题名: | 冻土路基冻融水热迁移与车辆动载下孔隙结构演化 |
作者: | |
学号: | 21204228128 |
保密级别: | 保密(2年后开放) |
语种: | chi |
学科代码: | 085900 |
学科: | 工学 - 土木工程 - 土木水利 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 冻土力学与寒区工程应用 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-14 |
答辩日期: | 2024-06-03 |
外文题名: | Pore evolution and hydrothermal migration mechanism of permafrost subgrade under dynamic vehicle load |
关键词: | |
外文关键词: | Permafrost embankment ; Dynamic load ; Hydrothermal migration ; Pore evolution ; Pressure melting effect |
摘要: |
寒区路基病害问题严重,部分路段平均病害率高,给寒区道路工程建设带来诸多挑战。一方面,活动层与冻土路基的水热活动频繁,是诱发病害的主要原因。另一方面,重载车辆行驶频繁的路段翻浆、路面开裂等病害更为严重,表明车辆动载改造了路基土体的孔隙结构,进而诱发路基病害的产生。因此,研究冻土路基水热迁移问题和车辆动载下冻结路基土的孔隙结构演化问题,对寒区道路工程的安全建设与稳定运营具有重要意义。 本文以路基土为研究对象,研究了路基土冻结过程中含水率与电阻变化,总结了冻结路基土在压缩过程中的电阻变化规律,并分析了孔隙冰的压融效应。开展了中尺寸模型试验,总结了冻融条件下路基土温度场与水分场的迁移规律。开展了冻融-受动载条件下冻土路基的模型试验,阐明了分凝冰形成过程及车辆动载对分凝冰、路基土的结构改造。根据CT扫描和核磁共振测试结果,归纳了车辆动载对路基土结构演化规律。基于冻结、融化状态土体受动载时电阻变化差异,分析了孔隙冰的压融效应。揭示了车辆动载对冻土路基水热迁移的影响机制。主要得到以下结论: 路基土冻结过程可分为过冷、快速冻结、缓慢冻结3个阶段,自由水与毛细水最先冻结,温度降至-2℃时水分主要以吸附水为主。0℃~-2℃区间,电阻受未冻水含量的影响较为敏感,其随温度的降低而增大。路基土压缩过程电阻均先快速降低后趋缓,仅有干燥样品在应力峰值点后出现电阻增大的现象,电阻快速降低阶段干燥样品的电阻降低率远小于饱和冻结样品,证实了路基土孔隙冰受压时存在压融效应。 (2)冻结过程中地基土温度场、水分场出现了显著迁移。上部路基夯实导致地表下0~20cm土体温度波动,并促进路基土水分下渗,加剧水分迁移。降温时,路基土72~96h温度的变化最大,水分先缓慢降低后趋快;升温时,温度迁移集中在前48h,水分则先快速增加后缓慢减少。地表位移变化分为4个阶段:缓慢增大、快速增加、快速减小和缓慢减小,其主要受路面温度与地基土变形量的影响。 (3)冻结过程中,路基土中冷生裂纹长度不断扩展、数目增多。动载施加过程中,宽度较小裂纹出现闭合,较大裂纹出现局部压密,裂纹端部的冰晶体先破碎。动载导致冻结锋面上部的土体孔隙结构压密,水平方向的孔隙结构连通性减小;导致冻结锋面下部的孔隙数量增多,竖向连通孔隙数量增多。 (4)经过3次冻融循环后,样品中毛细水与自由水的相对含量大幅增加。“高频轻载”和“低频重载/轻载”工况下,利于毛细水的赋存;“高频重载”工况下,在初始阶段利于自由水赋存。随循环次数增大,“低频重载”工况下自由水变化不显著。车辆动载作用下,下部未冻结土体水分向上大幅迁移,上部冻结土体水分向下小幅迁移。 (5)随动载的施加,冻结状态下样品电阻波动降低,电阻变化率随荷载频率的增大而增大,融化状态下样品电阻几乎不出现波动。其原因是动荷载作用下冻结路基土孔隙冰存在压融与复冰,导致电阻产生明显波动。分凝冰的形成机制为孔隙冰的产生与扩展导致土中孔隙缺陷处产生裂隙,气态水在裂隙通道处迁移、冷凝、冻结。动荷载作用下冻土路基水热迁移机制主要是冻结区孔隙冰的压融效应、温升效应和未冻结区的动力促渗效应。 |
外文摘要: |
The issue of roadbed diseases in cold regions and the high incidence rate of certain road sections pose significant challenges to the construction of road projects in such areas. On one hand, frequent hydrothermal activity within the active layer and permafrost roadbed is a primary cause of induced diseases. On the other hand, diseases like overturning and pavement cracking are more severe in heavily trafficked sections, indicating that vehicle dynamic loading alters internal pore structure and exacerbates occurrences of roadbed diseases. Therefore, studying pore structure evolution under dynamic loading from permafrost hydrothermal migration and vehicles is crucial for the safe construction and stable operation of cold region road projects. This study focuses on investigating variations in water content and electrical resistance during the freezing process of roadbed soil, with the roadbed soil as the research subject. It summarizes the patterns of electrical resistance changes in compressed frozen roadbed soil and analyzes the effects of compression and thawing on pore ice. Medium-scale model tests were conducted to summarize temperature field and moisture field migration patterns of roadbed soil under freeze-thaw conditions. A model test was performed on a frozen soil roadbed subjected to freeze-thaw and dynamic load conditions to elucidate the formation process of fractional ice and structural modifications caused by vehicle dynamic loads on both fractional ice and roadbed soil. The structural evolution law of subgrade soil under dynamic vehicle loading was summarized based on CT scanning results and NMR tests. By analyzing differences in electrical resistance changes between frozen state soils and thawed state soils under dynamic loading, we investigate the pressure-thawing effect of pore ice. Furthermore, we reveal the influence mechanism of vehicle dynamic loading on water-heat migration in frozen soil roadbeds (1) The freezing process of subsoil can be categorized into three stages: supercooling, rapid freezing, and slow freezing. Initially, free water and capillary water freeze, with the main adsorption of water occurring when the temperature drops to -2 ℃. In the temperature range between 0 ℃ and -2 ℃, electrical resistance is more sensitive to unfrozen water content and increases as the temperature decreases. During compression, the resistance of subsoil reduces rapidly at first and then slows down. Only dry samples exhibit an increase in resistance after reaching peak stress point, while the rate of resistance reduction for dry samples is significantly smaller than that observed in saturated frozen samples during rapid resistance reduction stage. This confirms a compression and melting effect on pore ice within subsoil under compression leading to an increase in unfrozen water content. (2) The temperature field and moisture field of foundation soil display significant migration during the freezing process. Compaction of upper roadbed not only induces temperature fluctuations within 0~20cm below surface but also promotes infiltration of water into roadbed soil thereby exacerbating soil moisture migration. Cooling results in maximum changes in roadbed soil temperature occurring between 72~96 hours while moisture gradually decreases before experiencing a rapid decline; warming leads to concentrated migration of temperatures within initial 48 hours along with a subsequent rapid increase followed by gradual decrease in moisture levels over time. Surface displacement changes are divided into four stages: slow increase, rapid increase, rapid decrease, and slow decrease primarily influenced by pavement temperature variations as well as deformation within foundation soil. (3) During the freezing process, the length of cold-induced cracks in the soil of the roadbed expands and the number of cracks gradually increases. Under dynamic loading, smaller cracks are closed while larger ones experience local compaction, with ice crystals at crack ends being fractured first. The dynamic load leads to compression density increase in pores above the freezing front, resulting in decreased horizontal pore connectivity; it also causes an increase in pores below the freezing front and enhances vertical pore connectivity. (4) After three freeze-thaw cycles, there is a significant increase in relative contents of capillary water and free water within samples. Capillary water content shows minimal change under 'high-frequency light load' and 'low-frequency' conditions, which facilitates capillary water retention; initial stages under 'high-frequency heavy load' exhibit minimal changes in free water content. As cycle numbers increase, changes in free water become insignificant under 'low frequency heavy load'. Significant upward migration of unfrozen soil's water occurs during vehicle-induced dynamic loading, whereas slight downward migration is observed for frozen soil's water. (5) With the application of dynamic loading, the resistance fluctuation of samples in the frozen state decreases, and the rate of resistance change increases with the frequency of loading. Conversely, there is almost no fluctuation in resistance for samples in the melted state. The significant fluctuations in resistance are attributed to pressure melting and re-freezing of pore ice within frozen subgrade soil under dynamic loading conditions. |
参考文献: |
[1]秦大河,姚檀栋,丁永建,等. 冰冻圈科学辞典(修订版)[M]. 北京:气象出版社,2016:73-75,80-81,106. [2]马巍,王大雁. 中国冻土力学研究50a回顾与展望[J].岩土工程学报,2012,34(04):625-640. [3]冯子亮,盛煜,陈继,等. 青海省共和-玉树高速公路沿线典型冻土路基保护多年冻土效果的初步分析[J]. 岩石力学与工程学报, 2016, 35(3): 638-648. [4]齐吉琳,马巍. 冻土的力学性质及研究现状[J]. 岩土力学,2010,31(1): 133-143. [5]Andersland O B,Ladanyi B. Frozen ground engineering[M]. John Wiley & Sons, 2003 [7]穆彦虎,马巍,牛富俊等.多年冻土区道路工程病害类型及特征研究[J].防灾减灾工程学报,2014,34(03):259-267. [8]薛翊国,孔凡猛,杨为民等.川藏铁路沿线主要不良地质条件与工程地质问题[J].岩石力学与工程学报, 2020,39(03): 445-468. [9]张玉芝,杜彦良,孙宝臣等.季节性冻土地区高速铁路路基冻融变形规律研究[J].岩石力学与工程学报,2014,33(12):2546-2553. [10]吴青柏,牛富俊.青藏高原多年冻土变化与工程稳定性[J].科学通报,2013,58(02):115-130. [11]牛富俊,马巍,吴青柏.青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J].地球科学与环境学报,2011,33(02):196-206. [12]赵林,丁永建,刘广岳等.青藏高原多年冻土层中地下冰储量估算及评价[J].冰川冻土, 2010,32(01):1-9. [13]盛岱超, 张升, 李希. 高速列车与路基冻胀相互作用机理[J].岩土工程学报, 2013, 35(12) : 2186-2191. [14]何平,程国栋,俞祁浩等.饱和正冻土中的水、热、力场耦合模型[J].冰川冻土, 2000, (02) : 135-138. [15]Taber S.The mechanics of frost heaving[J].The Journal of Geology,1930, 38 (4): 303-317. [19]贾海梁,项伟,谭龙等.砂岩冻融损伤机制的理论分析和试验验证[J].岩石力学与工程学报,2016,35(05):879-895. [29]李萍,徐学祖,蒲毅彬等.利用图像数字化技术分析冻结缘特征[J].冰冻土, 1999, (02): 175-180. [31]陈飞熊, 李宁, 程国栋. 饱和正冻土多孔多相介质的理论构架[J]. 岩土工程学报, 2002, 24(2): 213-217. [39]滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变:两类“锅盖效应”的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813-1821. [40]张升, 贺佐跃, 滕继东, 等. 非饱和土水汽迁移与相变:两类“锅盖效应”的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968. [41]李安原, 牛永红, 牛富俊, 等.粗颗粒土冻胀特性和防治措施研究现状[J].冰川冻土, 2015 , 37(01):202-210. [43]姚仰平, 韦彬, 陈含, 等. 锅盖效应的水汽循环规律研究[J]. 岩土力学, 2021, 42(6): 1512-1518. [44]李强, 姚仰平, 韩黎明, 等. 土体的“锅盖效应”[J].工业建筑, 2014, 44(2): 69-71. [45]张玉芝, 马巍, 赵维刚, 等. 冻融循环作用下非饱和粗颗粒填料水热汽迁移追踪及规律研究[J]. 岩石力学与工程学报, 2020, 39(1): 156-165. [46]刘建龙, 滕继东, 张升等. 气态水迁移诱发非饱和粗粒土冻胀的试验研究[J].岩土工程学报, 2021, 43(07): 1297-1305+1379-1380. [51]王家澄, 徐学祖, 张立新等. 温度和压力条件对正冻土中成冰过程和冷生组构的影响[J].冰川冻土,1995,(03):250-257. [52]万旭升, 赖远明, 张明义等. 土中未冻含水量与温度关系研究[J].铁道学报, 2018,40(01):123-129. [53]田亚护, 刘建坤, 彭丽云. 动、静荷载作用下细粒土的冻胀特性实验研究[J].岩土工程学报 ,2010,32(12):1882-1887. [54]田亚护. 动、静荷载作用下细粒土冻结时水分迁移与冻胀特性实验研究[D].北京交通大学,2008. [55]刘晓强. 重载铁路细粒土填料冻胀变形及力学性质研究[D].北京交通大学,2020. [56]明锋, 李东庆, 陈世杰. 水分迁移对冻土细观结构的影响[J].冰川冻土,2016,38(03):671-678. [59]张坤, 张泽, 史向阳等. 动荷载下土体温度和孔隙水压力的变化规律[J].深圳大学学报(理工版),2018,35(02):111-118. [60]肖东辉, 马巍, 赵淑萍等. 冻融与荷载作用下土体内部孔隙水压力、水分变化规律及其模型试验研究[J].岩石力学与工程学报,2017,36(04):977-986. [61]石峰. 动荷载条件下冻土融化固结与变形研究[D].北京交通大学,2014. [62]张莲海, 马巍, 杨成松. 冻融循环过程中土体的孔隙水压力测试研究[J].岩土力学,2015,36(07):1856-1864. [67]王海永. 冻融循环和荷载作用下粗颗粒土水分迁移机制宏细观试验研究[D].石家庄铁道大学,2020. [68]冯卓鑫.细粒含量和荷载影响下冻结粗粒土水汽迁移特征研究[D].石家庄铁道大学,2020. [69]焦贵德, 赵淑萍, 马巍. 长期循环荷载下冻土内部温度变化的试验研究[J].岩土力学,2011,32(S2):233-238. [70]张淑娟, 赖远明, 张明义等. 动荷载作用下冻土温度变化及强度损失探讨[J].冰川冻土,2006,(01):131-135. [74]杨爱武,苟乐宇,张振东.循环荷载作用下结构性软土微结构演化特性试验研究[J].岩石力学与工程学报,2017,36(01):234-242. [76]姜岩,雷华阳,郑刚等.动荷载作用下结构性软土微结构变化的分形研究[J].岩土力学,2010,31(10):3075-3080. [77]马剑飞,龚淑云,李向全等.交通荷载下软土的变形及微结构演化特征[J].深圳大学学报(理工版),2018,35(04):398-404. [78]曹洋,周建,严佳佳.考虑循环应力比和频率影响的动荷载下软土微观结构研究[J].岩土力学,2014,35(03):735-743. [79]谷天峰,王家鼎,郭乐等.基于图像处理的Q3黄土的微观结构变化研究[J].岩石力学与工程学报,2011,30(S1):3185-3192. [83]张升,高峰.动-静组合荷载作用下砂-粉土混合料水分迁移试验研究[J].中国铁路, 2019,(11):83-88. [84]张升,高峰,陈琪磊等.砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J].岩土力学,2020,41(05):1591-1598. [86]马玲,齐吉琳,余帆等.冻结砂土三轴试验中颗粒破碎研究[J].岩土工程学报, 2015, 37(03):544-550. [89]马巍,吴紫汪,常小晓等.围压作用下冻结砂土微结构变化的电镜分析[J].冰川冻土, 1995, (02):152-158. [90]沈忠言,王家澄,彭万巍等.单轴受拉时冻土结构变化及其机理初析[J].冰川冻土, 1996,(03):72-77. [92]凌贤长,徐学燕,邱明国等.冻结哈尔滨粉质粘土动三轴试验CT检测研究[J].岩石力学与工程学报,2003,(08):1244-1249. [94]交通部公路科学研究院. JTG 3430—2020 公路土工试验规程[S]. 北京:人民交通出版社, 2020. [95]李杰林,周科平,张亚民,等.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J].岩石力学与工程学报,2012,31(06):1208-1214. [99]田慧会,韦昌富.基于核磁共振技术的土体吸附水含量测试与分析[J].中国科学:技术科学,2014,44(03):295-305. [100]付伟,汪稔,胡明鉴等.不同温度下冻土单轴抗压强度与电阻率关系研究[J].岩土力学,2009,30(01):73-78. [101]胡智,艾聘博,李志超等.干湿循环-动荷载贯序耦合作用下压实粉质黏土电阻率演化规律[J].岩土力学,2021,42(10):2722-2732. [104]阴琪翔,周国庆,赵晓东等.双向冻结-单向融化土压缩性及水分迁移试验研究[J].岩土力学,2015,36(04):1021-1026+1034. [105]范文,邓龙胜,彭建兵等.地铁隧道穿越地裂缝带的物理模型试验研究[J].岩石力学与工程学报,2008,(09):1917-1923. [106]石峰,刘建坤,房建宏,等.季节性冻土地区公路路基动应力测试[J].中国公路学报,2013,26(05):15-20. |
中图分类号: | TU445 |
开放日期: | 2026-06-14 |