粉尘运移及除尘技术研究[D]. 青岛: 山东科技大学, 2020.

[56] 贺致芬. 掘进巷道瓦斯扩散的三维可视化仿真[D]. 徐州: 中国矿业大学, 2015.

[57] 张迎新, 柏宗君, 陶金. 综掘工作面气固两相流耦合的CFD模拟[J]. 黑龙江科技大学学报, 2019, 29(2): 146-149.

[58] Yan W, Xiao-Meng L, Wang Y, et al.Dynamic event-triggered finite-time control for multiple Euler-Lagrange systems using integral terminal sliding mode[J]. Science China(Technological Sciences), 2023, 66(11): 3164-3173.

[59] 王伟文, 周忠涛. 流态化过程模拟的研究进展[J]. 化工进展, 2011, 30(1): 58-65.

[60] Cai P., Nie W., Hua Y., et al. Diffusion and pollution of multi-source dusts in a fully mechanized coal face [J]. Process Safety and Environmental Protection, 2018, 118: 93-105.

[61] Cai P., Nie W., Chen D.W., et al. Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation[J]. Fuel, 2019, 239: 623-635

[62] 陈超, 王楠, 于海洋, 等. 基于卡方分箱法和逻辑回归算法的转炉操作工艺评价模型[J]. 材料与冶金学报, 2019, 18(2): 87-91.

[63] 王晓光, 张永健. 三段式编码的改进的IGA关联规则挖掘算法[J]. 计算机仿真, 2014, 31(05): 389-392.

[64] Jiao L, Lei W. A novel genetic algorithm based on immunity[J]. IEEE Transactions on Systems Man and Cybernetics-Part A Systems and Humans, 2000, 30(5): 552-561.

[65] Holland J H. Adaptation in natural and artificial systems [J]. Ann Arbor: University of Michigan Press, 1975.

[66] Castro D N L, Zuben V J F .Learning and optimization using the clonal selection principle.[J].IEEE Trans. Evolutionary Computation, 2002, 6(3): 239-251.

[67] Srinivas M, Patnaik M L. Adaptive probabilities of crossover and mutation in genetic algorithms.[J]. IEEE Trans.Systems Man and Cybernetics, 1994, 24(4): 656-667.

[68] 章梓雄, 董曾南. 粘性流体力学.第2版[M]. 北京: 清华大学出版社, 2011.

[69] 龚剑. 高海拔矿山掘进面粉尘运移规律及通风除尘系统优化[D]. 北京: 北京科技大学, 2016.

[70] 龚晓燕, 雷可凡, 吴群英, 等. 数字孪生驱动的掘进工作面出风口风流智能调控系统[J]. 煤炭学报, 2021, 46(4): 1331-1340.

[71] 龚晓燕, 赵少龙, 刘壮壮, 等. 掘进面风流监测及适应性智能调控系统研制[J]. 安全与环境学报, 2023, 23(2): 424-434.

[72] Mei W, Yu W, Lang L, et al. Experimental and numerical research of backfill cooling based on similarity theory[J]. Journal of Building Engineering, 2023, 70: 1-16.

中图分类号:

 TD724    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式