- 无标题文档
查看论文信息

论文中文题名:

 再生骨料、石屑制备超高性能混凝土力学性能与耐久性研究    

姓名:

 翟雪强    

学号:

 18209074010    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081803    

学科名称:

 工学 - 地质资源与地质工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 固废再生利用    

第一导师姓名:

 李晓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-03-03    

论文答辩日期:

 2021-12-03    

论文外文题名:

 Study on the mechanical properties and durability of ultra-high performance concrete prepared from recycled aggregate and stone chips    

论文中文关键词:

 超高性能混凝土(UHPC) ; 再生骨料 ; 石屑 ; 配合比 ; 力学强度 ; 耐久性    

论文外文关键词:

 Ultra-high performance concrete(UHPC) ; recycled aggregate ; stone chips ; mix ratio ; mechanical strength ; durabilit    

论文中文摘要:

超高性能混凝土(Ultra High Performance Concrete,UHPC)是一种具有超高强度、高韧性、高耐久性的水泥基复合材料。超高性能混凝土骨料选用粒径小于2mm的石英砂,减少内部缺陷,提高均一性,具有优异的力学性能和耐久性能。石英砂资源的生产工艺复杂,提高了UHPC的生产成本,限制了UHPC的大规模推广应用。本文分别利用废弃混凝土生产的再生骨料和废弃石屑生产的石屑骨料制备生态型UHPC,降低UHPC制备成本的同时消耗了固体废料。研究了原材料、养生条件、配合比等因素对再生骨料、石屑制备的生态型UHPC的力学性能和耐久性能的影响规律,本文对再生骨料和石屑骨料制备的生态型UHPC分别进行了配合比试验,得到的主要结论如下:

(1)使用石屑骨料制备出了廉价、环保、满足性能要求的生态型UHPC,石屑UHPC的力学性能达到了国家标准中RPC100的性能等级。通过配合比试验发现,UHPC配合比中随着水胶比提高,力学性能逐渐降低,流动度逐渐增加;随着集料掺量的提高,力学性能先增加后降低,流动度逐渐降低;随着减水剂掺量的增加,力学性能变化较小,流动度逐渐增加;随着钢纤维掺量的提高,力学性能逐渐提高,流动度降低。集胶比为1.6,水胶比为0.2,钢纤维体积掺量为1.5%,减水剂掺量为2.1%时,石屑UHPC的力学强度和工作性能最佳。石屑UHPC的应力-应变曲线特征与传统UHPC相似,钢纤维不仅能提高UHPC的力学强度,还能有效提高UHPC的韧性和残余抗压强度。热养护能有效提高石屑UHPC的抗压强度,但对抗折强度影响不大。四种养护条件对石屑UHPC作用效果由高到低依次为:组合养护>干热养护>水浴养护>标准养护。

(2)利用再生骨料制备的生态型UHPC,抗折强度达到了RPC100的力学等级标准,同时抗压强度超过了高强混凝土的性能要求。通过配合比试验发现,UHPC配合比中,随着集胶比的提高,力学逐渐降低;随着钢纤维掺量的增加,抗折强度和劈裂抗拉强度逐渐增加,抗压强度变化较小;蒸汽养生能够大幅提高生态型UHPC的力学性能。采用0.6~2.36mm骨料的UHPC力学性能最优,建议工程应用中优先采用此范围的再生骨料。

(3)采用慢冻法研究了再生骨料UHPC耐久性能中的抗冻性能,试验发现冻融循环后,再生骨料UHPC试件的抗压强度最高降低21%,最低降低9%,满足混凝土D50的抗冻标号。再生骨料UHPC耐久性能优异,可以作为抗冻混凝土在寒冷地区使用。随着骨料掺量的增加,抗压强度损失率逐渐降低,UHPC的抗冻性能逐渐提高。经过标准养生和蒸汽养生的UHPC试件强度损失率相差不大,蒸汽养生对生态型UHPC的抗冻性能影响有限。不同粒径的骨料粒径对UHPC的耐久性影响不大,强度损失率均在12%左右。冻融后劈裂试件的劈裂抗拉强度损失率为8.8%~23.3%,经过蒸汽养生试件的强度损失率较低。

论文外文摘要:

Ultra High Performance Concrete (UHPC) is a cement-based composite material with ultra-high strength, high toughness and high durability. Ultra-high performance concrete aggregates are made of quartz sand with a particle size of less than 2mm, which reduces internal defects, improves uniformity, and has excellent mechanical properties and durability. The production process of quartz sand resources is complicated, which increases the production cost of UHPC and limits the large-scale promotion and application of UHPC. This paper uses recycled aggregates produced from waste concrete and stone chip aggregates produced from waste stone chips to prepare ecological UHPC, which reduces the cost of UHPC preparation and consumes solid waste. The effects of raw materials, health conditions, mix ratio and other factors on the mechanical properties and durability of ecological UHPC prepared from recycled aggregates and stone chips are studied. After the mix ratio test, the main conclusions obtained are as follows:

Using stone chip aggregates, an eco-type UHPC that is inexpensive, environmentally friendly and meets performance requirements is prepared. The mechanical properties of stone chip UHPC have reached the performance level of RPC100 in the national standard. Through the mix ratio test, it is found that as the water-binder ratio increases in the UHPC mix ratio, the mechanical properties gradually decrease and the fluidity gradually increases; with the increase of the aggregate content, the mechanical properties first increase and then decrease, and the fluidity gradually decreases; With the increase of the amount of water reducing agent, the change of mechanical properties is small, and the fluidity gradually increases; with the increase of the amount of steel fiber, the mechanical properties gradually increase and the fluidity decreases. When the aggregate ratio is 1.6, the water-gel ratio is 0.2, the volume of steel fiber is 1.5%, and the content of water reducing agent is 2.1%, the mechanical strength and working performance of stone chips UHPC are the best. The characteristics of the stress-strain curve of stone chips UHPC are similar to those of traditional UHPC. Steel fiber can not only improve the mechanical strength of UHPC, but also effectively improve the toughness and residual compressive strength of UHPC. Thermal curing can effectively improve the compressive strength of stone chips UHPC, but has little effect on the flexural strength. The effect of the four curing conditions on the UHPC of stone chips is from high to low: combined curing>dry heat curing>water bath curing>standard curing.

The ecological UHPC made from recycled aggregates has a flexural strength that reaches the RPC100 mechanical grade standard, and the compressive strength exceeds the performance requirements of high-strength concrete. Through the mix ratio test, it is found that in the UHPC mix ratio, as the aggregate ratio increases, the mechanics gradually decreases; with the increase of the steel fiber content, the flexural strength and split tensile strength gradually increase, and the compressive strength changes little; Steam curing can greatly improve the mechanical properties of ecological UHPC. UHPC with 0.6~2.36mm aggregate has the best mechanical properties. It is recommended that recycled aggregates in this range should be used first in engineering applications.

The slow freezing method was used to study the frost resistance in the durability of recycled aggregate UHPC. The test found that after the freeze-thaw cycle, the compressive strength of recycled aggregate UHPC specimens decreased by 21% at the highest and 9% at the lowest, reach the frost resistance mark of concrete D50. Recycled aggregate UHPC has excellent durability and can be used as antifreeze concrete in cold regions. With the increase of aggregate content, the loss rate of compressive strength gradually decreases, and the frost resistance of UHPC gradually improves. The strength loss rate of UHPC specimens after standard curing and steam curing is not much different, and steam curing has a limited effect on the frost resistance of ecological UHPC. The aggregate size of different particle sizes has little effect on the durability of UHPC, and the strength loss rate is about 12%. After freezing and thawing, the splitting tensile strength loss rate of the split specimens is 8.8%~23.3%, and the strength loss rate of the steam curing specimens is relatively low.

参考文献:

[1].梁先桂. 再生骨料混凝土应用技术研究[J]. 建材与装饰, 2019(12): 55-56.

[2].王稷良. 机制砂特性对混凝土性能的影响及机理研究[D]. 武汉理工大学, 2008.

[3].李波, 周海龙, 吕振国,等. 高强机制砂混凝土工作性及力学性能的试验研究[J]. 硅酸盐通报, 2020, 39(06): 1765-1771+1797.

[4].覃维祖, 曹峰. 一种超高性能混凝土活性粉末混凝土[J]. 工业建筑, 1999, 2(4): 18-20.

[5].郝先慧, 李海艳, 李华,等. 活性粉末混凝土UHPC配合比优化试验及计算[J]. 混凝土, 2018, 3(3): 162-166.

[6].李新星, 杨才千, 周泉,等. 基于正交试验的活性粉末混凝土强度及流动性研究[J]. 硅酸盐通报, 2019, 38(4): 278-287.

[7].寇佳亮, 刘云昊, 张浩博. 活性粉末混凝土力学性能及耐久性能试验研究[J]. 建筑结构, 2018, 48(2): 52-59.

[8].Zemei Wu, Kamal Henri Khayat, Caijun Shi. How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC[J]. Cement and Concrete Composites, 2018, 90: 193-201.

[9].鞠彦忠, 王德弘, 李秋晨, 等. 钢纤维掺量对活性粉末混凝土力学性能的影响[J]. 实验力学, 2011, 26(3): 28-34.

[10].马恺泽. 钢纤维掺量对活性粉末混凝土力学性能影响分析[J]. 混凝土, 2016, (3): 76-83.

[11].丁明冬, 杜红秀. 混杂纤维对活性粉末混凝土高温后力学性能的影响[J]. 科学技术与工程, 2018, 18(2): 345-349.

[12].柯开展. 纤维增强活性粉末混凝土基本力学性能及应用研究[D]. 福州: 福州大学, 2006.

[13].薛刚, 张夏. 钢纤维掺量对活性粉末混凝土基本力学性能的影响[J]. 硅酸盐通报, 2018, 37(3): 191-195.

[14].向真, 王德弘, 师人杰, 等. 玄武岩纤维活性粉末混凝土耐久性试验研究[J]. 混凝土与水泥制品, 2019, (7): 47-50.

[15].徐力斌. 玄武岩聚丙烯混杂纤维活性粉末混凝土力学性能试验研究[D]. 吉林: 东北电力大学, 2018.

[16].何峰, 黄政宇. 200-300MPa活性粉末混凝土UHPC的配制技术研究[J]. 混凝土与水泥制品, 2000, 31(4): 3-7.

[17].刘娟红, 王栋民. 养护对矿物细粉活性粉末混凝土性能的影响[J]. 武汉理工大学学报, 2009, 31(7): 106-109.

[18].郭鹏, 程永刚. 高温养护对活性粉末混凝土力学性能的影响研究[J]. 混凝土与水泥制品, 2014, 21(2): 6-9.

[19].孙小威. 自密实活性粉末混凝土的配制及养护工艺研究[D]. 北京: 北京交通大学, 2012.

[20].林剑, 吴岳峻, 高帅, 等. 养护温度对活性粉末混凝土孔结构的影响研究[J]. 硅酸盐通报, 2019, 38(8): 265-270.

[21].张学建, 葛林才, 张云龙, 等. 养护方式对玄武岩活性粉末混凝土力学性能影响的试验研究[J]. 吉林建筑大学学报, 2019, 36(2): 52-58.

[22].侯剑桥, 崔崇, 何兵, 等. 长期水热条件下活性粉末混凝土的微膨胀机理[J]. 硅酸盐学报, 2018, 46(8): 112-119.

[23].Chen Tiefeng, Gao Xiaojian, Ren Miao. Effects of autoclave curing and fly ash on mechanical properties of ultra-high performance concrete[J]. Construction and Building Materials, 2018, 158: 864-872.

[24].Alkaysi Mo, Eltawil Sherif, Liu Zhichao, et al. Effects of silica powder and cement type on durability of ultra high performance concrete(UHPC)[J]. ElsevierLtd, 2016, 66: 47-56.

[25].纪玉岩. 海洋环境下活性粉末混凝土耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

[26].薛霖. 活性粉末混凝土的制备工艺与耐久性研究[D]. 杭州: 浙江科技学院, 2019.

[27].贾汝达, 付士健. 冻融氯盐耦合作用下活性粉末混凝土耐久性试验研究[J]. 新型建筑材料, 2019, 46(3): 29-31,35.

[28].叶青, 朱劲松, 马成畅, 等. 活性粉末混凝土的耐久性研究[J]. 新型建筑材料, 2006, (6): 37-40.

[29].Layachi Berredjem, Nourredine Arabi, Laurent Molez. Mechanical and durability properties of concrete based on recycled coarse and fine aggregates produced from demolished concrete[J]. Construction and Building Materials, 2020, 246.

[30].Vo Duy-Hai, Yehualaw Mitiku Damtie, Hwang Chao-Lung, et al. Mechanical and durability properties of recycled aggregate concrete produced from recycled and natural aggregate blended based on the Densified Mixture Design Algorithm method[J]. Journal of Building Engineering, 2021, 35.

[31].S S Hassan. Effects of recycled concrete aggregate on some mechanical properties of high strength concrete[J]. IOP Conference Series: Materials Science and Engineering, 2018, 433(1).

[32].杜婷. 高性能再生混凝土微观结构及性能试验研究[D]. 华中科技大学, 2006.

[33].潘威, 张韶华, 甘春燕. 再生粗骨料对C80高强混凝土性能的影响[J]. 公路, 2019, 64(12): 255-259.

[34].赵明亮, 黄赟, 费洗非, 等. 石屑对混凝土工作性及强度的影响试验研究[J]. 混凝土与水泥制品, 2019(07): 4-8.

[35].任静. 石屑对混凝土性能影响的研究[D]. 哈尔滨工业大学, 2009.

[36].孙明良. 石屑对混凝土性能影响研究[D]. 西安建筑科技大学, 2019.

[37].华卫兵. 石屑混凝土耐久性研究[J].现代交通技术, 2005(05): 8-10.

[38].R. Yu, P. Spiesz, H. J. H. Brouwers. Development of an eco-friendly Ultra-High Performance Concrete(UHPC) with efficient cement and mineral admixtures uses[J]. Elsevier Ltd, 2015, 55: 383-394.

[39].Zhang Hongru, Ji Tao, Zeng Xuepeng, et al. Mechanical behavior of ultra-high performance concrete(UHPC) using recycled fine aggregate cured under different conditions and the mechanism based on integrated microstructural[J]. Construction and Building Materials, 2018, 192: 489-507.

[40].Yu Lanzhen, Huang Lili, Ding Hui. Rheological and Mechanical Properties of Ultra-High-Performance Concrete Containing Fine Recycled Concrete Aggregates[J]. materials, 3717: 2-12.

[41].N. a. soliman, A. Tagnit Hamou. Partial substitution of silica fume with fine glass powder in UHPC-Filling the micro gap[J]. Construction and Building Materials, 2017, 139: 374-383.

[42].Wang Xinpeng, Yu Rui, Shui Zhonghe, et al. Mix design and characteristics evaluation of an eco-friendly Ultra-High Performance Concrete in corporating recycled coral based materials[J]. Elsevier, 2017, 165: 70-80.

[43].Zeger sierens, Miquel Joseph, Brecht Vandevyvere, et al. High quality recycled concrete aggregates in UHPC-a preliminary study[C], Lisbon, Portugal, 2018: 1-8.

[44].Soliman N. A, Tagnithamou A. Development of ultra-high-performance concrete using glass powder–Towards ecofriendly concrete[J]. ElsevierLtd, 2016, 125: 600-612.

[45].CollepardiS, CoppolaL, TroliR. Mechanical properties of modified reactive powder concrete[J]. Journal of Optoelectronics and Advanced Materials, 1997(1): 141-144.

[46].倪博文, 王晶, 王祖琦, 等. 纤维对海砂超高性能混凝土性能的影响[J]. 新型建筑材料, 2018, 45(10): 5-7+11.

[47].马赛, 水中和, 余睿, 等. 铅锌尾矿基生态型超高性能混凝土的设计理念和性能研究[J]. 硅酸盐通报, 2018, 37(12): 3727-3731.

[48].Li, P. P., Yu, Q. L., Chung, C. P., et al. Mix design and performance evaluation of ultra-high performance concrete(UHPC) with basalt aggregate. In V.Bilek,Z.Kersner,&Simonova(Eds.), 6th International Conference on Non-Traditional Cement and Concrete, June 19–22,2 017(pp.202-209).

[49].彭术, 陈浩, 水中和, 等. 废弃混凝土再生粉制备超高性能混凝土基体的性能研究[J]. 硅酸盐通报, 2019, 38(07): 2125-2130.

[50].赖建中, 孙伟. 生态型UHPC材料的力学性能及微观机理研究[J]. 新型建筑材料, 2009, 36(12): 20-23.

[51].杨春梅, 赖建中, 徐升. 用固体废弃物制备生态型活性粉末混凝土研究[J]. 武汉理工大学学报, 2012, 34(02): 9-12.

[52].刘刚, 姚少巍, 封孝信, 等. 利用铁尾矿制备活性粉末混凝土的研究[J]. 新世纪水泥导报, 2016, 22(5): 21-26.

[53].李北星, 陈梦义, 王威, 等. 梯级粉磨制备铁尾矿-矿渣基胶凝材料[J]. 建筑材料学报, 2014, 17(2): 24-29.

[54].石东升, 薛欣欣, 李科. 粒化高炉矿渣代砂活性粉末混凝土配合比及力学性能试验[J]. 混凝土, 2019, (9): 141-144.

[55].石秋君. 碎石活性粉末混凝土抗压力学性能试验研究[D]. 北京: 北京交通大学, 2010.

[56].刘数华, 巫美强, 高志扬. 废弃玻璃粉在活性粉末混凝土中的应用研究[J]. 混凝土, 2019, (7): 134-136.

[57].胡锋, 范定强, 王雄江, 等. 生态型超高性能混凝土在简支梁桥中的应用研究[J]. 城市建筑, 2019, 16(28): 195-198.

[58].李佳彬, 肖建庄, 孙振平. 再生粗骨料特性及其对再生混凝土性能的影响[J]. 建筑材料学报, 2004(04): 390-395.

[59].何峰, 黄政宇. 原材料对UHPC强度的影响初探[J]. 湖南大学学报(自然科学版), 2001(02): 89-94.

[60].刘娟红, 宋少民. 活性粉末混凝土—配置、性能与微结构[M]. 北京: 化学工业出版社, 2013.

[61].全国水泥标准化技术委员会. 水泥胶砂流动度试验标准: GB/T2419-2005[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2005.

[62].寇佳亮, 刘云昊, 张浩博. 活性粉末混凝土力学性能及耐久性能试验研究[J]. 建筑结构, 2018, 48(2): 47-54.

[63].YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Constr Build Mater, 2009, 23(6): 2291-2298.

[64].ZANNI H, CHEYREZY M, MARRT V, et al. Investigation of hydration and pozzolanic reactive powder concrete(RPC) using 29Si NMR[J]. Cement and Concrete Research, 1996, 26(1): 93-100.

[65].杨娟. 含粗骨料超高性能混凝土的高温力学性能、爆裂及其改善措施试验研究[D]. 北京: 北京交通大学, 2017.

[66].郭鹏, 程永刚. 高温养护对活性粉末混凝土力学性能的影响研究[J]. 混凝土与水泥制品, 2014(2): 6-9.

[67].牛旭婧, 朋改非, 尚亚杰, 等. 热水-干热组合养护对超高性能混凝土力学性能的影响[J]. 硅酸盐学报, 2018, 46(8): 1141-1148.

[68].白二雷, 许金余, 高志刚, 等. EPS混凝土冲击压缩韧性研究[J]. 混凝土, 2011(11): 73-76.

[69].JTG D40-2011. 公路水泥混凝土路面设计规范[S].

[70].张士萍, 邓敏, 唐明述. 混凝土冻融循环破坏研究进展[J]. 材料科学与工程学报, 2008, 26(06): 990-994.

[71].余舟. 骨料对水工混凝土抗冻性的影响及作用机理研究[D]. 长江科学院, 2019.

中图分类号:

 TU528    

开放日期:

 2022-03-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式