- 无标题文档
查看论文信息

论文中文题名:

 差异富油煤微生物降解生烃演化特征及其作用机制    

姓名:

 郝永辉    

学号:

 21209071020    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081801    

学科名称:

 工学 - 地质资源与地质工程 - 矿产普查与勘探    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 非常规天然气地质    

第一导师姓名:

 鲍园    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-27    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Mechanism of Hydrocarbon Generation and Evolutionary Characteristics of Coal Biodegradation under Varying Lipid Richness    

论文中文关键词:

 差异富油煤 ; 微生物降解 ; 生烃效率 ; 孔隙结构 ; 分子结构    

论文外文关键词:

 differential rich oil coal ; microbial degradation ; hydrocarbon generation efficiency ; pore structure ; molecular structure    

论文中文摘要:

生物成因煤层气作为一种清洁、可再生且环境友好型的非常规天然气资源,其生成演化规律及微生物作用机制已受到国内外学者广泛关注,前人对不同煤阶和不同显微组分煤样的生物降解产气规律做了大量研究,但对具有巨大开发潜力的煤基油气资源(富油煤)生物气化研究较少,不同焦油产率煤的生物气化特征及作用机制这一科学问题尚未厘清。为此,本文通过不同焦油产率煤样(称作差异富油煤)采集、微生物降解差异富油煤生烃模拟实验、气体组分分析、孔隙结构和分子结构测试等手段,确定了差异富油煤生物气化效率,查明了微生物降解差异富油煤孔隙结构的变化规律,揭示了微生物降解差异富油煤分子结构的作用机制。取得主要结论和认识如下:

第一,厘清了差异富油煤微生物降解生烃演化规律及动力学特征。生物甲烷累计产量随焦油产率的升高而升高。含油煤和富油煤的生烃过程可分为四个阶段:缓慢增长期(0~7天)、产气高峰期(7~14天)、平稳增长期(14~42天)和产气停滞期(42~56天);而高油煤生烃过程主要分为三个阶段:产气高峰期(0~14天)、平稳增长期(14~42天)和产气停滞期(42~56天),这与高油煤含有较多的富氢组分有关。此外,生烃动力学参数变化特征也得以印证,高油煤的滞后时间λ最低,表示产气进程启动最快,当焦油产率大于7%时,λ值呈现出随着焦油产率的增加而降低,说明产甲烷菌对发酵环境的适应性随着焦油产率的增大而增强,结合降解前后焦油产率的变化规律,进一步证实了焦油产率越大,生烃潜力越大。

第二,阐明了差异富油煤微生物降解前后的孔隙结构变化规律。低温氮气吸附和低场核磁共振结果表明,含油煤中的孔隙系统主要为两端开口的平行板状孔为主;富油煤主要以一端封闭的不透气的柱形孔和两端开口的平行板状孔为主;高油煤以两端大小不一的锥形孔为主。煤中微孔占比很高,是煤中孔隙的主要类型,并且随着煤样富油性的升高,煤中微孔占比整体呈先减少后增大的趋势,微生物对高油煤的孔隙结构改造程度最大,煤样经过微生物降解后孔隙的分形维数D1均降低,意味着生物作用结束后煤的孔隙结构变得简单,微生物降解作用对煤体储层结构主要体现在增孔、扩孔和增强连通性方面,高油煤的增孔程度最明显。微生物降解作用不会改变孔隙类型,只会改变孔隙的大小及形态。

第三,揭示了差异富油煤微生物降解作用下分子结构演化机制。随焦油产率的升高,煤中可被微生物利用的分子结构(如脂肪族结构、含氧官能团)越多,故微生物降解程度越大。微生物降解后,富油煤碳原子面网间距d002减小、堆砌度Lc增大、Nave值增大,说明形成了更加紧密的层状结构;延展度与堆砌度比值(La/Lc)减小,证明煤样在经过微生物降解后整体向着晶格结构解聚的方向发展,焦油产率越高,微生物对其环缩合程度的改造最为强烈。差异富油煤经微生物降解后,其脂肪族与芳香族结构参数比值(Aal/Aar和CH2/CH3)增大,芳香碳含量fa、芳香度AR和芳环缩合程度DOC整体减小,且C=O/C=C比值降低,说明微生物降解作用能够降低芳香族C=C键的强度,破坏芳香环结构间桥键,形成脂肪烃;微生物对差异富油煤的脂肪结构(CH2、CH3振动)和含氧官能团(C-O伸缩振动)均具有降解能力。

研究成果为富油煤的低碳绿色开发提供了新的思路,也为富油煤的生物开发提供了理论基础。

论文外文摘要:

Biogenic coalbed methane, as a clean, renewable, and environmentally friendly unconventional natural gas resource, has attracted widespread attention from scholars both domestically and internationally in terms of its generation, evolution, and microbial mechanisms. Previous studies have extensively investigated the biodegradation and gas production rules of coal samples with different coal ranks and macerals, but there is limited research on the gasification of coal based oil and gas resources (tar-rich coal) with enormous development potential. The scientific question of the gasification characteristics and mechanisms of coal with different tar yields has not yet been clarified. For this purpose, this article determined the biogasification efficiency of differentially rich oil coal through the collection of coal samples with different tar yields (known as differentially rich oil coal), simulation experiments of microbial degradation of differentially rich oil coal for hydrocarbon generation, gas component analysis, pore structure and molecular structure testing, and identified the changes in pore structure of differentially rich oil coal through microbial degradation. The mechanism of microbial degradation of differentially rich oil coal molecular structure was revealed. The main conclusions and understanding are as follows:

Firstly, the evolution law and kinetic characteristics of microbial degradation of hydrocarbon generation in differentially rich oil coal have been clarified. The cumulative production of biomethane increases with the increase of tar yield. The hydrocarbon generation process of oil-containing coal and oil-rich coal can be divided into four stages: slow growth period(0~7 days), peak gas production period(7~14 days), stable growth period(14~42 days), and gas production stagnation period(42~56 days); The hydrocarbon generation process of high oil coal can be mainly divided into three stages: peak gas production period(0~14 days), stable growth period(14~42 days), and gas production stagnation period(42~56 days), which is related to the high content of hydrogen rich components in high oil coal. In addition, the variation characteristics of hydrocarbon generation kinetics parameters can also be confirmed, indicating the lag time of high oil coal λ The lowest indicates the fastest start of the gas production process. When the tar yield is greater than 7%, λ The value shows a decrease with the increase of tar yield, indicating that the adaptability of methane producing bacteria to the fermentation environment is enhanced with the increase of tar yield. Combined with the changes in tar yield before and after degradation, it further confirms that the higher the tar yield, the greater the hydrocarbon generation potential.

Secondly, the changes in pore structure before and after microbial degradation of differentially rich oil coal were elucidated. The results of low-temperature nitrogen adsorption and low-field nuclear magnetic resonance indicate that the pore system in oil-bearing coal is mainly composed of parallel plate-like pores with two ends open; Rich oil coal is mainly composed of columnar pores with one end closed and parallel plate-shaped pores with two ends open; High oil coal is mainly characterized by conical holes of varying sizes at both ends. The proportion of micropores in coal is very high, which is the main type of pores in coal. As the oil content of coal samples increases, the proportion of micropores in coal shows an overall trend of first decreasing and then increasing. Microorganisms have the greatest effect on the pore structure transformation of high oil coal. After microbial degradation, the fractal dimension D1 of pores in coal samples decreases, indicating that the pore structure of coal becomes simpler after the end of biological action. The microbial degradation effect on the coal reservoir structure is mainly reflected in increasing pores, expanding pores, and enhancing connectivity, with high oil coal having the most obvious degree of pore enlargement. Microbial degradation does not change the type of pores, but only the size and morphology of pores.

Thirdly, the molecular structure evolution mechanism under the microbial degradation of differentially rich oil coal was revealed. As the tar yield increases, the more molecular structures (such as aliphatic structures and oxygen-containing functional groups) in coal that can be utilized by microorganisms, the greater the degree of microbial degradation. After microbial degradation, the spacing d002 between the carbon atom surfaces of the rich oil coal decreases, the stacking degree Lc increases, and the Nave value increases, indicating the formation of a more compact layered structure; The decrease in the ratio of elongation to stacking degree (La/Lc) indicates that the coal sample develops towards the direction of lattice structure depolymerization after microbial degradation. The higher the tar yield, the stronger the microbial modification of its ring condensation degree. After microbial degradation, the ratio of aliphatic to aromatic structural parameters (Aal/Aar and CH2/CH3) of differentially rich oil coal increases, and the aromatic carbon content fa, aromaticity AR, and degree of aromatic ring condensation DOC decrease as a whole. Moreover, the C=O/C=C ratio decreases, indicating that microbial degradation can reduce the strength of aromatic C=C bonds, break the bridge bonds between aromatic ring structures, and form fatty hydrocarbons; Microorganisms have the ability to degrade the fat structure (CH2, CH3 vibration) and oxygen-containing functional groups (C-O stretching vibration) of differentially rich oil coal.

The research results provide new ideas for the low-carbon and green development of rich oil coal, and also provide a theoretical basis for the biological development of rich oil coal.

参考文献:

[1] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06): 1625-1636.

[2] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(02): 11-16.

[3] 中国石油集团经济技术研究院. 2022年国内外油气行业发展报告[M]. 北京:石油工业出版社,2023.

[4] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(04): 575-587.

[5] 贾雪梅, 蔺亚兵, 马东民. 高、低煤阶煤中宏观煤岩组分孔隙特征研究[J]. 煤炭工程, 2019, 51(06): 24-27.

[6] 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022. 24(03): 49-57.

[7] Shi J, Huang W, Han H, et al. Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards[J]. Renewable and Sustainable Energy Reviews, 2021, 143.

[8] Yao Q, Ma M, Liu Y, et al. Pyrolysis characteristics of metal ion-exchanged Shendong coal and its char gasification performance[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155.

[9] He H, Zhang D, Chen F, et al. Microbial community succession between coal matrix and culture solution in a simulated methanogenic system with lignite[J]. Fuel, 2020, 264.

[10] Gao L, Brasells C, Mastalerz M, et al. Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA [J]. International Journal of Coal Geology, 2013, 107: 152-164.

[11] 佟莉, 琚宜文, 杨梅, 等. 淮北煤田芦岭矿区次生生物气地球化学证据及其生成途径 [J]. 煤炭学报, 2013, 38(2): 288-293.

[12] Scott A R. Improving Coal Gas Recovery with Microbially Enhanced Coalbed Methane[J]. 1999: 89-110.

[13] Tian H, Fotidis I A, Mancini E, et al. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics[J]. Bioresour Technol, 2018, 247: 616-623.

[14] 王优阳, 陈润, 王琳琳, 等. 微生物增采煤层气技术发展历程及研究进展[J]. 煤炭技术, 2018, 37(12): 17-20.

[15] Ritter D, Vinson D, Barnhart E, et al. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges [J]. International Journal of Coal Geology, 2015, 146: 28-41.

[16] 孙斌, 李金珊, 承磊, 等. 低阶煤生物采气可行性——以二连盆地吉尔嘎朗图凹陷为例[J]. 石油学报, 2018, 39(11): 1272-1281+1291.

[17] Zhao W, Su X, Xia D, et al. Contribution of Microbial Acclimation to Lignite Biomethanization [J]. Energy & Fuels, 2020, 34(3): 3223-3238.

[18] 苏现波, 夏大平, 赵伟仲, 等. 煤层气生物工程研究进展 [J]. 煤炭科学技术, 2020, 48(06): 1-30.

[19] Chen T, Zheng H, Hamilton S, et al. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia [J]. International Journal of Coal Geology, 2017, 179: 92-112.

[20] 李洋, 唐书恒, 陈健, 等. 影响煤生物气化的物化特征及煤预处理的研究进展 [J]. 微生物学报, 2022, 62(06): 2328-23239.

[21] 许婷, 李宁, 姚征, 等. 陕北榆神矿区富油煤分布规律及形成控制因素 [J]. 煤炭科学技术, 2022, 50(3): 161-168.

[22] Su X, Zhao W, Xia D. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam [J]. Biotechnol Biofuels, 2018, 11: 245.

[23] Kirk M F, Wilson B H, Marquart K A, et al. Solute Concentrations Influence Microbial Methanogenesis in Coal-bearing Strata of the Cherokee Basin, USA [J]. Front Microbiol, 2015, 6: 1287.

[24] Singh D N, Kumar A, Sarbhai M P, et al. Cultivation-independent analysis of archaeal and bacterial communities of the formation water in an Indian coal bed to enhance biotransformation of coal into methane [J]. Appl Microbiol Biotechnol, 2012, 93(3): 1337-1350.

[25] 鲍园, 安超. 基于FE-SEM的微生物降解煤岩孔隙演化特征 [J]. 煤炭学报, 2022, 47(11): 4105-4112.

[26] 鲍园, 李争岩, 安超, 等. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制[J]. 煤炭学报, 2023, 48(2): 891-899.

[27] 张双斌, 赵树峰, 郭红玉, 等. 风化煤与褐煤转化生物甲烷的差异性分析 [J]. 煤炭科学技术, 2023, 51(11): 1−9.

[28] 师庆民, 米奕臣, 王双明, 等. 富油煤热解流体滞留特征及其机制 [J]. 煤炭学报, 2022, 47(3): 1329-1337.

[29] 董光顺, 朱超凡, 厉家宗, 等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟 [J]. 煤田地质与勘探, 2023, 51(4): 57−67.

[30] 毛崎森, 刘嘉晔, 王长安, 等. 不同布井模式下富油煤原位热解传热规律数值模拟 [J]. 煤炭转化, 2022, 45(6): 7-19.

[31] Thiessen R. Origin of the boghead coals[R]. USGS Numbered Series, 1925, 132: 121-137.

[32] 胡社荣. 煤造石油与煤成油理论关系研究进展综述 [J]. 地质科技情报, 1999, 18(4): 71-73.

[33] Clayton J, Rice D, Michael G. Oil-generating coals of the San Juan Basin, New Mexico and Colorado, U.S.A[J]. Organic Geochemistry, 1991, 17(6): 735-742.

[34] 吴俊. 中国南方龙潭煤系树皮煤岩石学特征及成烃性研究 [J]. 中国科学(B辑 化学 生命科学 地学), 1992, (1): 86-93+113.

[35] 韩德馨, 任德贻, 郭敏泰. 浙江长广煤田树皮残植煤的成因及其沉积环境 [J]. 沉积学报, 1983, 1(4): 1-14+135-136.

[36] 余海洋, 孙旭光, 焦宗福. 华南晚二叠世“树皮体”显微傅里叶红外光谱(Micro-FTIR)特征及意义[J]. 北京大学学报(自然科学版), 2004, 40(6): 879-885.

[37] 吴俊. 我国南方龙潭煤系镜亮煤、藻烛煤、树皮煤成烃规律研究[J]. 中国煤田地质,1993, 5(2):23-27+33.

[38] 傅家谟, 盛国英, 陈德玉, 等. 一种可能的煤成油母质——泥炭藓煤的有机地球化学特征 [J]. 地球化学, 1987, (1): 1-9.

[39] 刘德汉, 傅家谟, 秦建中, 等. 苏桥地区残殖煤的发现——兼论煤成气、煤成油的判别和我国煤成油的前景 [J]. 地球化学, 1985, (4): 313-322+401.

[40] 王双明, 鲍园, 郝永辉, 等. 富油煤研究进展与趋势 [J]. 煤田地质与勘探, 2024, 52(4): 1-11.

[41] 姚征, 罗乾周, 李宁, 等. 陕北石炭-二叠纪富油煤赋存特征及影响因素[J]. 煤田地质与勘探, 2021, 49(3): 50-61+68.

[42] 高文博, 冯烁, 田继军, 等. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析[J]. 煤炭工程, 2022, 54(10): 136-140.

[43] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12): 192-197.

[44] 杨甫, 段中会, 马丽, 等. 陕西省富油煤分布及受控地质因素 [J]. 煤炭科学技术, 2023, 51(3): 171-181.

[45] 杨海平, 陈汉平, 鞠付栋, 等. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008, 28(8): 40-45.

[46] Wen H, Lu J, Xiao Y, et al. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta, 2015, 619: 41-47.

[47] Shi Q, Li C, Wang S, et al. Variation of molecular structures affecting tar yield :A comprehensive analysis on coal ranks and depositional environments[J]. Fuel, 2023, 335: 127050.

[48] 蔡昕原, 申文盛, 马丽, 等. 表面活性剂对陕北富油煤微生物降解的影响[J]. 西安科技大学学报, 2022. 42(2): 317-323.

[49] 师庆民, 王双明, 王生全, 等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(5): 2057-2066.

[50] 闫和平, 段中会,王金锋. 黄陵矿区富油煤焦油产率与补偿密度关系模型预测方法研究[J]. 中国煤炭地质, 2022, 34(10): 25-30.

[51] 赵军龙, 闫和平, 王金锋, 等. 基于测井信息的煤焦油产率预测方法研究[J]. 地球物理学进展, 2023, 38(4): 1702-1712.

[52] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377.

[53] 邹卓, 张莉, 孙杰, 等. 富油煤热解技术及利用前景研究[J]. 中国煤炭地质, 2022, 34(11): 31-34.

[54] Potter M C. Bacteria as agents in the oxidation of amorphous carbon [J]. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character, 1908, 80: 239-259.

[55] Fakoussa R M. Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal [J]. Resources, Conservation and Recycling, 1988, 1(3-4): 251-260.

[56] Cohen M S, Gabriele P D. Degradation of Coal by the Fungi Polyporus versicolor and Poria monticola [J]. Appl Environ Microbiol, 1982, 44(1): 23-27.

[57] Ralph J P, Catcheside D E A. Action of aerobic microorganisms on the macromolecular fraction of lignite [J]. Fuel, 1993, 72(12): 1679-1686.

[58] Jiang F, Li Z, Lv Z, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products [J]. Fuel, 2013, 103: 639-645.

[59] 陈润, 王优阳, 王琳琳, 等. 煤层生物气组成特征及其影响因素研究进展 [J]. 煤炭科学技术, 2016, 44(11): 167-172.

[60] Gupta P, Gupta A. Biogas production from coal via anaerobic fermentation [J]. Fuel, 2014, 118: 238-242.

[61] 乔留虎, 夏大平, 唐书恒, 等. 低煤阶煤产气量的pH和Eh控制 [J]. 煤田地质与勘探, 2016, 44(4): 73-76.

[62] Strąpoć D, Mastalerz M, Dawson K, et al. Biogeochemistry of Microbial Coal-Bed Methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 617-656.

[63] Park S Y, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM) [J]. Fuel, 2016, 166: 258-267.

[64] Grundmann O, Behrends A, Rabus R, et al. Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1 [J]. Environ Microbiol, 2008, 10(2): 376-385.

[65] Callaghan A V, Wawrik B, Ni Chadhain S M, et al. Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes [J]. Biochem Biophys Res Commun, 2008, 366(1): 142-148.

[66] Sekhohola L M, Igbinigie E E, Cowan A K. Biological degradation and solubilisation of coal [J]. Biodegradation, 2013, 24(3): 305-318.

[67] Liu Y, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Ann N Y Acad Sci, 2008, 1125: 171-189.

[68] Widdel F, Rouvire P E, Wolfe R S. Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate [J]. Archives of Microbiology, 1988, 150(5): 477-481.

[69] Deppenmeier U, Lienard T, Gottschalk G. Novel reactions involved in energy conservation by methanogenic archaea [J]. FEBS Lett, 1999, 457(3): 291-297.

[70] 承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展 [J]. 微生物学通报, 2016, 43(5): 1143-1164.

[71] Guo H, Yu Z, Thompson I P, et al. A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China [J]. Appl Microbiol Biotechnol, 2014, 98(21): 9083-9093.

[72] Zhou S, Liu D, Cai Y, et al. Gas sorption and flow capabilities of lignite, subbituminous and high-volatile bituminous coals in the Southern Junggar Basin, NW China [J]. Journal of Natural Gas Science and Engineering, 2016, 34: 6-21.

[73] Green M S, Flanegan K C, Gilcrease P C. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A [J]. International Journal of Coal Geology, 2008, 76(1-2): 34-45.

[74] Mayumi D, Mochimaru H, Tamaki H, et al. Methane production from coal by a single methanogen [J]. Science, 2016, 354(6309): 222-225.

[75] Zhou Z, Zhang C J, Liu P F, et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species [J]. Nature, 2022, 601(7892): 257-262.

[76] 苏现波, 陈鑫, 夏大平, 等. 白腐真菌对不同煤阶煤的降解作用研究 [J]. 河南理工大学学报(自然科学版), 2013, 32(3): 281-284.

[77] 苏现波, 陈鑫, 夏大平, 等. 煤发酵制生物氢和甲烷的模拟实验 [J]. 天然气工业, 2014, 34(5): 179-185.

[78] 夏大平, 陈曦, 王闯, 等. 褐煤酸碱预处理-微生物气化联产H2-CH4的实验研究 [J]. 煤炭学报, 2017, 42(12): 3221-3228.

[79] Huang Z, Urynowicz M A, Colberg P J S. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1 [J]. International Journal of Coal Geology, 2013, 115: 97-105.

[80] Fallgren P H, Zeng C, Ren Z, et al. Feasibility of microbial production of new natural gas from non-gas-producing lignite [J]. International Journal of Coal Geology, 2013, 115: 79-84.

[81] Gan H, Nandi S P, Walker P L. Nature of the porosity in American coals [J]. Fuel, 1972, 51(4): 272-277.

[82] 张素新, 肖红艳. 煤储层中微孔隙和微裂隙的扫描电镜研究 [J]. 电子显微学报, 2000, (4): 531-532.

[83] 张吉振, 李贤庆, 张学庆, 等. 煤系页岩储层孔隙结构特征和演化[J]. 煤炭学报, 2019, 44(S1): 195-204.

[84] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, (1): 40-44.

[85] 朱兴珊. 煤层孔隙特征对抽放煤层气影响[J]. 中国煤层气, 1996, (1): 37-39.

[86] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9-10): 1051-1069.

[87] B.B.霍多特著, 宋士钊, 王佑安. 煤与瓦斯突出[M]. 煤与瓦斯突出, 1996.

[88] 张红日, 杨思敬. 煤的低温氮吸附试验研究[J]. 山东矿业学院学报, 1993, (03): 245-249.

[89] 秦勇,徐志伟,张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报, 1995, (3): 266-271.

[90] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报, 2005, (S1): 51-55.

[91] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, (2): 269-285.

[92] 陈尚斌, 夏筱红, 秦勇, 等. 川南富集区龙马溪组页岩气储层孔隙结构分类[J]. 煤炭学报, 2013, 38(5): 760-765.

[93] Clarkson C R, Jensen J L, Chipperfield S. Unconventional gas reservoir evaluation: What do we have to consider? [J]. Journal of Natural Gas Science and Engineering, 2012, 8: 9-33.

[94] 范楠. 煤孔隙结构多尺度表征及其对瓦斯运移特性影响的实验研究[D]; 辽宁工程技术大学, 2021.

[95] Jiang B, Qu Z, Wang G G X, et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China [J]. International Journal of Coal Geology, 2010, 82(3-4): 175-183.

[96] Schmitt M, Fernandes C P, Da Cunha Neto J A B, et al. Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with Mercury Injection Capillary Pressure techniques [J]. Marine and Petroleum Geology, 2013, 39(1): 138-149.

[97] Yu S, Bo J, Fengli L, et al. Structure and fractal characteristic of micro- and meso-pores in low, middle-rank tectonic deformed coals by CO 2 and N 2 adsorption [J]. Microporous and Mesoporous Materials, 2017, 253: 191-202.

[98] 窦文超, 刘洛夫, 吴康军, 等. 基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响——以鄂尔多斯盆地西南部三叠系延长组长7储层为例 [J]. 地质论评, 2016, 62(2): 502-512.

[99] Yao Y, Liu D. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals [J]. Fuel, 2012, 95: 152-158.

[100] 申艳军, 王旭, 赵春虎, 等. 榆神府矿区富油煤多尺度孔隙结构特征 [J]. 煤田地质与勘探, 2021, 49(3): 33-41.

[101] 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素 [J]. 天然气工业, 2014, 34(6): 9-16.

[102] 王超勇, 鲍园, 琚宜文. 利用FE-SEM、HIP、N2吸附实验表征生物气化煤系有机岩储层微观孔隙结构演化 [J]. 地球科学, 2020, 45(1): 251-262.

[103] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征 [J]. 中国科学:地球科学, 2010, 40(11): 1598-1607.

[104] Zhao Y, Liu S, Elsworth D, et al. Pore Structure Characterization of Coal by Synchrotron Small-Angle X-ray Scattering and Transmission Electron Microscopy [J]. Energy & Fuels, 2014, 28(6): 3704-3711.

[105] 孙亮, 王晓琦, 金旭, 等. 微纳米孔隙空间三维表征与连通性定量分析 [J]. 石油勘探与开发, 2016, 43(3): 490-498.

[106] Baysal M, Yürüm A, Yıldız B, et al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction [J]. International Journal of Coal Geology, 2016, 163: 166-176.

[107] Sonibare O O, Haeger T, Foley S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy [J]. Energy, 2010, 35(12): 5347-5353.

[108] Geng W, Nakajima T, Takanashi H, et al. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry [J]. Fuel, 2009, 88(1): 139-144.

[109] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的FTIR表征 [J]. 煤炭学报, 2015, 40(12): 2900-2908.

[110] Ibarra J, Muñoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process [J]. Organic Geochemistry, 1996, 24(6-7): 725-735.

[111] Chen Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy [J]. International Journal of Coal Geology, 2012, 104: 22-33.

[112] Li W, Zhu Y, Chen S, et al. Research on the structural characteristics of vitrinite in different coal ranks [J]. Fuel, 2013, 107: 647-652.

[113] 苏现波, 司青, 王乾. 煤变质演化过程中的XRD响应 [J]. 河南理工大学学报(自然科学版), 2016, 35(4): 487-492.

[114] Zhang X, Wang S, Chen H, et al. Aromatic Structural Characterization of Different-Rank Vitrinites: Using HRTEM, XRD and AFM [J]. Polycyclic Aromatic Compounds, 2019, 41(6): 1319-1330.

[115] Lu L, Sahajwalla V, Kong C, et al. Quantitative X-ray diffraction analysis and its application to various coals [J]. Carbon, 2001, 39(12): 1821-1833.

[116] 常海洲, 蔡雪梅, 李改仙, 等. 不同还原程度煤显微组分堆垛结构表征 [J]. 山西大学学报(自然科学版), 2008, (2): 223-227.

[117] Zhang Y, Li Z. Raman spectroscopic study of chemical structure and thermal maturity of vitrinite from a suite of Australia coals [J]. Fuel, 2019, 241: 188-198.

[118] Dun W, Guijian L, Ruoyu S, et al. Influences of magmatic intrusion on the macromolecular and pore structures of coal: Evidences from Raman spectroscopy and atomic force microscopy [J]. Fuel, 2014, 119: 191-201.

[119] Saikia B K, Sharma A, Khound K, et al. Solid state 13C-NMR spectroscopy of some oligocene coals of Assam and Nagaland [J]. Journal of the Geological Society of India, 2013, 82(3): 295-298.

[120] Solum M S, Pugmire R J, Grant D M. Carbon-13 solid-state NMR of Argonne-premium coals [J]. Energy & Fuels, 1989, 3(2): 187-193.

[121] 秦勇, 姜波, 宋党育, 等. 高煤级煤碳结构13C NMR演化及其机理探讨 [J]. 煤炭学报, 1998, (6): 76-80.

[122] 常海洲, 王传格, 曾凡桂, 等. 不同还原程度煤显微组分组表面结构XPS对比分析 [J]. 燃料化学学报, 2006, (4): 389-394.

[123] 王宏杰, 王延斌, 高莎莎, 等. 利用地球物理测井划分低阶煤煤阶类型[J]. 内江科技, 2013, 34(09) :70-71.

[124] Emebu S, Pech J, Janáčová D. Review on anaerobic digestion models: Model classification & elaboration of process phenomena[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112288.

[125] 冷欢, 杨清, 黄钢锋, 等. 氢营养型产甲烷代谢途径研究进展[J]. 2020, 60(10): 2136–2160.

[126] 李姝佳, 刘恺德, 郑涵, 等. 基于NMR的煤孔隙结构与渗流特征研究进展 [J]. 应用物理, 2022, 12(6), 311-319.

[127] Susilawati R, Evans P N, Esterle J S, et al. Temporal changes in microbial community composition during culture enrichment experiments with Indonesian coals[J]. International Journal of Coal Geology, 2015, 137: 66-76.

[128] 白翔, 邹达, 马凤云, 等. 低变质煤结构分析及其与热解焦油产率关联性研究 [J]. 洁净煤技术, 2020, 26(4), 90-97.

[129] Emebu S, Pech J, Janáčová D. Review on anaerobic digestion models: Model classification & elaboration of process phenomena[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112288.

[130] Kumar V, Rawat J, Patil R C, et al. Exploring the functional significance of novel cellulolytic bacteria for the anaerobic digestion of rice straw[J]. Renewable Energy, 2021, 169: 485-497.

[131] 客昆, 秦建华, 牟必鑫, 等. 西昌盆地上三叠统白果湾组富有机质泥页岩沉积岩相古地理与孔隙特征[J]. 沉积与特提斯地质, 2020, 40(3): 140-150.

[132] Fu H, Tang D, Xu T, et al. Characteristics of pore structure and fractal dimension of low-rank coal: A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China[J]. Fuel, 2017, 193: 254-264.

[133] Liu X, Nie B. Fractal characteristics of coal samples utilizing image analysis and gas adsorption[J]. Fuel, 2016, 182: 314-322.

[134] Li H, Chang Q, Gao R, et al. Fractal characteristics and reactivity evolution of lignite during the upgrading process by supercritical CO2 extraction[J]. Applied Energy, 2018, 225: 559-569.

[135] Zheng S, Yao Y, Liu D, et al. Nuclear magnetic resonance surface relaxivity of coals[J]. International Journal of Coal Geology, 2019, 205: 1-13.

[136] Mayumi D, Mochimaru H, Tamaki H, et al. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225.

[137] 相建华, 曾凡桂, 梁虎珍, 等.不同变质程度煤的碳结构特征及其演化机制[J].煤炭学报,2016,41(6):1498-1506.

[138] 张硕, 张小东, 杨延辉, 等. 溶剂萃取下构造煤的XRD结构演化特征[J]. 光谱学与光谱分析, 2017, 37(10): 3220-3224.

[139] Matlala I V, Moroeng O M, Wagner N J. Macromolecular structural changes in contact metamorphosed inertinite-rich coals from the No. 2 Seam, Witbank Coalfield (South Africa): Insights from petrography, NMR and XRD[J]. International Journal of Coal Geology, 2021, 247: 103857.

[140] 郝长胜, 袁迎春, 贾廷贵, 等. 不同变质程度煤的化学结构红外光谱研究[J]. 煤矿安全, 2022, 53(11): 15-22.

[141] 郭胜利. 水浸煤氧化活性增强机理及其抑制研究[D]. 淮南: 安徽理工大学, 2022.

[142] 郝盼云, 孟艳军, 曾凡桂, 等.红外光谱定量研究不同煤阶煤的化学结构[J].光谱学与光谱分析,2020,40(03):787-792.

[143] 赵一全, 张慧, 张晓昱, 等. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12): 2717-2733.

[144] 刘玉华, 王慧, 胡晓珂. 不动杆菌属(Acinetobacter)细菌降解石油烃的研究进展[J]. 微生物学通报, 2016, 43(07): 1579-1589.

[145] Ibarra J V, Moliner R. Coal characterization using pyrolysis-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 1991, 20: 171-184.

[146] Guo H G, Zhang Y W, Zhang J L, et al. Characterization of anthracite-degrading methanogenic microflora enriched from Qinshui Basin in China[J]. Energy & Fuels, 2019, 33(7): 6380-6389.

[147] Chuah L F, Chew K W, Bokhari A, et al. Biodegradation of crude oil in seawater by using a consortium of symbiotic bacteria[J]. Environmental Research, 2022, 213: 113721.

[148] Guo H G, Han Q, Zhang J L, et al. Available methane from anthracite by combining coal seam microflora and H2O2 pretreatment[J]. International Journal of Energy Research. 2020, 45(2): 1-12.

中图分类号:

 P618.13    

开放日期:

 2025-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式