- 无标题文档
查看论文信息

论文中文题名:

 电动汽车锂离子电池液体热管理系统升温-散热控制研究    

姓名:

 黄静    

学号:

 20205224057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 电池管理系统研究    

第一导师姓名:

 张传伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research on Heating-Heat Dissipation Control of Liquid Thermal Management System for Lithium-ion Battery of Electric Vehicle    

论文中文关键词:

 电动汽车 ; 锂离子电池 ; 电池热管理系统 ; 升温-散热    

论文外文关键词:

 Electric vehicle ; Lithium-ion battery ; Battery thermal management system ; Heating-heat dissipation.    

论文中文摘要:

锂离子电池是电动汽车的主要储能装置,目前电池的能量利用率较低、安全性能差等缺点仍然制约着电动汽车的发展和使用。锂离子电池本身在充放电过程中会释放大量的热量,可能会产生自燃甚至爆炸的现象,严重威胁着电池和电动汽车的安全性,而且在低温环境下电池的性能也会降低。针对以上问题,本文以磷酸铁锂(LiFePO4)电池为研究对象,开展以下研究:

首先,用不同温度的去离子水作为电池液体热管理升温和降温功能的主要介质,完成装载流通液体的结构设计、排布。对电池液体热管理装置进行建模,建立结构模型和计算流体力学(Computational Fluid Dynamics,CFD)仿真模型。

其次,分别对锂离子电池进行升温仿真和散热仿真。在升温仿真中运用温升速率(Rate of Temperature Rise,RTR)进行参数定量分析;在散热仿真中,采用对流换热系数h和努塞尔数Nu对参数进行定量分析。研究不同管径、流速及液体温度对锂离子电池升温、散热的影响,确定最优参数。

然后,采用主从式控制系统框架结构,设计电池液体热管理的控制系统。开发控制电路和控制算法,实现锂离子电池液体热管理系统中数据的采集、传输、显示以及调节液体温度及输送的功能。

最后,搭建自动控制的电池液体热管理系统实验台,分别进行锂离子电池升温和散热的热管理实验。实验结果表明,所设计的电池液体热管理系统可以有效地缩短电池预升温和预散热的时间;同时,锂离子电池不同放电倍率放电时,在该电池液体热管理系统介入下,可以实现锂离子电池的恒温放电。

论文外文摘要:

Lithium-ion batteries are the main energy storage device for electric vehicles. At present, the shortcomings of battery such as low energy utilization rate and poor safety performance still restrict the development and use of electric vehicles. Lithium-ion batteries release a lot of heat during charging and discharging, which may result in spontaneous combustion or even explosion, which seriously threatens the safety of batteries and electric vehicles. In addition, the performance of batteries will be reduced at low temperatures. This paper takes lithium iron phosphate (LiFePO4) battery as the research object, and carries out the following research:

Firstly, deionized water at different temperatures is used as the main medium for the heating and cooling functions of the battery liquid thermal management, and the structural design and arrangement of the loading and circulation liquid are completed. The Computational Fluid Dynamics (CFD) simulation model and the structural model are established.

Secondly, the temperature simulation and heat dissipation simulation of lithium-ion battery are respectively carried out. The Rate of Temperature Rise (RTR) is used to analyze the parameters quantitatively. In the heat dissipation simulation, the convective heat transfer coefficient h and Nusselt number Nu are used to analyze the parameters quantitatively. The influence of different pipe diameters, flow rates and liquid temperatures on temperature rise and heat dissipation of lithium-ion batteries is studied to determine the optimal parameters.

Then, the master-slave control system framework is used to design the control system of battery liquid thermal management. The control circuit and control algorithm are developed to realize the functions of data acquisition, transmission, display, adjustment of liquid temperature and transmission in the liquid thermal management system of lithium ion battery.

Finally, an automatic battery liquid thermal management system test platform was built to carry out the thermal management experiments of temperature rise and heat dissipation of lithium ion batteries.. The experimental results show that the designed liquid thermal management system can effectively shorten the pre-heating and pre-cooling time of the battery. At the same time, the constant temperature discharge of lithium-ion battery can be realized with the intervention of the battery liquid thermal management system when discharging at different discharge rates.

参考文献:

[1]闫晓虹. 中国碳达峰、碳中和研究报告发[N]. 中国新闻网, 2021-03-19(005).

[2]Zhao G, Wang X, Negnevitsky M, et al. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. Journal of Power Sources, 2021, 501: 230001.

[3]王连香. 2022年我国汽车销量超2686万辆新能源汽车销量同比增长93.4%[N]. 中国经济网, 2023-01-12.

[4]李洪言, 赵朔, 林傲丹. 2019年全球能源供需分析——基于《BP世界能源统计年鉴(2020)》[J]. 天然气与石油, 2020, 38(06): 122-30.

[5]Widmaier M, Jäckel N, Zeiger M, et al. Influence of carbon distribution on the electrochemical performance and stability of lithium titanate based energy storage devices[J]. Electrochimica Acta, 2017, 247: 1006-1018.

[6]Hannan M A, Lipu M S H, Hussain A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854.

[7]Shim J, Kostecki R, Richardson T, et al. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of power sources, 2002, 112(1): 222-230.

[8]陈尚瑞. 动力电池热管理系统研究[D]. 西安: 西安科技大学, 2020.

[9]Pesaran A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of power sources, 2002, 110(2): 377-382.

[10]Wang M, Wang Y, Chen L, et al. Carbon emission of energy consumption of the electric vehicle development scenario[J]. Environmental Science and Pollution Research, 2021, 28: 42401-42413.

[11]何春丽. 新能源汽车市场需求与政策导向研究[D]. 成都: 西南财经大学, 2020.

[12]中国汽车工程学会[M]. 北京: 机械工业出版社, 2021.

[13]胡广, 廖承林, 张文杰. 车用锂离子电池热失控研究综述[J]. 电工电能新技术, 2021, 40(2): 66-80.

[14]Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process safety and environmental protection, 2011, 89(6): 434-442.

[15]Smith J, Hinterberger M, Hable P, et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules[J]. Journal of Power Sources, 2014, 267: 784-792.

[16]Rao Z, Wang S. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571.

[17]Stuart T A, Hande A. HEV battery heating using AC currents[J]. Journal of Power Sources, 2004, 129(2): 368-378.

[18]Pesaran A, Santhanagopalan S, Kim G H. Addressing the impact of temperature extremes on large format li-ion batteries for vehicle applications (presentation)[R]. National Renewable Energy Lab.(NREL), Golden, CO (United States), 2013.

[19]Wu W, Wang S, Wu W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy conversion and management, 2019, 182: 262-281.

[20]Xiaoming X, Wei T, Jiaqi F, et al. The forced air cooling heat dissipation performance of different battery pack bottom duct[J]. International Journal of Energy Research, 2018, 42(12): 3823-3836.

[21]胡顺涛, 李源, 李一飞. 基于封闭流空气冷却的锂离子电池热特性研究[J]. 电源技术, 2022, 46(09): 996-999.

[22]吴宇康. 层叠式锂离子电池空气冷却实验研究及优化[D]. 天津: 天津大学, 2018.

[23]Sabbah R, Kizilel R, Selman J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of power sources, 2008, 182(2): 630-638.

[24]张江云. 锂电池热管理中空气冷却效果的实验与模拟[J]. 汽车安全与节能学报, 2011, 2(2): 181-184.

[25]Swanepoel G. Thermal management of hybrid electrical vehicles using heat pipes[D]. Stellenbosch: Stellenbosch University, 2001.

[26]Burban G, Ayel V, Alexandre A, et al. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications[J]. Applied thermal engineering, 2013, 50(1): 94-103.

[27]Kim E, Shin K G, Lee J. Real-time battery thermal management for electric vehicles[C]//2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). IEEE, 2014: 72-83.

[28]Li Y, Chen Y, Jiang Q, et al. Performance assessment and optimization of seepage control system: a numerical case study for Kala underground powerhouse[J]. Computers and Geotechnics, 2014, 55: 306-315.

[29]Rao Z, Huo Y, Liu X. Experimental study of an OHP-cooled thermal management system for electric vehicle power battery[J]. Experimental Thermal and Fluid Science, 2014, 57: 20-26.

[30]郑兴莽. 基于热管的锂离子动力电池散热特性研究[D]. 武汉: 武汉理工大学, 2020: 42-53.

[31]梁家林. 锂离子电池电化学—热特性与采用超薄热管的热管理系统[D]. 广东: 华南理工大学, 2020: 108-110.

[32]Al-Hallaj S, Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of power sources, 2002, 110(2): 341-348.

[33]林裕旺. 基于复合相变材料的电池包热管理研究[J]. 电源技术研究与设计, 2021, 45(7): 881-940.

[34]朱波. 基于相变材料的纯电动汽车电池热管理研究[J]. 电源技术研究与设计, 2021, 44(11): 1666-1670.

[35]张宝平. 基于相变材料的锂离子电池热管理[J]. 佳木斯大学学报, 2020, 38(4): 99-105.

[36]Kizilel R, Sabbah R, Selman J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112.

[37]Liang J, Gan Y, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures[J]. Energy conversion and management, 2018, 155: 1-9.

[38]Xie J, Ge Z, Zang M, et al. Structural optimization of lithium-ion battery pack with forced air cooling system[J]. Applied Thermal Engineering, 2017, 126: 583-593.

[39]Matthieu C, Gilles F. Study of a Thermoelectric Air-cooling and Air-heating System[J]. An Experimental and Numerical International Journal of Refrigeration, 2008, 31: 1051-1062.

[40]Yan J, Wang Q, Li K, et al. Numerical study on the thermal performance of a composite board in battery thermal management system[J]. Applied Thermal Engineering, 2016, 106: 131-140.

[41]王宇. 半导体制冷及其在动力电池热管理中的性能研究[D]. 广州: 广东工业大学, 2015.

[42]胡国喜. 动力电池热管理中半导体制冷技术的应用探析[J]. 电子测试, 2020, 09: 129-130.

[43]卢高庆. 基于半导体制冷技术的动力电池箱热管理应用研究[J]. 电子世界, 2014, 186-188.

[44]姚薇. 基于直冷及相变材料散热的电池组热管理系统研究[D]. 浙江: 浙江大学, 2022.

[45]Wang Q, Jiang B, Li B, et al. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 106-128.

[46]Zhu D, Mathews J, Taenaka B, et al. Method and system for a vehicle battery temperature control: U.S. Patent 7, 154, 068[P]. 2006-12-26.

[47]Chen K, Li X. Accurate determination of battery discharge characteristics–A comparison between two battery temperature control methods[J]. Journal of Power Sources, 2014, 247: 961-966.

[48]肖军. 新能源汽车低温电池热管理方法研究[J].汽车文摘, 2020, (10): 34-40.

[49]Wang C Y, Zhang G, Ge S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.

[50]Guo S, Xiong R, Wang K, et al. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application[J]. Applied Energy, 2018, 219: 256-263.

[51]Shang Y, Zhu C, Lu G, et al. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations[J]. Journal of Power Sources, 2020, 450: 227435.

[52]Ruan H, Jiang J, Sun B, et al. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction[J]. Applied Energy, 2019, 256: 113797.

[53]Wang C Y, Zhang G, Ge S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.

[54]Ji Y, Wang C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674.

[55]Du J, Chen Z, Li F. Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures[J]. IEEE Access, 2018, 6: 44036-44049.

[56]Hande A, Stuart T A. AC heating for EV/HEV batteries[C]//Power Electronics in Transportation, 2002. IEEE, 2002: 119-124.

[57]马堡钊. 锂离子电池交流内部加热装置研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

[58]Wu S, Xiong R, Li H, et al. The state of the art on preheating lithium-ion batteries in cold weather[J]. Journal of Energy Storage, 2020, 27: 101059.

[59]陆春. 电动汽车动力电池包低温热管理系统研究[D]. 北京: 北京理工大学, 2011. 12.

[60]苏志高. 一种锂离子动力电池加热装置[P]. 2010-05-19.

[61]郎春艳. 低温环境下锂离子电池组热管理系统研究[D]. 广东: 华南理工大学, 2016.

[62]Matthe R, Turner L, Mettlach H. VOLTEC battery system for electric vehicle with extended range[J]. SAE International Journal of Engines, 2011, 4(1): 1944-1962.

[63]Kelty K R, Kohn S I, Hermann W A, et al. Method of controlling system temperature to extend battery pack life: U.S. Patent 8,899,492[P]. 2014-12-2.

[64]Wilmington Trust Company, Delaware. Electric vehicle thermal management system and method: U.S. Patent 8,658,299[P]. 2011-3-3.

[65]Zhou S, Zhao Y, Gao S. Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery[J]. Energies, 2021, 14(19): 6196.

[66]唐佳, 张袁元, 王玉国. 一种液体介质的汽车电池热管理结构设计与分析[J]. 机电工程技术, 2019, 7.

[67]朱建功, 孙泽昌, 魏学哲. 车用锂离子电池低温特性与加热方法研究进展[J]. 汽车工程, 2019, 41(05): 571-581.

[68]江丰, 阎明瀚, 闫仕伟, 刘华俊, 徐宇虹, 江吉兵. 电池系统热管理控制策略与能耗评估研究[J]. 汽车实用技术, 2021, 46(15): 9-13+17.

[69]张蕾, 杨洋, 马菁, 李静. 液冷动力电池系统热管理控制策略优化探究[J]. 电源学报, 2022, 1(1): 1-11.

[70]李峰. 插电式混合动力汽车热管理系统开发及其控制算法研究[D]. 长春: 吉林大学, 2016.

[71]林涛, 刘泉源, 杨光, 韩凤琴. 动力电池热管理电路及温控效果的研究[J]. 电源技术, 2019, 43(05): 849-852.

[72]焦阳. 纯电动汽车动力电池热管理控制系统开发[D]. 河南: 河南科技大学, 2020.

[73]Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of power sources, 2001, 99(1-2): 70-77.

[74]江超. 纯电动汽车用动力电池组热特性研究[D], 合肥: 合肥工业大学, 2015.

[75]Duan J, Zhao J, Li X, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies, 2021, 14(14): 4187.

[76]热敏电阻. https://baike.so.com/doc/2816189-2972319.html.

[77]热电偶. https://baike.so.com/doc/2725511-2877048.html.

[78]霍尔电流传感器. https://baike.so.com/doc/2774808-2928816.html.

中图分类号:

 U469.72    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式