- 无标题文档
查看论文信息

论文中文题名:

 煤体细观尺度关键裂纹定量表征及其破坏模式研究    

姓名:

 李小菲    

学号:

 19203077030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山岩体力学    

第一导师姓名:

 丁自伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Research on quantitative characterization and failure mode of meso scale key cracks in coal    

论文中文关键词:

 煤体 ; 细观结构 ; 宏观破坏 ; 力学强度 ; 裂纹模式    

论文外文关键词:

 coal ; mesostructure ; macro destruction ; mechanical strength ; crack mode    

论文中文摘要:

~特殊的地质赋存条件造成了煤体内部结构复杂的物理变化,促进了煤体内部孔隙与裂隙等微结构缺陷的发育与扩展,同时对煤体自身的物理力学特性及其破坏类型产生直接的重要影响。目前,含孔裂隙煤体内部微结构形态、分布特征与扩展演化规律及其对煤体宏观破坏认知不够深入,导致此类煤体受细观结构变化的宏观破坏机理不清。本文采用宏细观物理力学实验、数字图像处理技术、数理统计相结合的方法从细观的角度对煤体孔裂隙结构进行了定量表征、可视化重构与统计分析,定义了导致煤体失稳破坏的大尺寸裂纹为煤体的关键裂纹,确定了关键裂纹的空间位置、几何尺寸、破坏模式及其扩展路径,为煤体细观结构变化导致的宏观力学破坏机制提供理论依据与技术支持。本文取得主要结果与研究结论如下:
(1)通过电镜扫描实验,分析了煤体细观结构与显微组分。结果表明:煤体显微组分为镜质组与惰质组,主要包括碎屑镜质体与植物胞腔孔的丝质体;煤体内部富含形态多样的变质孔,孔隙基本不连通,渗透性能弱;煤体细观形貌粗糙且存有大量缺陷。
(2)通过单轴压缩实验,分析了煤体力学强度特性与尺寸效应。结果表明:煤体单轴抗压强度范围10.79-32.71MPa,平均18.62MPa,属中硬煤体,弹性模量范围0.12-2.43GPa,平均1.37GPa,煤体标准件的归一化比例与单轴抗压强度呈负相关,与弹性模量呈正相关,即标准件尺寸越小,单轴抗压强度越大、弹性模量越小,说明煤体具有尺寸效应。
(3)对比了单轴压缩前后煤体细观结构特征与力学强度的相关性。结果表明:压缩前煤体原生孔裂隙结构与力学强度呈负相关,即细观微结构复杂程度越大,力学强度越低,压缩后煤体次生孔裂隙结构与力学强度呈正相关,即煤体力学强度越大,经受单轴加载的扰动时间越大,导致细观微结构的发育、扩展及其复杂程度越大。
(4)确定了煤体二维关键裂纹的定义、研究倍数、界定方式以及特征参数,并进行了验证,构建了考虑孔隙压密阶段的煤体孔隙率与单轴压缩应变量的数学模型。结果表明:压缩前后煤体放大500倍的电镜扫描图像平均孔隙率变化量为80%,确定这一放大倍数为煤体关键裂纹产生的研究倍数,并提取了二维关键裂纹周长范围165.84-806.46μm,面积范围224.14-535.63μm2,煤体二维关键裂纹平均面积与单轴抗压强度为拟合优度0.65的负指数相关关系,即裂纹面积越大,单轴抗压强度越低。
(5)通过CT扫描实验,构建了煤体加载至50%峰值力时的三维重构体模型,分析了煤体内部的孔隙与裂隙空间分布特征,确定了煤体关键裂纹的空间位置及其特征参数。结果表明:煤体加载至50%峰值力对应的孔隙率为4.43%,此时煤体关键裂纹三维表面积为500.51μm2,体积为5705.79μm3。
(6)通过声发射监测实验,确定了煤体加载至50%峰值力产生的关键裂纹模式,以及关键裂纹受单轴压缩发育贯通其他细观裂纹或宏观破坏的扩展路径演化规律。结果表明:煤体的宏观破坏是从关键裂纹的发育与扩展开始,并形成高能的声发射事件;煤体破坏方向为关键裂纹与宏观破坏位置的连线方向,并且宏观裂纹与关键裂纹距离最近。
论文共有图46幅,表11个,参考文献85篇。

论文外文摘要:

~The occurrence conditions and human disturbance cause the complex physical changes of coal structure, promote the development of micro-structures such as pores and cracks in coal, and directly affect the physical and mechanical properties and failure types. At present, the internal microstructure morphology, distribution characteristics and expansion evolution law of pore-fractured coal body and its understanding of the macroscopic damage of coal body are not deep enough, which leads to the unclear macroscopic damage mechanism of this kind of coal body affected by the change of mesostructure. In this paper, the quantitative characterization, visual reconstruction and statistical analysis of coal pore and fissure structure are carried out from a mesoscopic point of view by using a combination of macroscopic and mesoscopic physical and mechanical experiments, digital image processing technology, and mathematical statistics. The large-scale cracks that lead to the instability and failure of the coal body are defined as the key cracks of the coal body. The spatial location, geometric size, failure mode and propagation path of key cracks are determined, which provides theoretical basis and technical support for the macro-mechanical failure mechanism caused by the change of the mesostructure of coal body. The main results and conclusions of this paper are as follows:
(1) Through the scanning electron microscope experiment, the microstructure and microscopic composition of coal were analyzed. The results show that the coal macerals are vitrinite and inertinite, mainly including clastic vitrinite and filamentous body of plant cell pores. The interior of the coal is rich in metamorphic pores with various shapes, the pores are basically disconnected, and the permeability is weak. The mesomorphology of the coal body is rough and has a large number of defects.
(2) Through uniaxial compression experiments, the mechanical strength characteristics and size effects of coal were analyzed. The results show that the uniaxial compressive strength of coal body is in the range of 10.79MPa to 32.71MPa, with an average of 18.62MPa, which belongs to medium hard coal body. The elastic modulus range is 0.12GPa to 2.43GPa, the average is 1.37GPa, the normalized proportion of the standard coal body is negatively correlated with the uniaxial compressive strength, and positively correlated with the elastic modulus, that is, the smaller the size of the standard piece, the greater the uniaxial compressive strength and the smaller the elastic modulus. It shows that coal has size effect.
(3) The correlation between the mesostructure characteristics and mechanical strength of coal before and after uniaxial compression was compared. The results show that the original pore and fracture structure of coal before compression is negatively correlated with the mechanical strength, that is, the greater the complexity of micro-structure is, the lower the mechanical strength. The secondary pore and fracture structure of coal after compression is positively correlated with mechanical strength, that is, the greater the mechanical strength of coal, the greater the disturbance time under uniaxial loading, resulting in the development, expansion and complexity of micro-structure.
(4) The definition, research multiple, definition method and characteristic parameters of two-dimensional key cracks in coal were determined and verified, and the mathematical model of coal porosity and uniaxial compression strain considering the pore compaction stage was constructed. The results show that the average porosity change of the 500 times magnified electron microscope image of the coal body before and after compression is 80%. The perimeter of the two-dimensional key crack is 165.84-806.46μm, and the area is 224.14-535.63μm2. The average area of the two-dimensional key crack in the coal body and the uniaxial compressive strength are negative exponential correlations with a goodness of fit of 0.65. That is, the larger the crack area, the lower the uniaxial compressive strength.
(5) Through CT scanning experiments, a three-dimensional reconstructed body model was constructed when the coal was loaded to 50% of the peak force, the spatial distribution characteristics of pores and fractures in the coal body were analyzed, and the spatial location and characteristic parameters of key cracks in coal body are determined. The results show that the porosity corresponding to 50% of the peak force of the coal body is 4.43%. At this time, the three-dimensional surface area of the key crack of the coal body is 500.51μm2 and the volume is 5705.79μm3.
(6) Through the acoustic emission monitoring experiment, the key crack mode generated when the coal is loaded to 50% of the peak force, and the growth path evolution law of the key crack developed through uniaxial compression through other mesoscopic cracks or macroscopic damage were determined. The results show that the macroscopic damage of coal starts from the development and expansion of key cracks, and forms high-energy acoustic emission events. The failure direction of the coal body is the direction of the connection line between the critical crack and the macroscopic failure position, and the distance between the macroscopic crack and the critical crack is the closest.
The paper has 46 figures, 11 tables, and 85 references.

参考文献:

[1] 丁自伟,李小菲,唐青豹,等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报,2020,39(09):1787-1796.

[2] 魏江,潘结南,刘发义,等. 基于压汞及图像处理技术的高阶煤孔裂隙特征研究[J]. 河南理工大学学报(自然科学版),2021,40(02):8-14.

[3] 鞠杨,任张瑜,郑江韬,等. 岩石灾变非连续结构与多物理场效应的透明解析与透明推演[J]. 煤炭学报,2022,47(01):210-232.

[4] 丁自伟,李小菲,张杰,等. 掘进巷道空顶板壳理论分析与超越函数的数值解算及其验证[J]. 采矿与安全工程学报,2021,38(03):507-517.

[5] 彭瑞东,杨彦从,鞠杨,等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报,2011,56(26):2256-2266.

[6] 李果,张茹,徐晓炼,等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学,2015,36(06):1633-1642.

[7] Tovey N K. Quantitative analysis of electron micrographs of soil structure[C]// International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(4),73A.

[8] Nasseri M H,Rao K S,Ramamurthy T. Failure mechanism in schistose rocks[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):219.e1-219.e15.

[9] Sun C,Cao S,Li Y. Mesomechanics coal experiment and an elastic-brittle damage model based on texture features[J]. International Journal of Mining Science and Technology,2018,28(04):639-647.

[10] Hirono T,Lin W,Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics and Mining Sciences,2005,43(2):317-320.

[11] Nara Y,Koike K,Yoneda T,et al. Relation between subcritical crack growth behavior and crack paths in granite[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(8):1256-1261.

[12] Li S,Huo R,Yoshiaki F,et al. Effect of acid-temperature-pressure on the damage characteristics of sandstone[J]. International Journal of Rock Mechanics and Mining Sciences,2019,122:104079.

[13] Latief F D E,Fauzi U,Bijaksana S,et al. Pore structure characterization of 3D random pigeon hole rock models[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(3):523-531.

[14] Griffiths L,Heap M J,Baud P,et al. Quantification of microcrack characteristics and implications for stiffness and strength of granite[J]. International Journal of Rock Mechanics and Mining Sciences,2017,100:138-150.

[15] Xue D,Zhou H,Zhao Y,et al. Real-time SEM observation of mesoscale failures under thermal-mechanical coupling sequences in granite[J]. International Journal of Rock Mechanics and Mining Sciences,2018,112:35-46.

[16] Manjunath G L,Jha B. Geomechanical characterization of gondwana shale across nano-micro-meso scales[J]. International Journal of Rock Mechanics and Mining Sciences,2019,119:35-45.

[17] Nicco M,Holley E A,Hartlieb P,et al. Textural and Mineralogical Controls on Microwave-Induced Cracking in Granites[J]. Rock Mechanics and Rock Engineering,2020,53:4745-4765.

[18] Tang H. Multi-scale crack propagation and damage acceleration during uniaxial compression of marble[J]. International Journal of Rock Mechanics and Mining Sciences,2020,131:104330.

[19] Vinegar H J,朱桂清. 岩石的计算机处理X射线层析成象技术及核磁共振成象[J]. 国外油气勘探,1987(02):46-48.

[20] 陆国纯. 地球物理CT成像技术概述[J]. 中国煤田地质,1989(03):80-86.

[21] 陈毅华,赵德明. 利用x-CT技术计算岩心的裂缝参数[J]. 石油勘探与开发,1990(03):82-86.

[22] 任建喜,葛修润. 单轴压缩岩石损伤演化细观机理及其本构模型研究[J]. 岩石力学与工程学报,2001(04):425-431.

[23] 宫伟力,安里千,赵海燕,等. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. 岩土力学,2010,31(02):371-376+381.

[24] 宫伟力,吴小东,张自翔,等. 基于CT扫描的煤岩细观损伤特性研究[J]. 煤炭科学技术,2018,46(09):117-125.

[25] Nicco M,Holley E A,Hartlieb P,et al. Methods for Characterizing Cracks Induced in Rock[J]. Rock Mechanics and Rock Engineering,2018,51(7):2075-2093.

[26] Zhou X,Xiao N. A hierarchical-fractal approach for the rock reconstruction and numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2018,109:68-83.

[27] 刘国方,宋选民,霍昱名. 基于CT技术的裂隙煤体细观数值重构方法[J]. 矿业研究与开发,2020,40(08):155-159.

[28] Chen B,Xiang J,Latham J P,et al. Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the Brazilian Tensile Strength test using CT-Scan microstructure[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132:104348.

[29] Zhang Z,Xie H,Zhang R,et al. Size and spatial fractal distributions of coal fracture networks under different mining-induced stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132:104364.

[30] 赵兴东,李元辉,袁瑞甫,等. 基于声发射定位的岩石裂纹动态演化过程研究[J]. 岩石力学与工程学报,2007(05):944-950.

[31] 郝兵元,黄辉,冯子军,等. 单轴应力状态下石灰岩体静态破碎裂纹演化规律及应用[J]. 煤炭学报,2014,39(12):2397-2404.

[32] 衡帅,杨春和,郭印同,等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报,2015,34(02):228-237.

[33] 王志国,王梅,李跃龙. 基于声发射定位的单轴受压帷幕体裂隙演化分析[J]. 金属矿山,2016(02):36-41.

[34] 王笑然,李楠,王恩元,等. 岩石裂纹扩展微观机制声发射定量反演[J]. 地球物理学报,2020,63(07):2627-2643.

[35] 王笑然,王恩元,刘晓斐,等. 煤样三点弯曲裂纹扩展及断裂力学参数研究[J]. 岩石力学与工程学报,2021,40(04):690-702.

[36] 王宗炼,王怀伟,任会兰,等. 基于声发射矩张量理论的裂纹机制反演[J/OL]. 兵工学报:1-9[2022-04-01]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20211230.1748.010.html

[37] 王宗炼,王怀伟,任会兰,等. 基于声发射矩张量理论的混凝土裂纹机制反演[J]. 兵工学报,2022,43(01):181-189.

[38] 程立朝,李文贵,李新旺,等. 矸石充填体受压裂纹扩展规律及声发射特性研究[J]. 煤炭工程,2022,54(01):154-159.

[39] 张艳博,徐跃东,刘祥鑫,等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学,2021,42(10):2659-2671.

[40] Nor N M,Ibrahim A,Bunnori N M,et al. Acoustic emission signal for fatigue crack classification on reinforced concrete beam[J]. Construction and Building Materials,2013,49:583-590.

[41] Hu Q,Liu L,Li Q,et al. Experimental investigation on crack competitive extension during hydraulic fracturing in coal measures strata[J]. Fuel,2020,265:117003.

[42] Chen J,Cheng W,Wang G. Simulation of the meso-macro-scale fracture network development law of coal water injection based on a SEM reconstruction fracture COHESIVE model[J]. Fuel,2021,287:119475.

[43] Zhang K,Wang S,Wang L,et al. 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT[J]. Journal of Petroleum Science and Engineering,2022,208(Part D):109675.

[44] 叶万军,吴云涛,杨更社,等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报,2019,38(10):2126-2137.

[45] 武开业. 扫描电子显微镜原理及特点[J]. 科技信息,2010(29):107.

[46] 甘玉雪,杨锋,吴杰,等. 扫描电子显微镜在岩矿分析中的应用[J]. 电子显微学报,2019,38(03):284-293.

[47] 孙灵霞,叶云长. 工业CT技术特点及应用实例[J]. 核电子学与探测技术,2006(04):486-488+453.

[48] 杜锋,王凯,董香栾,等. 基于CT三维重构的煤岩组合体损伤破坏数值模拟研究[J]. 煤炭学报,2021,46(S1):253-262.

[49] Franklin J A,Pells P,McLachlin D,等. 测定点荷载强度的建议方法(1985年修订,取代1972年版本)[J]. 岩石力学与工程学报,1986(01):79-90.

[50] Broch E,Franklin J A. The point-load strength test[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1972,9(6):669-676.

[51] 卢志国,鞠文君,王浩,等. 硬煤冲击倾向各向异性特征及破坏模式试验研究[J]. 岩石力学与工程学报,2019,38(04):757-768.

[52] 焦淑静,张慧,薛东川,等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报,2018,37(02):137-144.

[53] 杨昌永,常会珍,邵显华,等. 扫描电镜下不同煤体结构煤微孔隙特征研究[J]. 煤炭科学技术,2019,47(12):194-200.

[54] 伍法权,乔磊,管圣功,等. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报,2021,40(05):865-873.

[55] 李地元,肖鹏,谢涛,等. 动静态压缩下岩石试样的长径比效应研究[J]. 实验力学,2018,33(01):93-100.

[56] 王连山,孙东生,郑秀华,等. 三种典型岩石单轴抗压强度的尺寸效应试验研究[J]. 地质力学学报,2017,23(02):327-332.

[57] 王亮. 基于数字图像处理技术的泥沙颗粒分析[D]. 重庆交通大学,2013.

[58] 刘乐德. 水流紊动对三峡库区黏性泥沙絮凝沉降形态及沉速影响的试验研究[D]. 重庆交通大学,2020.

[59] 金剑,宋长钰,张峰,等. 肺癌CT图像特征的ISODATA模糊聚类分析[J]. 数理统计与管理,2021,40(04):625-633.

[60] Scarrott R G,Cawkwell F,Jessopp M,et al. Ocean-Surface Heterogeneity Mapping (OHMA) to Identify Regions of Change[J]. Remote Sensing,2021,13(7):1283.

[61] 张宏涛. 基于遥感时序数据的耕地利用状态信息提取研究[D]. 江西农业大学,2020.

[62] 覃凯明. 基于高分一号全色影像的安居房核查技术研究[D]. 桂林理工大学,2020.

[63] 袁小翠,吴禄慎,陈华伟. 基于Otsu方法的钢轨图像分割[J]. 光学精密工程,2016,24(07):1772-1781.

[64] 刘健庄,栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报,1993(01):101-105.

[65] Bear J. Dynamics of Fluids in Porous Media[J]. American Elsevier Pub. Co,1972.

[66] Long J C S,Remer J S,Wilson C R,et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982,18(3):645–658.

[67] 王媛,冯迪,陈尚星,等. 基于分维数的土体裂隙表征单元体估算[J]. 岩土力学,2013,34(10):2774-2780.

[68] 刘语,张巍,梁小龙,等. 南京粉细砂空间孔隙结构表征单元体确定[J]. 岩土力学,2019,40(07):2723-2729.

[69] 徐炎达. 砂土的孔隙尺度成像与孔隙网络建模[D]. 南京大学,2015.

[70] 邸元,康志江,代亚非,等. 复杂多孔介质多重介质模型的表征单元体[J]. 工程力学,2015,32(12):33-39.

[71] 邹俊鹏,陈卫忠,杨典森,等. 基于SEM的珲春低阶煤微观结构特征研究[J]. 岩石力学与工程学报,2016,35(09):1805-1814.

[72] 赵高炀,冯晓龙,王枫. 高通量脑片细胞识别方法:基于Imaris与ImageJ的对比研究[J]. 神经解剖学杂志,2021,37(06):637-645.

[73] 冯增朝,赵阳升. 岩体裂隙分维数与岩体强度的相关性研究[J]. 岩石力学与工程学报,2003(S1):2180-2182.

[74] 张科,刘享华,李昆,等. 含孔多裂隙岩石力学特性与破裂分形维数相关性研究[J]. 岩石力学与工程学报,2018,37(12):2785-2794.

[75] 李祥春,高佳星,张爽,等. 基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征[J/OL]. 地球科学:1-15[2022-04-01]. http://kns.cnki.net/kcms/detail/42.1874.P.20211118.2127.030.html

[76] 胡鑫,王超勇,孙强,等. 核磁共振技术对热解煤孔隙结构分形特征研究[J]. 矿业研究与开发,2021,41(11):67-75.

[77] 王毅,赵阳升,冯增朝. 长焰煤热解过程中孔隙结构演化特征研究[J]. 岩石力学与工程学报,2010,29(09):1859-1866.

[78] 李子文,林柏泉,郝志勇,等. 煤体多孔介质孔隙度的分形特征研究[J]. 采矿与安全工程学报,2013,30(03):437-442+448.

[79] 张松航,唐书恒,汤达祯,等. 鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J]. 中国矿业大学学报,2009,38(05):713-718.

[80] 陶云奇,许江,彭守建,等. 含瓦斯煤孔隙率和有效应力影响因素试验研究[J]. 岩土力学,2010,31(11):3417-3422.

[81] Ohon K,Ohtsu M. Crack classification in concrete based on acoustic emission[J]. Construction and Building Materials,2010,24(12):2339-2346.

[82] 王春来,侯晓琳,李海涛,等. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报,2019,41(11):2120-2125.

[83] Smedt M D,Vrijdaghs R,Steen C V,et al. Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring[J]. Cement and Concrete Composites,2020,114:103765.

[84] Behnia A,Chai H K,Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission[J]. Construction and Building Materials,2014,65:282-302.

[85] Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters[J]. Mechanics Research Communications,2011,38(03):153-157.

中图分类号:

 TD315    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式