- 无标题文档
查看论文信息

论文中文题名:

 基于景观格局演变的生态安全格局研究—以陕西省彬州市为例    

姓名:

 师欣雨    

学号:

 22210226089    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地理空间信息可视化    

第一导师姓名:

 娄宁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-17    

论文答辩日期:

 2025-06-07    

论文外文题名:

 Research on Ecological Security Pattern Based on Landscape Pattern Evolution: A Case Study of Binzhou City, Shaanxi Province    

论文中文关键词:

 景观格局演变 ; 土地利用 ; 生态风险评价 ; 生态安全格局 ; 彬州市    

论文外文关键词:

 Landscape pattern evolution ; Land use ; Ecological risk assessment ; Ecological security pattern ; Binzhou City    

论文中文摘要:

陕西省作为我国重要的能源开发战略区,其煤炭资源的开发与工业化进程对区域生态环境具有深远的影响。陕西省彬州市地处黄土高原腹地,既是黄河流域中游生态屏障的关键节点,也是陕西省能源密集型产业发展的核心区域之一。近年来,伴随煤炭资源的大规模开采、工业园区扩张及城镇化加速,区域景观格局发生剧烈重组,生态脆弱性与风险性显著增强。在此背景下,探究能源开发主导的景观格局演变规律,评估生态风险的空间分异特征进而构建生态安全格局,对协调区域能源开发与生态保护、实现可持续发展具有重要的理论价值和实践意义。

本研究以彬州市为研究对象,基于2000年、2005年、2010年、2015年和2020年的Landsat遥感影像,利用GEE平台,结合随机森林算法完成土地利用的高精度监督分类(总体精度>90%,Kappa系数>0.88)。在此基础上,从景观类型动态和景观格局指数两个维度,综合运用土地利用动态度、转移矩阵及景观格局指数(斑块密度PD、最大斑块指数LPI、聚集度AI等),从时空维度分析了彬州市2000-2020年景观格局的动态演化规律。结合“干扰-脆弱性-损失度模型”评估景观生态风险。并基于形态学空间分析法与最小累积阻力模型,构建区域生态安全格局并提出优化策略。研究结果表明:

(1)彬州市景观格局整体呈现“耕地持续减少、建设用地快速扩张、林地修复成效显著”的演变特征。2000-2020年,耕地面积减少9842.40hm²(比例下降8.26%),建设用地扩张2232.63hm²(增幅达340%),林地面积增加6589.89hm²(比例突破10%),草地与水域破碎化程度加剧,能源开发对自然生态空间的占压效应明显增强。耕地的最大斑块指数(LPI)下降9.10%,优势度减弱;林地与建设用地的连通性增强,聚集度指数分别增加3.84%和13.22%,景观整体破碎化程度加深。

(2)景观生态风险总体以中风险等级为主,高风险区集中分布于泾河两岸及工矿聚集区,低风险区集中于韩家镇等自然基底稳定区域;20年间生态风险呈良性发展趋势,高风险区面积减少32256.09hm²,降幅为74.50%,低、较低风险区面积分别增加65.20%和79.50%,反映退耕还林等生态修复措施成效显著;全局空间自相关分析(Moran'sI>0.3)表明风险分布具有显著集聚性,高-高聚集区集中于城关街道等人类活动密集带,景观损失度高且抗风险能力弱;低-低聚集区分布于西南部低干扰区域,土地利用类型稳定,生态韧性较强。揭示了彬州市生态风险呈现局部改善、空间异质性突出的特征。

(3)彬州市共识别出17个生态源地(总面积14703.05hm²,占比12.41%),集中分布于南部及中部林草区。基于8个阻力因子构建综合阻力面,发现阻力值呈现南低北高趋势,城镇化区域阻力较大,植被覆盖区阻力较低,并将研究区划分为五类阻力区,其中低阻力区占21.33%,高阻力区占8.29%,提取了55条生态廊道,并识别37个关键生态节点,最终提出“一核一带两屏三廊”的生态安全格局优化模式。

论文外文摘要:

As a key strategic area for energy development in China, Shaanxi Province has experienced profound ecological impacts due to coal mining and industrialization. Located in the heart of the Loess Plateau, Binzhou City serves as both a critical ecological barrier in the middle reaches of the Yellow River and a core zone for Shaanxi’s energy-intensive industrial development. In recent years, large-scale coal exploitation, industrial park expansion, and accelerated urbanization have led to significant landscape reorganization, increasing ecological vulnerability and risk. Against this backdrop, exploring the landscape pattern evolution driven by energy development and assessing the spatial differentiation of ecological risk are of great theoretical and practical significance for balancing regional energy development with ecological conservation and achieving sustainable development.

This study takes Binzhou City as the research area and employs five periods of Landsat remote sensing imagery from 2000, 2005, 2010, 2015, and 2020. Land use classification was performed using the GEE platform and the Random Forest algorithm, achieving high classification accuracy (overall accuracy > 90%, Kappa coefficient > 0.88). Based on the dynamics of landscape types and landscape pattern indices, land use change rate, transition matrix, and indices such as patch density (PD), largest patch index (LPI), and aggregation index (AI) were integrated to analyze the spatiotemporal evolution of landscape patterns from 2000 to 2020. Based on the "disturbance-vulnerability-loss model", we assessed landscape ecological risks. Furthermore, an ecological security pattern was constructed using morphological spatial pattern analysis (MSPA) and the minimum cumulative resistance (MCR) model, with optimization strategies proposed. The findings reveal that:

(1) The overall landscape pattern of Binzhou City presents the evolutionary characteristics of "continuous reduction of cultivated land, rapid expansion of construction land, and significant results of forest restoration". From 2000 to 2020, the cultivated land area decreased by 9842.40hm² (a decrease of 8.26%), the construction land expanded by 2232.63hm² (an increase of 340%), and the forest area increased by 6589.89hm² (a proportion exceeding 10%). The degree of fragmentation of grassland and water areas has intensified, and the occupation effect of energy development on natural ecological space has significantly increased. The LPI of cultivated land dropped by 9.10%, indicating reduced dominance, while forest and construction land showed improved connectivity, with aggregation indices rising by 3.84% and 13.22%, respectively, leading to increased landscape fragmentation.

(2) The ecological risk pattern was dominated by moderate-risk areas. High-risk zones were mainly located along the Jing River and in mining-concentrated areas, while low-risk zones were primarily distributed in ecologically stable regions such as Hanjia Town. Over the 20-year period, ecological risk showed an overall improving trend: high-risk areas decreased by 32,256.09 ha (a reduction of 74.50%), while low and relatively low-risk areas increased by 65.20% and 79.50%, respectively, indicating the effectiveness of ecological restoration measures such as reforestation. Global spatial autocorrelation analysis (Moran's I > 0.3) revealed significant spatial clustering. High–high clusters appeared in densely populated areas like Chengguan Subdistrict with severe landscape loss and low resilience, while low–low clusters were in stable, low-interference southwestern regions, indicating localized ecological improvement and marked spatial heterogeneity.

(3) A total of 17 ecological source areas were identified in Binzhou City, covering an area of 14,703.05 hectares and accounting for 12.41% of the total study area. These sources were primarily concentrated in the forest-grassland regions in the southern and central parts of the city. Based on eight resistance factors, a comprehensive ecological resistance surface was constructed, revealing a spatial pattern of lower resistance in the south and higher resistance in the north. Urbanized areas exhibited higher resistance values, while areas with dense vegetation cover showed lower resistance. Using the natural breaks method, the study area was divided into five resistance zones, with low- and high-resistance zones comprising 21.33% and 8.29%, respectively. Based on this, 55 ecological corridors and 37 key nodes were identified, forming an optimized pattern of “one core, one belt, two barriers, and three corridors.”

参考文献:

[1] 阳文锐. 北京城市景观格局时空变化及驱动力[J]. 生态学报, 2015, 35: 4357-4366.

[2] 张泽民, 刘博, 关潇. 黄河流域上游煤矿区土地利用类型变化及其对固碳服务的影响[J]. 环境科学研究, 2024, 37(1): 190-201.

[3] 辛亮, 苏维词. 基于景观格局的FAST宁静区生态风险时空演变分析[J]. 中国环境科学, 2023, 43(10): 5475-5487.

[4] Bai J, Sun R, Liu Y, et al. Integrating ecological and recreational functions to optimize ecological security pattern in Fuzhou City [J]. Scientific Reports, 2025, 15(1): 778.

[5] 程研, 关颖慧, 吴秀芹. 基于土地利用变化的喀斯特断陷盆地景观格局演变与生态安全评价[J]. 生态学报, 2023, 43(22): 9471-9485.

[6] 张佳宁. 内蒙古黄河流域1990-2020年景观格局变化驱动因素及生态风险评价[D]. 呼和浩特: 内蒙古大学, 2023.

[7] Asif M, Kazmi J H, Tariq A, et al. Modelling of land use and land cover changes and prediction using CA-Markov and Random Forest [J]. Geocarto International, 2023, 38(1): 2210532.

[8] Cai G, Xiong J, Wen L, et al. Predicting the ecosystem service values and constructing ecological security patterns in future changing land use patterns [J]. Ecological Indicators, 2023, 154: 110787.

[9] Mcgarigal K, Cushman S A, Neel M C, et al. Fragstats: spatial pattern analysis program for categorical maps [J]. Computer software program produced by the authors at the University of Massachusetts, Amherst Available at the following web site: www umass edu/landeco/research/fragstats/fragstats html, 2002, 6.

[10] Croissant C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana [J]. Agriculture, ecosystems & environment, 2004, 101(2): 219-232.

[11] Metzger J P, Muller E. Characterizing the complexity of landscape boundaries by remote sensing [J]. Landscape Ecology, 1996, 11: 65-77.

[12] Abdullah S A, Nakagoshi N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia [J]. Landscape and Urban planning, 2006, 77(3): 263-275.

[13] Austrheim G, Gunilla E, Olsson A, et al. Land-use impact on plant communities in semi-natural sub-alpine grasslands of Budalen, central Norway [J]. Biological Conservation, 1999, 87(3): 369-379.

[14] 肖笃宁, 赵羿, 孙中伟,等. 沈阳西郊景观格局变化的研究[J]. 应用生态学报, 1990, 1(1): 75-84.

[15] 李小玉, 肖笃宁. 石羊河流域中下游绿洲土地利用变化与水资源动态研究[J]. 水科学进展, 2005, 16(5): 643-648.

[16] 傅伯杰. 黄土高原土地利用变化的生态环境效应[J]. 科学通报, 2022, 67(32): 3768-3779.

[17] 申卫军, 邬建国, 林永标,等. 空间粒度变化对景观格局分析的影响[J]. 生态学报, 2003, (12): 2506-2519.

[18] 康萨如拉, 张庆, 牛建明,等. 景观历史对物种多样性的影响: 以内蒙古伊敏露天煤矿为例[J]. 生物多样性, 2014, 22(2): 117-128.

[19] 吴健生, 易腾云, 王晗. 2000—2030年深港景观格局演变时空分异与趋势对比分析[J]. 生态学报, 2021, 41(22): 8718-8731.

[20] 孙贤斌, 刘红玉. 土地利用变化对湿地景观连通性的影响及连通性优化效应——以江苏盐城海滨湿地为例[J]. 自然资源学报, 2010, 25(6): 892-903.

[21] 岳文泽, 徐丽华. 城市土地利用类型及格局的热环境效应研究——以上海市中心城区为例[J]. 地理科学, 2007, 27(2): 243-248.

[22] Deng G, Jiang H, Zhu S, et al. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions [J]. Science of The Total Environment, 2024, 914: 169908.

[23] Scott A J. Flexible production systems and regional development [J]. International journal of urban and regional research, 1988, 12(2): 171-186.

[24] Chilton J, Chilton K. A critique of risk modeling and risk assessment of municipal landfills based on US Environmental Protection Agency techniques [J]. Waste management & research, 1992, 10(6): 505-516.

[25] 刘达璋. 环境优先污染物的研究及其在海洋环境监测中的应用[J]. 海洋环境科学, 1992, 11(4): 84-90.

[26] 岳舜琳. 水质污染与人体健康[J]. 中国给水排水, 1992, 8(1): 55-57.

[27] Man Y B, Sun X L, Zhao Y G, et al. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city [J]. Environment international, 2010, 36(6): 570-576.

[28] Munene E N, Hashim N O, Ambusso W N. Human health risk assessment of heavy metal concentration in surface water of Sosian river, Eldoret town, Uasin-Gishu County Kenya [J]. MethodsX, 2023, 11: 102298.

[29] Washburn S T, Kleiman C F, Arsnow D E. Applying USEPA risk assessment guidance in the 90s [J]. Human and Ecological Risk Assessment: An International Journal, 1998, 4(3): 763-774.

[30] 付在毅, 许学工. 区域生态风险评价[J]. 地球科学进展, 2001, 16(2): 267-271.

[31] Davidson J, Gunn J. Effects of land cover disturbance on stream invertebrate diversity and metal concentrations in a small urban industrial watershed [J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(5): 1078-1095.

[32] Ayre K K, Landis W G. A Bayesian approach to landscape ecological risk assessment applied to the Upper Grande Ronde Watershed, Oregon [J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(5): 946-970.

[33] Beale J, Grabowski R C, Lokidor P L O, et al. Vegetation cover dynamics along two Himalayan rivers: Drivers and implications of change [J]. Science of the Total Environment, 2022, 849: 157826.

[34] Gangone M V, Whelan M J, Janoyan K D. Environmental Monitoring and Assessment [J]. Proc Spie, 1981, 111(3): 327-332.

[35] Du L, Dong C, Kang X, et al. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020 [J]. Journal of Environmental Management, 2023, 332: 117149.

[36] Feng B, Yang H, Ren Y, et al. Study on Change of Landscape Pattern Characteristics of Comprehensive Land Improvement Based on Optimal Spatial Scale [J]. Land, 2025, 14(1): 135.

[37] Fu F, Deng S, Wu D, et al. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model [J]. Sustainable Cities and Society, 2022, 80: 103760.

[38] Han G, Yingjun S, Qi W, et al. Construction of Greenspace Landscape Ecological Network Based on Resistance Analysis of GeoDetector in Jinan [J]. Stochastic Environmental Research and Risk Assessment, 2022, 37(2): 651-663.

[39] 张小飞, 王如松, 李正国,等. 城市综合生态风险评价——以淮北市城区为例[J]. 生态学报, 2011, 31(20): 6204-6214.

[40] 刘焱序, 王仰麟, 彭建,等. 基于生态适应性循环三维框架的城市景观生态风险评价[J]. 地理学报, 2015, 70(7): 1052-1067.

[41] 杨李, 董斌, 汪庆,等. 安徽升金湖国家级自然保护区水鸟生境适宜性变化[J]. 湖泊科学, 2015, 27(6): 1027-1034.

[42] 高星, 梁鑫雨, 刘蕊,等. 白洋淀流域农村居民点时空演变特征及其影响因素研究[J]. 国土资源科技管理, 2023, 40(4): 40-49.

[43] 傅丽华, 谢炳庚, 张晔,等. 长株潭城市群核心区土地利用生态风险评价[J]. 自然灾害学报, 2011, 20(2): 96-101.

[44] 刘引鸽. 陕北黄土高原降水的变化趋势分析[J]. 干旱区研究, 2007, (1): 49-55.

[45] 钟祺康, 王志一, 王娜,等. 陕北干旱区景观生态风险空间分异特征及驱动因素分析[J]. 测绘通报, 2022, (7): 100-106.

[46] 黄毅成. 基于景观生态风险评价的黄河下游影响区生态安全格局构建与优化[D]. 郑州: 河南大学, 2024.

[47] Lemenkova P. Random forest classifier algorithm of geographic resources analysis support system geographic information system for satellite image processing: case study of bight of sofala, mozambique [J]. Coasts, 2024, 4(1): 127-149.

[48] Forman R T T. Some general principles of landscape and regional ecology [J]. Landscape Ecology, 1995.

[49] A J P K, B M S, A B H. Estimating habitat isolation in landscape planning [J]. Landscape & Urban Planning, 1992, 23(1): 1-16.

[50] Mcrae B H, Dickson B G, Keitt T H, et al. Using circuit theory to model connectivity in ecology, evolution, and conservation [J]. Ecology, 2008, 89(10): 2712-2724.

[51] Li J, Hu D, Wang Y, et al. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value [J]. Sustainable Cities and Society, 2024, 107: 105442.

[52] 吴健生, 张理卿, 彭建,等. 深圳市景观生态安全格局源地综合识别[J]. 生态学报, 2013, 33(13): 4125-4133.

[53] 许文雯, 孙翔, 朱晓东,等. 基于生态网络分析的南京主城区重要生态斑块识别[J]. 生态学报, 2012, 32(4): 260-268.

[54] 刘崇刚, 孙伟, 曹玉红,等. 乡村地域生态服务功能演化测度-以南京市为例[J]. 自然资源学报, 2020, 35(5): 1098-1108.

[55] 钱颖, 杨建军. 基于生态敏感性和景观格局的城市生态带规划探究[J]. 中国园林, 2014, 30(6): 107-111.

[56] Keane, Re, Agee, et al. Ecological effects of large fires on US landscapes: benefit or catastrophe? [J]. INT J WILDLAND FIRE, 2008,17(6): 696-712.

[57] 陈晰, 张玉龙, 叶琛,等. 三峡库区兰陵溪小流域土地利用格局与生态规划[J]. 长江流域资源与环境, 2010, 19(S2): 147-154.

[58] 代继平, 朱坤, 周天宇,等. 基于MSPA和MCR模型的曲靖中心城市生态网络优化研究[J]. 西北林学院学报, 2022, 37(6): 250-257.

[59] 于颖, 孟京辉, 宋增明,等. 基于MCR模型和景观连通性的县域生态网络构建[J]. 南京林业大学学报:自然科学版, 2023, 47(4): 226-234.

[60] 卫新东, 林良国, 冯小龙,等. 神木市生态安全格局构建与生态问题定量诊断[J]. 生态学报, 2023, 43(1): 82-94.

[61] Li L, Huang X, Wu D, et al. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China [J]. Applied Geography, 2023, 154: 102946.

[62] Li Y, Liu W, Feng Q, et al. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China [J]. Science of the Total Environment, 2023, 855: 158940.

[63] Mostafazadeh R, Talebi Khiavi H. Landscape change assessment and its prediction in a mountainous gradient with diverse land-uses [J]. Environment, Development and Sustainability, 2024, 26(2): 3911-3941.

[64] Li C, Wang J, Wang L, et al. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery [J]. Remote Sensing, 2013, 6(2).

[65] Qian Y, Dong Z, Yan Y, et al. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services [J]. Science of The Total Environment, 2022, 833: 155218.

[66] Qin J-Z, Dai J-P, Li S-H, et al. Construction of ecological network in Qujing city based on MSPA and MCR models [J]. Scientific Reports, 2024, 14(1): 9800.

[67] Wu A, Li J, Zhang D, et al. Dynamics Analysis of Spatial Distribution and Landscape Pattern of Wetlands in the Weihe River Basin from 1980 to 2020 [J]. Sustainability, 2025, 17(2): 544-544.

[68] Xia N, Hai W, Tang M, et al. Spatiotemporal evolution law and driving mechanism of production–living–ecological space from 2000 to 2020 in Xinjiang, China [J]. Ecological Indicators, 2023, 154: 110807.

[69] Xiong Y, Mo S, Wu H, et al. Influence of human activities and climate change on wetland landscape pattern—A review [J]. Science of the Total Environment, 2023, 879: 163112.

[70] Yang L, Zhang F, Qin L. Construction and stability evaluation of ecological networks in the Loess Plateau [J]. Ecological Indicators, 2024, 159: 111697.

[71] Yan J, Li J, Yao X, et al. Ecological security pattern construction based on landscape ecological risk assessment in the Yellow River basin [J]. Frontiers in Environmental Science, 2025, 13: 1514599.

[72] Statistics L B, Breiman L. Random Forests [J]. Machine Learning, 2001: 5-32.

[73] Yang Y, Yuan X, An J, et al. Drivers of ecosystem services and their trade-offs and synergies in different land use policy zones of Shaanxi Province, China [J]. Journal of Cleaner Production, 2024, 452: 142077.

[74] Su F, He S, Zhou X, et al. Assessing impacts of land use/land cover patterns to shallow groundwater nitrate pollution in an agricultural-dominant area in northwest China using random forest [J]. Environmental Earth Sciences, 2024, 83(20): 584-584.

[75] Yonghua Z, Long Y, Yong W, et al. Landscape pattern change and its correlation with influencing factors in semiarid areas, northwestern China [J]. Chemosphere, 2022, 307: 135837.

[76] Yu C, Zhou Z, Gao J, et al. Multi-scale comparison of the formation mechanisms in landscape genes of traditional villages [J]. Scientific Reports, 2025, 15(1): 1-16.

[77] Yu D, Fang C. Urban remote sensing with spatial big data: A review and renewed perspective of urban studies in recent decades [J]. Remote Sensing, 2023, 15(5): 1307.

[78] Zeng W, He Z, Bai W, et al. Identification of ecological security patterns of alpine wetland grasslands based on landscape ecological risks: A study in Zoigê County [J]. Science of the Total Environment, 2024, 928: 172302.

[79] Zhang M, Liu P, Liu K, et al. Multiscale Sensitivity Analysis of Landscape Fragmentation in Plantation Forests on the Loess Plateau [J]. Land Degradation & Development, 2025.

[80] Zhou X, Chu Z, Ji X. Changes in the land-use landscape pattern and ecological network of Xuzhou planning area [J]. Scientific Reports, 2024, 14(1): 8854.

[81] 李绥, 高鹏, 石铁矛,等. 矿业城市生态风险参数化调控规划框架——基于生态风险与景观格局关联机制[J]. 城市规划, 2024, 48(9): 31-44.

[82] 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154.

[83] 刘伟, 王涵玉, 李欢欣,等. 不同空间尺度下南京都市圈区域生态用地景观格局演变分析[J]. 西部林业科学, 2024, 53(1): 178-187.

[84] 杨珺, 李豪, 马青,等. 汾河流域土地利用景观格局演变及其驱动因素探究[J]. 西北农林科技大学学报(自然科学版), 2024, 52(6): 83-94.

[85] 邬建国. 景观生态学——概念与理论[J]. 生态学杂志, 2000, (1): 42-52.

[86] 马晶, 吴贵迪, 陈钱,等. 2000—2030年基于"过程-格局"的铜川市景观生态风险评价及模拟预测[J]. 测绘科学, 2023, 48(12): 201-216.

[87] 周玄德, 邓祖涛, 窦文章,等. 三江源国家公园近30年土地利用变化生态风险时空特征[J]. 测绘科学, 2024, 49(4): 208-220.

[88] 邹珮雯, 徐昉. 生态安全格局构建及景观生态风险预测——以赛罕乌拉国家级自然保护区为例[J]. 生态学报, 2023, 43(23): 9981-9993.

[89] 田硕娟, 张文君, 缪骏懿,等. 平朔矿区景观生态风险时空演变特征分析[J]. 化工矿物与加工, 2023, 52(5): 66-73.

[90] 乔斌, 颜玉倩, 张婷华,等. 基于土地利用变化的西宁市景观生态风险识别及优化策略[J]. 生态学杂志, 2023, 42(8): 2020-2031.

[91] 杜华栋, 刘云龙, 毕银丽,等. 1995—2021年榆神府矿区景观生态风险时空异质性研究[J]. 煤炭科学技术, 2024, 52(6): 270-279.

[92] 徐乙文, 戴文远, 黄万里,等. 福州中心城区生态服务价值与景观生态风险时空变化及相[1] 阳文锐. 北京城市景观格局时空变化及驱动力[J]. 生态学报, 2015, 35: 4357-4366.

[2] 张泽民, 刘博, 关潇. 黄河流域上游煤矿区土地利用类型变化及其对固碳服务的影响[J]. 环境科学研究, 2024, 37(1): 190-201.

[3] 辛亮, 苏维词. 基于景观格局的FAST宁静区生态风险时空演变分析[J]. 中国环境科学, 2023, 43(10): 5475-5487.

[4] Bai J, Sun R, Liu Y, et al. Integrating ecological and recreational functions to optimize ecological security pattern in Fuzhou City [J]. Scientific Reports, 2025, 15(1): 778.

[5] 程研, 关颖慧, 吴秀芹. 基于土地利用变化的喀斯特断陷盆地景观格局演变与生态安全评价[J]. 生态学报, 2023, 43(22): 9471-9485.

[6] 张佳宁. 内蒙古黄河流域1990-2020年景观格局变化驱动因素及生态风险评价[D]. 呼和浩特: 内蒙古大学, 2023.

[7] Asif M, Kazmi J H, Tariq A, et al. Modelling of land use and land cover changes and prediction using CA-Markov and Random Forest [J]. Geocarto International, 2023, 38(1): 2210532.

[8] Cai G, Xiong J, Wen L, et al. Predicting the ecosystem service values and constructing ecological security patterns in future changing land use patterns [J]. Ecological Indicators, 2023, 154: 110787.

[9] Mcgarigal K, Cushman S A, Neel M C, et al. Fragstats: spatial pattern analysis program for categorical maps [J]. Computer software program produced by the authors at the University of Massachusetts, Amherst Available at the following web site: www umass edu/landeco/research/fragstats/fragstats html, 2002, 6.

[10] Croissant C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana [J]. Agriculture, ecosystems & environment, 2004, 101(2): 219-232.

[11] Metzger J P, Muller E. Characterizing the complexity of landscape boundaries by remote sensing [J]. Landscape Ecology, 1996, 11: 65-77.

[12] Abdullah S A, Nakagoshi N. Changes in landscape spatial pattern in the highly developing state of Selangor, peninsular Malaysia [J]. Landscape and Urban planning, 2006, 77(3): 263-275.

[13] Austrheim G, Gunilla E, Olsson A, et al. Land-use impact on plant communities in semi-natural sub-alpine grasslands of Budalen, central Norway [J]. Biological Conservation, 1999, 87(3): 369-379.

[14] 肖笃宁, 赵羿, 孙中伟,等. 沈阳西郊景观格局变化的研究[J]. 应用生态学报, 1990, 1(1): 75-84.

[15] 李小玉, 肖笃宁. 石羊河流域中下游绿洲土地利用变化与水资源动态研究[J]. 水科学进展, 2005, 16(5): 643-648.

[16] 傅伯杰. 黄土高原土地利用变化的生态环境效应[J]. 科学通报, 2022, 67(32): 3768-3779.

[17] 申卫军, 邬建国, 林永标,等. 空间粒度变化对景观格局分析的影响[J]. 生态学报, 2003, (12): 2506-2519.

[18] 康萨如拉, 张庆, 牛建明,等. 景观历史对物种多样性的影响: 以内蒙古伊敏露天煤矿为例[J]. 生物多样性, 2014, 22(2): 117-128.

[19] 吴健生, 易腾云, 王晗. 2000—2030年深港景观格局演变时空分异与趋势对比分析[J]. 生态学报, 2021, 41(22): 8718-8731.

[20] 孙贤斌, 刘红玉. 土地利用变化对湿地景观连通性的影响及连通性优化效应——以江苏盐城海滨湿地为例[J]. 自然资源学报, 2010, 25(6): 892-903.

[21] 岳文泽, 徐丽华. 城市土地利用类型及格局的热环境效应研究——以上海市中心城区为例[J]. 地理科学, 2007, 27(2): 243-248.

[22] Deng G, Jiang H, Zhu S, et al. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions [J]. Science of The Total Environment, 2024, 914: 169908.

[23] Scott A J. Flexible production systems and regional development [J]. International journal of urban and regional research, 1988, 12(2): 171-186.

[24] Chilton J, Chilton K. A critique of risk modeling and risk assessment of municipal landfills based on US Environmental Protection Agency techniques [J]. Waste management & research, 1992, 10(6): 505-516.

[25] 刘达璋. 环境优先污染物的研究及其在海洋环境监测中的应用[J]. 海洋环境科学, 1992, 11(4): 84-90.

[26] 岳舜琳. 水质污染与人体健康[J]. 中国给水排水, 1992, 8(1): 55-57.

[27] Man Y B, Sun X L, Zhao Y G, et al. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city [J]. Environment international, 2010, 36(6): 570-576.

[28] Munene E N, Hashim N O, Ambusso W N. Human health risk assessment of heavy metal concentration in surface water of Sosian river, Eldoret town, Uasin-Gishu County Kenya [J]. MethodsX, 2023, 11: 102298.

[29] Washburn S T, Kleiman C F, Arsnow D E. Applying USEPA risk assessment guidance in the 90s [J]. Human and Ecological Risk Assessment: An International Journal, 1998, 4(3): 763-774.

[30] 付在毅, 许学工. 区域生态风险评价[J]. 地球科学进展, 2001, 16(2): 267-271.

[31] Davidson J, Gunn J. Effects of land cover disturbance on stream invertebrate diversity and metal concentrations in a small urban industrial watershed [J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(5): 1078-1095.

[32] Ayre K K, Landis W G. A Bayesian approach to landscape ecological risk assessment applied to the Upper Grande Ronde Watershed, Oregon [J]. Human and Ecological Risk Assessment: An International Journal, 2012, 18(5): 946-970.

[33] Beale J, Grabowski R C, Lokidor P L O, et al. Vegetation cover dynamics along two Himalayan rivers: Drivers and implications of change [J]. Science of the Total Environment, 2022, 849: 157826.

[34] Gangone M V, Whelan M J, Janoyan K D. Environmental Monitoring and Assessment [J]. Proc Spie, 1981, 111(3): 327-332.

[35] Du L, Dong C, Kang X, et al. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River Basin, 2015–2020 [J]. Journal of Environmental Management, 2023, 332: 117149.

[36] Feng B, Yang H, Ren Y, et al. Study on Change of Landscape Pattern Characteristics of Comprehensive Land Improvement Based on Optimal Spatial Scale [J]. Land, 2025, 14(1): 135.

[37] Fu F, Deng S, Wu D, et al. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model [J]. Sustainable Cities and Society, 2022, 80: 103760.

[38] Han G, Yingjun S, Qi W, et al. Construction of Greenspace Landscape Ecological Network Based on Resistance Analysis of GeoDetector in Jinan [J]. Stochastic Environmental Research and Risk Assessment, 2022, 37(2): 651-663.

[39] 张小飞, 王如松, 李正国,等. 城市综合生态风险评价——以淮北市城区为例[J]. 生态学报, 2011, 31(20): 6204-6214.

[40] 刘焱序, 王仰麟, 彭建,等. 基于生态适应性循环三维框架的城市景观生态风险评价[J]. 地理学报, 2015, 70(7): 1052-1067.

[41] 杨李, 董斌, 汪庆,等. 安徽升金湖国家级自然保护区水鸟生境适宜性变化[J]. 湖泊科学, 2015, 27(6): 1027-1034.

[42] 高星, 梁鑫雨, 刘蕊,等. 白洋淀流域农村居民点时空演变特征及其影响因素研究[J]. 国土资源科技管理, 2023, 40(4): 40-49.

[43] 傅丽华, 谢炳庚, 张晔,等. 长株潭城市群核心区土地利用生态风险评价[J]. 自然灾害学报, 2011, 20(2): 96-101.

[44] 刘引鸽. 陕北黄土高原降水的变化趋势分析[J]. 干旱区研究, 2007, (1): 49-55.

[45] 钟祺康, 王志一, 王娜,等. 陕北干旱区景观生态风险空间分异特征及驱动因素分析[J]. 测绘通报, 2022, (7): 100-106.

[46] 黄毅成. 基于景观生态风险评价的黄河下游影响区生态安全格局构建与优化[D]. 郑州: 河南大学, 2024.

[47] Lemenkova P. Random forest classifier algorithm of geographic resources analysis support system geographic information system for satellite image processing: case study of bight of sofala, mozambique [J]. Coasts, 2024, 4(1): 127-149.

[48] Forman R T T. Some general principles of landscape and regional ecology [J]. Landscape Ecology, 1995.

[49] A J P K, B M S, A B H. Estimating habitat isolation in landscape planning [J]. Landscape & Urban Planning, 1992, 23(1): 1-16.

[50] Mcrae B H, Dickson B G, Keitt T H, et al. Using circuit theory to model connectivity in ecology, evolution, and conservation [J]. Ecology, 2008, 89(10): 2712-2724.

[51] Li J, Hu D, Wang Y, et al. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value [J]. Sustainable Cities and Society, 2024, 107: 105442.

[52] 吴健生, 张理卿, 彭建,等. 深圳市景观生态安全格局源地综合识别[J]. 生态学报, 2013, 33(13): 4125-4133.

[53] 许文雯, 孙翔, 朱晓东,等. 基于生态网络分析的南京主城区重要生态斑块识别[J]. 生态学报, 2012, 32(4): 260-268.

[54] 刘崇刚, 孙伟, 曹玉红,等. 乡村地域生态服务功能演化测度-以南京市为例[J]. 自然资源学报, 2020, 35(5): 1098-1108.

[55] 钱颖, 杨建军. 基于生态敏感性和景观格局的城市生态带规划探究[J]. 中国园林, 2014, 30(6): 107-111.

[56] Keane, Re, Agee, et al. Ecological effects of large fires on US landscapes: benefit or catastrophe? [J]. INT J WILDLAND FIRE, 2008,17(6): 696-712.

[57] 陈晰, 张玉龙, 叶琛,等. 三峡库区兰陵溪小流域土地利用格局与生态规划[J]. 长江流域资源与环境, 2010, 19(S2): 147-154.

[58] 代继平, 朱坤, 周天宇,等. 基于MSPA和MCR模型的曲靖中心城市生态网络优化研究[J]. 西北林学院学报, 2022, 37(6): 250-257.

[59] 于颖, 孟京辉, 宋增明,等. 基于MCR模型和景观连通性的县域生态网络构建[J]. 南京林业大学学报:自然科学版, 2023, 47(4): 226-234.

[60] 卫新东, 林良国, 冯小龙,等. 神木市生态安全格局构建与生态问题定量诊断[J]. 生态学报, 2023, 43(1): 82-94.

[61] Li L, Huang X, Wu D, et al. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China [J]. Applied Geography, 2023, 154: 102946.

[62] Li Y, Liu W, Feng Q, et al. The role of land use change in affecting ecosystem services and the ecological security pattern of the Hexi Regions, Northwest China [J]. Science of the Total Environment, 2023, 855: 158940.

[63] Mostafazadeh R, Talebi Khiavi H. Landscape change assessment and its prediction in a mountainous gradient with diverse land-uses [J]. Environment, Development and Sustainability, 2024, 26(2): 3911-3941.

[64] Li C, Wang J, Wang L, et al. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery [J]. Remote Sensing, 2013, 6(2).

[65] Qian Y, Dong Z, Yan Y, et al. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services [J]. Science of The Total Environment, 2022, 833: 155218.

[66] Qin J-Z, Dai J-P, Li S-H, et al. Construction of ecological network in Qujing city based on MSPA and MCR models [J]. Scientific Reports, 2024, 14(1): 9800.

[67] Wu A, Li J, Zhang D, et al. Dynamics Analysis of Spatial Distribution and Landscape Pattern of Wetlands in the Weihe River Basin from 1980 to 2020 [J]. Sustainability, 2025, 17(2): 544-544.

[68] Xia N, Hai W, Tang M, et al. Spatiotemporal evolution law and driving mechanism of production–living–ecological space from 2000 to 2020 in Xinjiang, China [J]. Ecological Indicators, 2023, 154: 110807.

[69] Xiong Y, Mo S, Wu H, et al. Influence of human activities and climate change on wetland landscape pattern—A review [J]. Science of the Total Environment, 2023, 879: 163112.

[70] Yang L, Zhang F, Qin L. Construction and stability evaluation of ecological networks in the Loess Plateau [J]. Ecological Indicators, 2024, 159: 111697.

[71] Yan J, Li J, Yao X, et al. Ecological security pattern construction based on landscape ecological risk assessment in the Yellow River basin [J]. Frontiers in Environmental Science, 2025, 13: 1514599.

[72] Statistics L B, Breiman L. Random Forests [J]. Machine Learning, 2001: 5-32.

[73] Yang Y, Yuan X, An J, et al. Drivers of ecosystem services and their trade-offs and synergies in different land use policy zones of Shaanxi Province, China [J]. Journal of Cleaner Production, 2024, 452: 142077.

[74] Su F, He S, Zhou X, et al. Assessing impacts of land use/land cover patterns to shallow groundwater nitrate pollution in an agricultural-dominant area in northwest China using random forest [J]. Environmental Earth Sciences, 2024, 83(20): 584-584.

[75] Yonghua Z, Long Y, Yong W, et al. Landscape pattern change and its correlation with influencing factors in semiarid areas, northwestern China [J]. Chemosphere, 2022, 307: 135837.

[76] Yu C, Zhou Z, Gao J, et al. Multi-scale comparison of the formation mechanisms in landscape genes of traditional villages [J]. Scientific Reports, 2025, 15(1): 1-16.

[77] Yu D, Fang C. Urban remote sensing with spatial big data: A review and renewed perspective of urban studies in recent decades [J]. Remote Sensing, 2023, 15(5): 1307.

[78] Zeng W, He Z, Bai W, et al. Identification of ecological security patterns of alpine wetland grasslands based on landscape ecological risks: A study in Zoigê County [J]. Science of the Total Environment, 2024, 928: 172302.

[79] Zhang M, Liu P, Liu K, et al. Multiscale Sensitivity Analysis of Landscape Fragmentation in Plantation Forests on the Loess Plateau [J]. Land Degradation & Development, 2025.

[80] Zhou X, Chu Z, Ji X. Changes in the land-use landscape pattern and ecological network of Xuzhou planning area [J]. Scientific Reports, 2024, 14(1): 8854.

[81] 李绥, 高鹏, 石铁矛,等. 矿业城市生态风险参数化调控规划框架——基于生态风险与景观格局关联机制[J]. 城市规划, 2024, 48(9): 31-44.

[82] 李思荣, 苏同向. 基于保护政策影响的抚仙湖流域景观格局变化及生态系统服务价值响应[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 145-154.

[83] 刘伟, 王涵玉, 李欢欣,等. 不同空间尺度下南京都市圈区域生态用地景观格局演变分析[J]. 西部林业科学, 2024, 53(1): 178-187.

[84] 杨珺, 李豪, 马青,等. 汾河流域土地利用景观格局演变及其驱动因素探究[J]. 西北农林科技大学学报(自然科学版), 2024, 52(6): 83-94.

[85] 邬建国. 景观生态学——概念与理论[J]. 生态学杂志, 2000, (1): 42-52.

[86] 马晶, 吴贵迪, 陈钱,等. 2000—2030年基于"过程-格局"的铜川市景观生态风险评价及模拟预测[J]. 测绘科学, 2023, 48(12): 201-216.

[87] 周玄德, 邓祖涛, 窦文章,等. 三江源国家公园近30年土地利用变化生态风险时空特征[J]. 测绘科学, 2024, 49(4): 208-220.

[88] 邹珮雯, 徐昉. 生态安全格局构建及景观生态风险预测——以赛罕乌拉国家级自然保护区为例[J]. 生态学报, 2023, 43(23): 9981-9993.

[89] 田硕娟, 张文君, 缪骏懿,等. 平朔矿区景观生态风险时空演变特征分析[J]. 化工矿物与加工, 2023, 52(5): 66-73.

[90] 乔斌, 颜玉倩, 张婷华,等. 基于土地利用变化的西宁市景观生态风险识别及优化策略[J]. 生态学杂志, 2023, 42(8): 2020-2031.

[91] 杜华栋, 刘云龙, 毕银丽,等. 1995—2021年榆神府矿区景观生态风险时空异质性研究[J]. 煤炭科学技术, 2024, 52(6): 270-279.

[92] 徐乙文, 戴文远, 黄万里,等. 福州中心城区生态服务价值与景观生态风险时空变化及相关性分析[J]. 生态科学, 2021, 40(4): 92-101.

[93] 乔斌, 曹晓云, 孙玮婕,等. 基于生态系统服务价值和景观生态风险的生态分区识别与优化策略——以祁连山国家公园青海片区为例[J]. 生态学报, 2023, 43(3): 986-1004.

[94] 王雪彦. 河南省黄河流域景观格局变化与景观生态风险评价[D]. 郑州: 华北水利水电大学, 2023.

[95] 杨帅琦, 何文, 王金叶,等. 基于MCR模型的漓江流域生态安全格局构建[J]. 中国环境科学, 2023, 43(4): 1824-1833.

[96] 吴松泽. 基于生态-社会功能的城市绿地质量及优化配置研究[D]. 长春: 吉林大学, 2024.

关性分析[J]. 生态科学, 2021, 40(4): 92-101.

[93] 乔斌, 曹晓云, 孙玮婕,等. 基于生态系统服务价值和景观生态风险的生态分区识别与优化策略——以祁连山国家公园青海片区为例[J]. 生态学报, 2023, 43(3): 986-1004.

[94] 王雪彦. 河南省黄河流域景观格局变化与景观生态风险评价[D]. 郑州: 华北水利水电大学, 2023.

[95] 杨帅琦, 何文, 王金叶,等. 基于MCR模型的漓江流域生态安全格局构建[J]. 中国环境科学, 2023, 43(4): 1824-1833.

[96] 吴松泽. 基于生态-社会功能的城市绿地质量及优化配置研究[D]. 长春: 吉林大学, 2024.

中图分类号:

 P208.2    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式