论文中文题名: | 应用于复杂环境下的移动机器人SLAM算法研究 |
姓名: | |
学号: | 18207205055 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人工智能 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-03-02 |
论文答辩日期: | 2021-12-05 |
论文外文题名: | Research on SLAM Algorithm of Mobile Robot Applied in Complex Environment |
论文中文关键词: | |
论文外文关键词: | Mobile Robot ; SLAM ; Particle filter ; Brain Storm Optimization ; Plant Cell Swarm Algorithm |
论文中文摘要: |
随着人工智能技术的高速发展,机器人被广泛地应用到工业生产、日常生活、环境探测等多个领域。同步定位与地图创建(SLAM)是机器人实现自主移动的基础,然而在复杂环境中,移动机器人携带的传感器会因外界干扰导致测量精度变差,从而降低了机器人定位建图精度。因此本文对复杂环境下如何提升机器人定位建图精度进行了研究,该研究对加速机器人在实际环境下应用具有重要意义,本文研究内容如下: (1)对移动机器人SLAM问题进行了描述,介绍了激光SLAM的相关研究方案,详细阐述了基于粒子滤波的SLAM算法原理及框架,并分析了由于粒子滤波算法的局限性导致机器人定位建图精度下降的原因。 (2)针对重采样导致粒子多样性丧失从而降低机器人定位建图精度的问题,提出基于头脑风暴算法优化粒子滤波的SLAM算法(BSO-SLAM)。根据粒子权值大小差异完成K-means聚类操作,并将聚类后的集合进行交叉变异处理,用头脑风暴算法替代粒子滤波的重采样,从而缓解粒子的贫化现象,增加粒子的多样性,使SLAM算法定位精度得到提升。仿真结果表明,相对于GA-FastSLAM2.0算法,BSO-SLAM算法提升了定位建图精度,算法定位精度误差均值降低了24%。 (3)针对BSO-SLAM算法时间复杂度较高的问题,提出基于植物胞群算法的优化SLAM算法(PCSA-SLAM),通过植物胞群算法调整粒子滤波重要性采样后的粒子分布,使粒子集中分布在高似然区域,并省略了重采样过程,从而解决粒子权值退化以及粒子多样性丧失的问题,实现算法滤波精度的提升。仿真结果表明,相对于GFA-FastSLAM2.0算法,PCSA-SLAM算法提高了建图定位精度,算法定位精度误差均值降低了26%,路标预测误差降低了45%。 (4)搭建机器人实验平台,将PCSA-SLAM算法应用到移动机器人定位建图任务中。实验结果表明,在不同环境下,PCSA-SLAM算法可以有效地表示出实际地形的轮廓,以及环境中的障碍物信息,其构建的地图精度更高,鲁棒性更强。 |
论文外文摘要: |
With the rapid development of artificial intelligence technology, robots have been widely used in industrial production, daily life, environmental detection and other fields. Simultaneous localization and mapping (SLAM) is the basis of autonomous mobility of robots. However, in complex environments, sensors carried by mobile robots will degrade the measurement accuracy due to external interference, thus reducing the accuracy of localization and mapping of robots. Therefore, this paper studies how to improve the accuracy of robot positioning and mapping in a complex environment, which is of great significance to accelerate the application of robot in the actual environment. The content of this paper is as follows: (1) This paper describes the problem of mobile robot SLAM, introduces the related research schemes of laser SLAM, elaborates the principle and framework of SLAM algorithm based on particle filtering, and analyzes the reason why the accuracy of robot localization mapping is decreased due to the limitation of particle filtering algorithm. (2) In order to reduce the accuracy of robot localization mapping due to the loss of particle diversity caused by resampling, brain storm optimization improved particle filtering SLAM (BSO-SLAM) algorithm was proposed. K-means clustering operation is completed according to the difference of particle weight, and cross-mutation processing is carried out for the set after clustering. The resampling of particle filter is replaced by brain storm optimization, so as to alleviate the dilution of particles, increase the diversity of particles, and improve the localization accuracy of SLAM algorithm. The simulation results show that compared with GA-FastSLAM2.0 algorithm, BSO-SLAM algorithm improves the accuracy of location mapping, and the average positioning accuracy error of the algorithm is reduced by 24%. (3) For the problem of high time complexity of BSO-SLAM algorithm, the optimized SLAM algorithm based on plant cell swarm algorithm (PCSA-SLAM) is proposed. Plant cell swarm algorithm was used to adjust the particle distribution after the importance sampling of particle filter, so that the particle distribution was concentrated in the high likelihood region, and the resampling process was eliminated. Thus, the degradation of particle weight and the loss of particle diversity can be solved, and the filtering accuracy can be improved. The simulation results show that, compared with the GFA-FastSLAM2.0 algorithm, the PCSA-SLAM algorithm improves the mapping accuracy, the average positioning accuracy error of the algorithm is reduced by 26%, and the road sign prediction error is reduced by 45%. (4) A robot experimental platform was built, and PCSA-SLAM algorithm was applied to the localization mapping task of mobile robot. The experimental results show that under different environments, the PCSA-SLAM algorithm can effectively represent the contour of the actual terrain and the obstacle information in the environment, and the map constructed by it has higher accuracy and stronger robustness. |
参考文献: |
1] 王伟嘉,郑雅婷,林国政等. 集群机器人研究综述[J].机器人,2020,42(02):232-256. [2] 管清华,孙健,刘彦菊等. 气动软体机器人发展现状与趋势[J].中国科学:技术科学,2020,50(07):897-934. [3] 谢嘉,桑成松,王世明等. 智能跟随移动机器人的研究与应用前景综述[J].制造业自动化,2020,42(10):49-55. [4] 陆昱方. 综述智能机器人的发展与组成[J].通讯世界,2019,26(01):305-306. [5] 陶永,王田苗,刘辉等. 智能机器人研究现状及发展趋势的思考与建议[J].高技术通讯,2019,29(02):149-163. [6] 杨超,危怀安. 中外机器人技术路线图文本评价比较研究[J].科学学与科学技术管理,2017,38(04):24-34. [7] 万勇,黄健. 国内外推动机器人发展的战略举措[J].新材料产业,2016(07):21-26. [8] 施云燕. 欧洲机器人技术研发的创新战略初探[J].技术与创新管理,2016,37(05):473-476. [9] 罗连发,谭俊. 国际机器人产业政策的主要经验及其对我国的启示[J].武汉科技大学学报(社会科学版),2020,22(05):558-571. [10] 郗厚印,张栋,周涛等. 采摘机器人识别抓取重叠番茄果实的方法研究[J].农机化研究,2021,43(12):17-23+50. [15] 赵挽东. 复杂场景下机器人SLAM算法研究[D].哈尔滨工程大学,2019. [20] 魏博文,吕文红,范晓静等. AUV导航技术发展现状与展望[J].水下无人系统学报,2019,27(01):1-9. [21] 张明,马骁晨,李建龙. 自主水下航行器自噪声控制及实验验证[J].舰船科学技术,2020,42(23):146-149. [22] 秦洪德,孙延超. AUV关键技术与发展趋势[J].舰船科学技术,2020,42(23):25-28. [23] 潘祥生,陈晓晶. 矿用智能巡检机器人关键技术研究[J].工矿自动化,2020,46(10):43-48. [24] 孙阳君,赵宁. 基于数字孪生的多自动导引小车系统集中式调度[J].计算机集成制造系统,2021,27(02):569-584. [30] 吕太之,周武,赵春霞. 一种改进的UKF-SLAM算法[J].中北大学学报(自然科学版),2018,39(06):717-725+751. [31] 郭文县,高晨曦,张智等. 基于特征稀疏策略的室内机器人SLAM研究[J].计算机工程与应用,2017,53(16):110-115. [32] 孙海波,童紫原,唐守锋等. 基于卡尔曼滤波与粒子滤波的SLAM研究综述[J].软件导刊,2018,17(12):1-3+7. [33] 吴正越,张超,林岩. 基于RBPF的激光SLAM算法优化设计[J].计算机工程,2020,46(07):294-299. [39] 陈世明,刘俊恺,肖娟. 基于引力场优化的Unscented FastSLAM2.0算法[J].控制理论与应用,2018,35(08):1186-1193. [40] 崔昊杨,张宇,周坤等. 基于仿生算法改进粒子滤波的SLAM算法精度预测[J].控制与决策,2021,36(01):166-172. [44] 王科平,朱朋飞,费树岷等. 基于自适应平滑尺度粒子滤波的目标快速跟踪[J].信息与控制,2020,49(05):536-545. [45] 林诗洁,董晨,陈明志等. 新型群智能优化算法综述[J].计算机工程与应用,2018,54(12):1-9. [46] 鲁华祥,尹世远,龚国良等. 基于深度确定性策略梯度的粒子群算法[J].电子科技大学学报,2021,50(02):199-206. [48] 杜先君,刘洲. 遗传优化粒子滤波在动态谐波检测中的应用[J].电力系统及其自动化学报,2019,31(08):108-114. [51] 朱震曙,蒋长辉,薄煜明等. 磷虾群优化的改进粒子滤波算法[J].哈尔滨工业大学学报,2020,52(02):186-192. [53] 梁志刚,顾军华,董永峰. 基于头脑风暴优化算法的多机器人气味源定位[J].计算机应用,2017,37(12):3614-3619. [54] 梁晓萍,郭振军,朱昌洪. 基于头脑风暴优化算法的BP神经网络模糊图像复原[J].电子与信息学报,2019,41(12):2980-2986. [55] 陈永胜. 基于K-Means聚类与灰色关联分析的城市交通状况分析[J].山东交通学院学报,2020,28(04):38-45. [56] 吴亚丽,付玉龙,王鑫睿等. 目标空间聚类的差分头脑风暴优化算法[J].控制理论与应用,2017,34(12):1583-1593. [57] 刘懿. 应用于运动视频目标跟踪的改进粒子滤波模型技术研究[J].现代电子技术,2019,42(03):65-67+72. [58] 周武,赵春霞. 一种基于遗传算法的FastSLAM2.0算法[J].机器人,2009,31(01):25-32. [59] 罗招贤,虞文鹏. 一种新的群智能算法:植物胞群算法[J].科学技术与工程,2019,19(04):166-172. [60] 陈世明,肖娟,李海英等. 基于引力场的粒子滤波算法[J].控制与决策,2017,32(04):709-714. |
中图分类号: | TP301.6 |
开放日期: | 2022-03-03 |