论文中文题名: |
Ir-Ta氧化物涂层钛阳极制备工艺优化及组织性能研究
|
姓名: |
张锦园
|
学号: |
21211025003
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0805
|
学科名称: |
工学 - 材料科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料科学与工程
|
研究方向: |
电子材料与器件
|
第一导师姓名: |
刘二勇
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-05
|
论文外文题名: |
Fabrication microstructure and properties of Ir-Ta oxide coated titanium anode
|
论文中文关键词: |
钛阳极 ; 贵金属氧化物涂层 ; 制备工艺 ; 微观组织 ; 电化学性能
|
论文外文关键词: |
Titanium anode ; Noble metal oxide coating ; Preparation process ; Microstructure ; Electrochemical properties
|
论文中文摘要: |
︿
IrO2-Ta2O5氧化物涂层钛阳极具有良好的电催化活性与电化学稳定性,被公认为酸性析氧环境中理想的阳极材料,但其低寿命、高成本制约了在电镀、废水处理、阴极保护与有机电合成等领域的广泛应用。论文分析了电解铜箔用涂层钛阳极的失效机制,探究了材料组分、制备工艺及中间层对涂层钛阳极微观组织和电催化活性的影响,为阳极的工业化应用提供理论基础和依据。主要研究内容及结论如下:
(1)失效钛阳极的的宏观组织较为均为,微观上失效程度不同,涂层表面形成的阳极泥主要成分为Pb及其化合物。失效钛阳极的催化活性小于新的钛阳极,其原因在于涂层钛阳极中活性成分IrO2含量减少,导致涂层与溶液之间阻抗增大;钛基体发生钝化形成不导电的TiO2,导致涂层内表面与基体之间物理阻抗增大。此外,新钛阳极电解铜箔表面较为平整,光面及毛面粗糙度均小于失效钛阳极电解铜箔,其力学性能(抗拉强度、延伸率)优于后者。
(2)烧结温度升高,涂层钛阳极表面更为平整、龟裂纹较小、晶化程度更高,意味着其阻抗降低和催化活性的提高;随着Ir含量的升高,涂层钛阳极的的Rct值减小,寿命成线性逐渐增加。
(3)添加蚀刻和TiO2中间层后,涂层钛阳极中IrO2和Ta2O5的晶面结晶度发生转变。同时,中间层的加入虽造成了涂层钛阳极的循环伏安曲线面积的减小和阻抗的增大,但更加粗糙的表面基体与涂层之间的结合力,延缓了服役过程中涂层钛阳极的脱落,延长了其使用寿命。
﹀
|
论文外文摘要: |
︿
Titanium anodes coated with IrO2-Ta2O5 oxide have good electrocatalytic activity and electrochemical stability, which are considered ideal anode materials in an acid-oxygen evolution environment. In this paper, the failure mechanism of coated titanium anode for copper foil electrolysis is analyzed, and the material composition, preparation process, and mesostructure of the anode are discussed. The main research content and conclusions are as follows:
(1) Through the analysis of the oxide-coated titanium anode used for the failure electrolytic copper foil, it is found that the macrostructure of the failed titanium anode is relatively uniform, and the failure degree is different in microcosmic. The main components of anode slime on the coating surface are Pb and its compounds, while the crystalline grains with poor crystallinity are easy to fall off and dissolve. Compared with the newly coated titanium anode, the area of the cyclic voltammetry curve of the failure-coated titanium anode is smaller than that of the new-coated titanium anode. In addition, the surface of electrolytic copper foil with the new titanium anode is smooth. The roughness of the smooth surface and the rough surface are less than that of the failed titanium anode electrolytic copper foil. Its mechanical properties (tensile strength, elongation) are better than the latter.
(2) With the increase of sintering temperature, the surface of coated titanium anode is more smooth, the cracks are smaller and the degree of crystallization is higher, which means that the impedance is lower and the catalytic activity is higher; with the increase of Ir content, the Rct value of coated titanium anode decreases, and the accelerated failure life is linearly and gradually increased.
(3) With the addition of etching and TiO2 interlayer, the crystallinity transformation of IrO2 and Ta2O5 is obvious. At the same time, the adhesion between the coating and the substrate on the coarser surface of the coated Ti anode was delayed, and the service life was prolonged.
﹀
|
参考文献: |
︿
[1] 王哲, 王纪涛, 张永青. 电弧炉用石墨电极的成本测算方法 [J]. 铸造工程, 2023, 47(1): 78-80. [2] 崔怡然, 秦琦, 皇甫娟娟,等. 石墨电极的电化学改性及其电学性能 [J]. 当代化工, 2021, 50(5): 1056-1059. [3] 张麟. 电催化产次氯酸钠用钛基阳极材料的研究 [D]. 北京化工大学, 2022. [4] 刘思思, 周骏, 李虹. 采用电位滴定法测定合金钢中高含量钼的研究 [J]. 热力透平,2024,53(01),11-14. [5] 高光飞. 钛基PbO2电极改性及对盐酸多西环素的电化学降解研究 [D]. 齐鲁工业大学, 2023. [6] 申哲民. 电催化氧化法处理有机废水及提高其能效的研究 [D]; 中国科学院生态环境研究中心, 2002. [7] 陈悦, 谭小平, 方国赵, 等. 二次电池电极材料电化学基础与调控 [J]. 中国有色金属学报, 2021, 31(11): 3232-3253. [8] 张倩倩, 王三反, 赵小云. 多元钌系涂层钛阳极处理有机废水研究进展 [J]. 应用化工, 2020, 49(3): 705-708. [9] 广州有色金属研究院. 电化学氧化法降解海洋油田废水COD多元涂层钛阳极在工程中的应用 [Z]. 2003 [10] 沈承金, 欧雪梅, 赵宇龙. RuO2、IrO2和Ta2O5多元氧化物涂层阳极的研究 [J]. 腐蚀科学与防护技术, 2006, 18(4): 252-254. [11] 宋建梅, 童效平, 陈康宁. 高氧超电极在电解法生产氯酸盐中的应用 [J]. 氯碱工业, 2000, (6): 3-6. [12] 路雨禾, 王伟, 路殿坤,等. 电解沉积用尺寸稳定型钛阳极的研究现状 [J]. 有色金属(冶炼部分), 2020, (11): 18-24. [13] Kumar D, Gupta S K. Electrochemical oxidation of direct blue 86 dye using MMO coated Ti anode: modelling, kinetics and degradation pathway [J]. Chemical Engineering and Processing-Process Intensification, 2022, 181:109127. [14] Li X Y, Cheng S, Xu R, et al. Structure–Activity Relationships of TiO2 nanoflower-coated Porous Ti Anodes in Electro-catazone process [J]. Chemical Engineering Journal Advances, 2022, 11:100347. [15] Xu W T, Haarberg G M, Seland F, et al. The durability of the thermally decomposed IrO2-Ta2O5 coated titanium anode in a sulfate solution [J]. Corrosion Science: The Journal on Environmental Degradation of Materials and its Control, 2019, 150(4): 76-90. [16] 林琳, 田林, 庄晓东, 等. 试析涂层钛阳极的研制及在电解锌中的应用 [J]. 冶金管理, 2020, (21): 23-24. [17] 徐海清, 曾繁波, 胡耀红, 等. PCB水平电镀用涂层钛阳极的可修复性研究 [J]. 电镀与涂饰, 2021, 40(01): 59-64. [18] Mo F, Zhou Q X, Hou Z L, et al. Efficient electro-catalyzed PMS activation on a Fe-ZIF-8 based BTNAs/Ti anode: An in-depth investigation on anodic catalytic behavior [J]. Environment International, 2022, 169:107548. [19] Zahedi Mohammad, Jafarzadeh Kourosh, Mirjani Masoud, et al. The effect of anodising time on the electrochemical behaviour of the Ti/TiO2/IrO2/ RuO2/Ta2O5 anode [J]. Ionics, 2018, 24(2): 451-458. [20] Bömicke W, Rammelsberg P, Spatola G, et al. The effect of titanium anodization on the bond strength of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) resin cement [J]. The International Journal of Prosthodontics, 2022. [21] P Weeranoppanant P, Palanuwech M. Effects of Ceramic Thickness and Titanium Anodization on Esthetic Outcomes of Lithium Disilicate Ceramic Over Titanium Alloys [J]. The European Journal of Prosthodontics and Restorative Dentistry, 2022,31(1):40-49. [22] Zhao J Y, Chi Z X, Dong H, et al. Degradation of desphenyl chloridazon in a novel synergetic electrocatalytic system with Ni–Sb–SnO2/Ti anode and PEDOT/PSS-CNTs modified air diffusion cathode [J]. Journal of Cleaner Production, 2021, 300:126961. [23] 于晓艳, 李婧, 杨晓霜, 等. 钛阳极涂层对污泥电渗透脱水的影响及脱水工艺参数的优化 [J]. 江西化工, 2022, 38(03): 107-112. [24] Wang Y Y, Pierce R, Shi H H, et al. Electrochemical degradation of perfluoroalkyl acids by titanium suboxide anodes [J]. Environmental Science: Water Research & Technology, 2020, 6(1):144-152. [25] 于宇, 李嘉琪. 国内外钛合金在海洋工程中的应用现状与展望 [J]. 材料开发与应用, 2018, 33(03): 111-116. [26] Ding Z H, Fan Q, Wang L Q. A Review on Friction Stir Processing of Titanium Alloy: Characterization, Method, Microstructure, Properties [J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2019, 50(5): 2134-2162. [27] 唐长斌, 王飞, 牛浩, 等. 引入电弧喷涂氮化锆中间层的钛基PbO2的电催化阳极性能 [J]. 材料研究学报, 2020, 34(7): 527-534. [28] Yu Yang, Jin Huachang, Li Qian, et al. Pseudocapacitive Ti/RuO2-IrO2-RhOxelectrodes with high bipolar stability for phenol degradation [J]. Separation and Purification Technology, 2021, 263. [29] 陈伽瑶. TiO2担载钌基催化剂电催化水分解制氢研究 [D]; 重庆工商大学, 2023. [30] Zhang L C, Chen L Y, Wang L Q. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests [J]. Advanced Engineering Materials, 2020, 22(5). [31] 周腾腾, 徐成飞, 王俊, 等. 高级氧化技术在废水处理中的研究进展 [J]. 山东化工, 2021, 50(06): 263-264+267. [32] Morita M, Iwakura C, Tamura H. The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate [J]. Electrochimica Acta, 1977, 22(4):325-328. [33] 林琳, 庄晓东, 田林, 等. 钛阳极金属氧化物涂层的性能对比研究 [J]. 云南冶金, 2022, 51(03): 131-138. [34] Ma Xiaoping, Zhou Yu, Cao Liyang, et al. Enhancing the electrochemical activity of an IrOx-Ta2O5/Ti anode via radiofrequency-driven rapid plasma annealing [J]. Surface & Coatings Technology, 2020, 396:125961. [35] 陈影, 温青, 徐海清,等. 烧结时间对IrO2-Ta2O5/Ti电极寿命及电化学性能的影响 [J]. 电镀与涂饰, 2023, 42(10): 29-34. [36] 叶张军. IrO2-Ta2O5/Ti析氧阳极制备工艺改进及性能 [D];浙江工业大学, 2009. [37] Xu L K, Xin Y L, Wang J T. A comparative study on IrO2-Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochimica Acta, 2009, 54(6): 1820-1825. [38] Hosseini M G, Hosseini M M, Ahadzade I. The use of silica in IrO2-based DSA type electrode: An efficient approach to construct cost-effective, potent electrodes for oxygen evolution reaction [J]. Materials Chemistry and Physics, 2022, 285:126086. [39] 彭浩然, 魏宗平, 王欣, 等. 钌锡氧化物复合涂层的制备与相结构特点 [J]. 金属热处理, 2010, 35(8): 18-21. [40] Cao Chenchen, Xu Xiaoxun, Wang Guiyin, et al. Characterization of ionic liquids removing heavy metals from electroplating sludge: Influencing factors, optimisation strategies and reaction mechanisms [J]. Chemosphere, 2023, 324: 138309. [41] 张惠灵, 胡春华, 徐亮, 等. 钛基二氧化铅电极的制备及其对甲基橙的降解 [J]. 环境科学与技术, 2007, (09): 28-30+38+116-117. [42] Herrada Rosa Alheli, Acosta-Santoyo Gustavo, Sepulveda-Guzman Selene, et al. IrO2-Ta2O5 vertical bar Ti electrodes prepared by electrodeposition from different Ir:Ta ratios for the degradation of polycyclic aromatic hydrocarbons [J]. Electrochimica Acta, 2018, 263: 353-361. [43] 陶自春, 潘建跃, 罗启富. 铂中间层的制备及对铱钽涂层钛阳极性能的影响 [J]. 材料科学与工程学报, 2004, 22(2): 240-244. [44] 潘建跃, 孙凤梅, 罗启富. 钛阳极磁控溅射钽的工艺研究 [J]. 材料保护, 2004, 37(10): 26-28. [45] 黄庆兰, 潘春昊, 俞小花, et al. 三元涂层Ag-Ru-Mn/Ti阳极的制备及性能研究 [J]. 现代化工, 2024, 44(01): 166-170. [46] 杨国生, 徐海清. Sb2O3掺杂对钛基IrO2-Ta2O5-Sb2O3涂层阳极性能的影响 [J]. 电镀与涂饰, 2022, 41(10): 679-682. [47] 李思平, 邓昭平. 锑掺杂二氧化钛的制备及其可见光催化性能 [J]. 电子元件与材料, 2005, (09): 33-35. [48] 张铁军, 李坚, 何洪,等. 锑掺杂对钒钛系催化剂低温脱硝活性的影响 [J]. 燃料化学学报, 2017, 45(06): 740-746. [49] 庄晓东, 田林, 林琳, 等. 含Mn涂层钛阳极的制备及性能 [J]. 有色金属工程, 2022, 12(7): 33-38. [50] 刘晓军, 刘贵昌. IrO2-MnO2中间层Ti/RuO2-TiO2-SnO2电极制备及性能 [J]. 稀有金属材料与工程, 2012, 41(01): 54-57. [51] Yan Z. W., Li G., Wang J. S., et al. Electro-catalytic study of IrO2-Ta2O5 coated anodes with pretreated titanium substrates [J]. Journal of Alloys and Compounds, 2016, 680: 60-66. [52] Zhang Y B, Ma Q Q , Feng K, et al. Effects of microstructure and electrochemical properties of Ti/IrO2-SnO2 -Ta2O5 as anodes on binder-free asymmetric supercapacitors with Ti/RuO2 –NiO as cathodes [J]. Ceramics International, 2020, 46(11): 17640–17650. [53] 闫镇威, 孟惠民, 金莹. Ti基氮化处理对IrO2-Ta2O5涂层阳极服役性能的影响 [J]. 中国有色金属学报, 2012, 22(12): 3495-3503. [54] 潘建跃, 陶自春, 罗启富, 等. 含铂钛合金中间层的铱钽涂层钛阳极的研究 [J]. 材料保护, 2003, 36(11): 46-48. [55] 杨瑞锋, 贾波, 冯庆, 等. 钛涂层阳极的失活机制及改进方法的研究进展 [J]. 材料导报, 2023, 37(52): 31-36. [56] 杨泽坤, 崔兵, 秦树林, 等. Ti/Ta2O5-IrO2阳极在酸性体系的失效机理研究 [J]. 应用化工, 2023, 52(7): 1974-1978,1982. [57] 侯妍. 电解加工钛合金表面钝化特性研究 [D];西安工业大学, 2023. [58] 孙猛猛, 王庆法, 邹吉军, 等. IrO2-SiO2涂层钛阳极的失效行为研究 [J]. 化学工业与工程, 2014, 31(05): 8-12+42. [59] 江嘉鹭, 唐电. 钛基铱系氧化物涂层的研究 [J]. 金属热处理, 2005, 30: 257-261. [60] Mirseyed Seyedeh Forough, Jafarzadeh Kourosh, Rostamian Auref, et al. A novel approach to the role of iridium and titanium oxide in deactivation mechanisms of a Ti/(36 RuO2-x IrO2-(64-x) TiO2) coating in sodium chloride solution [J]. Corrosion Science, 2022, 206:110481. [61] Ma Dongni, Ngo Vanda, Raghavan Srini, et al. Degradation of Ir-Ta oxide coated Ti anodes in sulfuric acid solutions containing fluoride [J]. Corrosion Science, 2020, 164: 108358. [62] 赵平平. 钝化膜对钛合金不同腐蚀形态的影响机制研究 [D].中国科学技术大学, 2021. [63] 郑志军, 何蕊, 陈均焕, 等. 纯钛表面超疏水性着色膜的制备及性能 [J]. 中国表面工程, 2020, 33(03): 61-70. [64] 李雪健, 姚忠平, 魏晗, 等. 纯钛TA2表面阳极氧化法制备太阳能吸收涂层 [J]. 太阳能学报, 2019, 40(07): 1812-1816. [65] 徐海清, 胡耀红, 陈力格, 等. 电解铜箔用涂层钛阳极表面结垢的去除 [J]. 电镀与涂饰, 2015, 34(04): 201-205. [66] 焦新贺, 焦衡, 徐海清, 等. 电解铜箔用涂层钛阳极的结垢物成因分析与维护方法 [J]. 电镀与涂饰, 2019, 38(01): 14-19. [67] 简志超, 彭永忠, 陈建涛,等. 一种电解铜箔用钛基氧化物涂层阳极表面结垢去除方法. [68] 付天琳, 梅长云, 陈飞帆,等. 表面纳米化对纯钛阳极氧化膜组织及特性的影响 [J]. 稀有金属材料与工程, 2022, 51(03): 835-842. [69] Dong Z C, Fei X Y, Gong B K, et al. Effects of Deep Cryogenic Treatment on the Microstructure and Properties of Rolled Cu Foil [J]. Materials, 2021, 14(19). [70] Cao Q D, Liang F, Lv J M, et al. Effects of pulse reverse electroforming parameters on the thickness uniformity of electroformed copper foil [J]. Transactions of the Institute of Metal Finishing, 2018, 96(2): 108-112. [71] 杨森. 锂电池用高性能超薄电解铜箔的研究 [D].常州大学, 2022. [72] Ma X. L, Li Y. Z, Yao E. D, et al. Microstructure and Properties of Electrolytic Copper Foil with Different Thicknesses [J]. Rare Metal Materials and Engineering, 2019, 48(9): 2905-2909. [73] 文雯, 周国云, 王翀, 等. 面向5G通信的电解铜箔表面粗化处理研究 [J]. 印制电路信息, 2021, 29(S2): 358-364. [74] Yu W Y, Lin C Y, Li Q Y, et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current [J]. Journal of Applied Electrochemistry, 2021, 51(3): 489-501. [75] 孟凡英. 锂离子电池现状及研究趋势 [J]. 科学技术创新, 2019, (05): 153-154. [76] 徐龙, 安聪, 黄国平. 基于新能源电池用高延伸率超薄铜箔工艺研发 [J]. 电子质量, 2021, (11): 114-118. [77] 徐海清, 胡耀红, 陈力格, 等. 实际工况下电解铜箔用涂层钛阳极的失效机制 [J]. 电镀与涂饰, 2015, 34(23): 1369-1373. [78] 焦新贺, 焦衡, 徐海清, 等.电解铜箔用涂层钛阳极的结垢物成因分析与维护方法 [J]. 电镀与涂饰, 2019, 38(1): 14-19. [79] Woo T G, Park I S, Seol K W. The effect of additives and current density on mechanical properties of cathode metal for secondary battery [J]. Electronic Materials Letters, 2013, 9(4): 535-539. [80] 唐益, 许立坤, 王均涛,等. Ti/IrO2-Ta2O5-SnO2纳米氧化物阳极的研究 [J]. 稀有金属材料与工程, 2010, 39(04): 687-691. [81] 杨艳蓉, 詹肇麟, 付天琳, 等. TA2纯钛阳极氧化膜的制备和电化学分析 [J]. 材料热处理学报, 2016, 37(06): 171-176.
﹀
|
中图分类号: |
TG178
|
开放日期: |
2024-06-18
|