- 无标题文档
查看论文信息

论文中文题名:

      

姓名:

 杨宋萍    

学号:

 19220089030    

保密级别:

 1    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

     

第一导师姓名:

 王秋红    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Comparative study on transient flame characteristics of hydrogen and natural gas in pipeline    

论文中文关键词:

 氢气 ; 天然气 ; 火焰温度 ; 爆炸压力 ; 光谱强度    

论文外文关键词:

 Hydrogen ; Natural Gas ; Flame Temperature ; Explosion Pressure ; Spectral Intensity    

论文中文摘要:
<p>&nbsp; &nbsp; &nbsp; &nbsp;OH&bull;OH&bull;</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;Tulip13%6%</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;7%~14%Chemkin13%13%13%14%18.6030.01 ms7%~14%1</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;7%~14%</p> <p>&nbsp; &nbsp; &nbsp; &nbsp;OH&bull;5~15 ms13%~17%OH&bull;OH&bull;t<sub>1</sub>t<sub>2</sub>t<sub>3</sub>t<sub>4</sub>OH&bull;OH&bull;50~100 msOH&bull;OH&bull;</p>
论文外文摘要:
<p>&nbsp; &nbsp; &nbsp; Hydrogen pipelines are expensive, both human and financial, so some countries have tried to transform natural gas pipelines for hydrogen transportation. However, the chemical properties of hydrogen and natural gas are different, and their hazards are also different. It is necessary to reveal the differences in the explosion hazards of hydrogen and natural gas from the level of basic research, so as to provide a theoretical basis for the safe and efficient utilization of hydrogen energy. In this paper, based on the experimental comparison, the explosion flame propagation characteristics of hydrogen or natural gas under different gas concentration and ignition source location conditions were studied, and the OH&bull; radical radiation characteristics in the transient explosion propagation flame of hydrogen and natural gas were monitored and analyzed by spectrometer. The main conclusions are as follows:</p> <p>&nbsp; &nbsp; &nbsp; (1) When the ignition source is located at the bottom of the closed pipeline, compared with natural gas, the hydrogen explosion flame is not easy to form a completely axisymmetric Tulip-shaped flame, and under the same gas concentration conditions, the hydrogen explosion propagating flame forms form a variety of typical flame peaks. The time is shorter; in this experimental device, the concentration of hydrogen with obvious flame brightness is 13%, and the concentration of natural gas with obvious flame brightness is 6%. Therefore, in practical applications, a device that is more suitable for hydrogen concentration detection and combustion or explosion flame monitoring should be installed near the pipeline or pressure vessel containing hydrogen where there is a risk of leakage.</p> <p>&nbsp; &nbsp; &nbsp; (2) Within the measured gas concentration range of 7%~14%, the peak value of the explosion pressure of natural gas is larger than that of hydrogen, and the lower thermal power The peak flame temperature of hydrogen or natural gas measured by the couple is higher than the peak temperature of the flame measured by the upper thermocouple, which is further verified from the perspective of Chemkin quantum chemical calculation. When the gas concentration is greater than 13%, the peak flame temperature of hydrogen explosion is higher than that of natural gas explosion. When the gas concentration is less than or equal to 13%, the peak flame temperature of natural gas explosion is higher than that of hydrogen explosion. When the gas concentration is 13% and 14%, the peak time of hydrogen flame propagation speed is 18.60 and 30.01 ms earlier than that of natural gas. It can be seen from this that hydrogen in the gas concentration range of 7%~14% is not as powerful as natural gas, but the pipeline or pressure vessel that transports hydrogen will have hydrogen embrittlement. Therefore, the explosion power of hydrogen with an equivalence ratio of 1 should be fully considered and designed. Strengthen the compressive strength and yield limit of pipelines or pressure vessels; especially do not use pipelines with obvious pressure changes.</p> <p>&nbsp; &nbsp; &nbsp; (3) When the ignition source is located in the middle of a closed pipeline, regardless of hydrogen or natural gas, the gas explosion flame will propagate to both ends of the pipeline, and the time for the explosion flame to propagate to the upper part of the pipeline to form various typical flame fronts is earlier than the time for the downward propagation to form the same type of flame front. Under each gas concentration of 7%~14%, whether it is hydrogen or natural gas explosion, the peak explosion pressure when the ignition source is located in the middle of the pipeline is larger than that when the ignition source is located at the bottom of the pipeline, which indicates that the explosion power generated when the ignition source is located in the middle of the pipeline is greater. In actual operation, the location of the ignition source is uncertain, so in actual production, the increase in pressure, temperature and other parameters caused by the ignition location should be fully considered. The pressure limit should be designed, and the explosion vent should be set as close to the ignition area as possible. Comparing the increase in the peak explosion pressure of the middle ignition and the bottom ignition, the maximum change of the hydrogen explosion pressure peak is 54.84%, and the minimum is 8.01%, but the maximum explosion pressure of natural gas is only 10.74%, and the minimum is 0. In addition, compared with the ignition at the bottom of the pipeline, the peak flame temperature of the hydrogen explosion in the middle of the pipeline is higher, while the flame temperature of the natural gas explosion is less affected by the change of the ignition source position. Therefore, when transforming a natural gas pipeline or pressure vessel into hydrogen use, while increasing the pressure resistance limit of the pipeline, it is necessary to comprehensively investigate the location that is prone to ignition source hazards, and install a hydrogen flame monitoring and alarm device. Important factors to consider are response time, monitoring distance, coverage, sensitivity, and installation location.</p> <p>&nbsp; &nbsp; &nbsp; (4) The spectral signals of OH&bull; radicals in hydrogen or natural gas explosion flames are all within 5~15 ms before the flame reaches the position of the fiber, and the relative radiation intensity of the radicals reaches the maximum value at the position just passing the fiber. And the relative spectral intensity measured by the lower fiber is smaller than that of the upper fiber. In the range of 13%~17% gas concentration, comparing the radiation characteristics of OH&bull; radicals in hydrogen and natural gas flames, it is found that the relative spectral intensity value of OH&bull; in the hydrogen explosion flame with the same concentration is smaller than that in the natural gas explosion flame. Regardless of whether the ignition source is located at the bottom or the middle of the pipeline, the spectral appearance time t<sub>1</sub>, peak time t<sub>2</sub> and disappearance time t<sub>3</sub> of hydrogen explosion are earlier than those of natural gas, and the spectral existence time t<sub>4</sub> is shorter than that of natural gas. The coupling analysis of explosion pressure, flame temperature and spectral intensity shows that the time corresponding to the peak relative spectral intensity of hydrogen or natural gas OH&bull; radicals is earlier than that of explosion pressure and flame temperature, and the relative spectral intensity of hydrogen OH&bull; radicals is earlier than that of explosion pressure and flame temperature. The intensity peak reached time 50~100 ms earlier than that of natural gas. Therefore, when suppressing hydrogen explosion, it is necessary to select an anti-detonation agent that can easily react with OH&bull; free radicals or develop a new type of detonation inhibitor according to the change law of the radiation characteristics of hydrogen OH&bull; free radicals.</p>
参考文献:

[1] Hirano T. Accidental explosions of semiconductor manufacturing gases in Japan[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(1): 29‒34.

[2] 文虎, 高慧慧, 王秋红, 等. 泄爆口强度对管内天然气爆炸流场的影响仿真[J]. 天然气工业, 2019, 39(8): 126‒136.

[3] 赵博鑫,朱明, 彭莹,等. 基于PHAST软件模拟氢气、天然气管道泄漏[J]. 石化技术,2017,24(5):48‒50.

[4] Law C. Combustion at a crossroads: Status and prospects[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1‒29.

[5] 许卫军. 氢能源发展研究现状[J]. 中国战略新兴产业, 2020, (8): 33.

[6] 张志芸, 张国强, 刘艳秋, 等. 我国加氢站建设现状与前景[J]. 节能, 2018. 37(6): 16‒19.

[7] 周琼芳, 张全斌. 我国氢燃料电池汽车加氢站建设现状与前景展望[J]. 中外能源, 2019, 24(9): 33‒38.

[8] 林业恒. 加氢站和氢能汽车泄漏事故的模拟研究和风险分析[D]. 山东: 山东大学, 2020.

[9] 刘晓慧. 《氢能产业发展中长期规划(2021-2035年)》发布[N]. 中国矿业报,2022, 3‒24(1).

[10] 马小强.欧洲国家筹划利用天然气管道输送氢气[J].新能源科技,2021(1):38.

[11] Marta M, Agnolucci P, Papageorgiou L. Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development[J]. Computers & Chemical Engineering, 2017, 102: 110‒127.

[12] 蒋庆梅, 张小强. 氢气长输管道钢管选材研究[J]. 油气田地面工程,2016,35(9):1‒3.

[13] 肖华华. 管道中氢‒空气预混火焰传播动力学实验与数值模拟研究[D]. 合肥: 中国科学技术大学, 2013.

[14] 韩森. 立方舱中浓度梯度氢气爆炸特性研究[D]. 合肥: 合肥工业大学, 2019.

[15] Day M, Bell J, Bremer P, et al. Turbulence effects on cellular burning structures in lean premixed hydrogen flames[J]. Combustion & Flame, 2009, 156(5):1035‒1045.

[16] Xiao H, Wang Q, He X, et al. Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct[J]. International Journal of Hydrogen Energy, 2010, 35(3):1367‒1376.

[17] Rui S, Wang C, Guo S, et al. Hydrogen-air Explosion with Concentration Gradients in a Cubic Enclosure[J]. Process Safety and Environmental Protection, 2021, 151:141‒150.

[18] Zhang M, Chang M, Wang J, et al. Flame dynamics analysis of highly hydrogen‒enrichment premixed turbulent combustion[J]. International Journal of Hydrogen Energy, 2019, 45(1). 1072‒1083.

[19] Emami S, Rajabi M, Hassan C, et al. Experimental study on premixed hydrogen/air and hydrogen–methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy, 2013, 38(32):14115‒14120.

[20] Jiang Y, Li Y, Zhou Y, et al. Investigation on unconfined hydrogen cloud explosion with external turbulence[J]. 2022, 47(13):8658‒8670.

[21] 谢长春. 管道内甲烷爆炸火焰传播特性的实验与数值模拟研究[D]. 西安: 西安科技大学, 2015.

[22] 高娜, 胡毅亭, 张延松. 初始温度对甲烷‒空气爆炸压力影响的试验研究[J].爆破器材, 2016, 45(3):26‒30.

[23] 钱承锦, 王志荣, 郑杨艳, 等. 初始压力对连通容器甲烷-空气混合物爆炸压力的影响[J].南京工业大学学报(自然科学版), 2017, 39(2):51‒56.

[24] 王涛. 管道内甲烷爆炸特性及CO2抑爆的实验与数值模拟研究[D]. 西安: 西安科技大学, 2014.

[25] Li Z, Chen L, Yan H, et al. Gas explosions of methane-air mixtures in a large-scale tube[J]. Fuel, 2021, 285. 119239.

[26] Bao Q, Fang Q, Zhang Y, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures[J]. Fuel, 2016, 175: 40‒48.

[27] Huang L, Wang Y, Pei S, et al. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures[J]. Energy, 2019, 186, 115840.

[28] 张印, 赵东风, 刘义. 基于FLACS的CH4/CO2/air混合气爆炸参数分析[J].中国安全生产科学技术, 2016, 12(9):36‒40.

[29] 司荣军. 高压环境条件下煤矿瓦斯爆炸特性数值模拟[J].煤矿安全, 2014, 45(7):1‒4.

[30] 李润之, 司荣军. 低温环境下甲烷爆炸流场特性模拟[J].爆炸与冲击, 2015, 35(6): 901‒906.

[31] 杨亚,杨石刚,方秦, 等.开敞空间大体积天然气爆炸荷载数值模拟研究[J].中国矿业大学学报, 2020, 49(03):479‒487.

[32] 任丹.天然气管道泄漏蒸气云爆炸后果评估方法研究[J].化工设计, 2019, 29(06):14‒17+1.

[33] 杨克,王壮,贺雷, 等.天然气管道蒸汽云爆炸事故定量计算及风险评估[J].工业安全与环保, 2019, 45(11):31‒35.

[34] 左哲, 姚志强, 高进东, 等.受限空间内天然气爆炸反应过程模拟分析[J].天然气工业, 2015, 35(06):131‒137.

[35] 汪泉. 有机玻璃方管内瓦斯爆燃火焰传播特性研究[D]. 合肥: 中国科学技术大学, 2013.

[36] 司荣军. 瓦斯浓度对爆炸传播影响的数值模拟研究[J].工业安全与环保, 2011, 37(04):29‒30.

[37] Dai T, Zhang B, Liu H. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: A comparative study[J]. International Journal of Hydrogen Energy, 2021, 46(60):30861‒30869.

[38] 孙从煌. 爆炸反应管的研制及管内气体燃爆特性研究[D]. 锦州: 辽宁工业大学, 2017.

[39] 栾鹏鹏. 点火位置对管道内预混合成气爆炸特性影响的研究[D]. 重庆: 重庆大学,2020.

[40] 曹勇. 点火位置对氢气—空气泄爆特性影响的实验研究[D]. 淮南: 安徽理工大学, 2016.

[41] Yu M, Luan P, Zheng K, et al. Experimental study on explosion characteristics of syngas with different ignition positions and hydrogen fraction[J]. International Journal of Hydrogen Energy, 2019, 44(29):15553‒15564.

[42] Li J, Wang X, Guo J, et al. Effect of concentration and ignition position on vented methane–air explosions[J]. Journal of Loss Prevention in the Process Industries, 2020, 68(11‒12):104334.

[43] Lv X, Zheng L, Zhang Y, et al. Combined effects of obstacle position and equivalence ratio on overpressure of premixed hydrogen-air explosion[J]. International Journal of Hydrogen Energy, 2016, 41(39):17740‒17749.

[44] Kasmani R, Andrews G, Phylaktou H. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Safety & Environmental Protection, 2013, 91(4):245‒252.

[45] Cao Y, Guo J, Hu K, et al. The effect of ignition location on explosion venting of hydrogen–air mixtures[J]. Shock Waves, 2017, 27(4):1‒7.

[46] Guo J, Sun X, Rui S, et al. Effect of ignition position on vented hydrogeneair explosions[J]. International Journal of Hydrogen Energy, 2015, 40(45), 15780‒15788.

[47] Cao, Y, Guo J, et al. Effect of ignition location on external explosion in hydrogen-air explosion venting[J]. International Journal of Hydrogen Energy 2017, 42(15), 10547‒10554.

[48] Kindracki J, Kobiera A, Rarata G, et al. Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4‒6):551‒561.

[49] Wang L, Ma H, Shen Z. Effects of vessel height and ignition position upon explosion dynamics of hydrogen-air mixtures in vessels with low asymmetry ratios[J]. Fuel, 2021, 289(2):119926.

[50] Yao Z, Deng H, Dong J, et al. On explosion characteristics of premixed syngas/air mixtures with different hydrogen volume fractions and ignition positions[J]. Fuel, 2020, 288:119619.

[51] Ma C, Wang Z, Cui Y, et al. Effect of Ignition Position on Methane Explosion in Spherical Vessel with a Pipe[J]. Procedia Engineering, 2018, 211:538‒545.

[52] Xing H, Qiu Y, Sun S, et al. Experimental study of overpressure and temperature field behaviors of a methane-air mixture with different ignition positions, solid structure obstacles and initial turbulence levels[J]. Fuel, 2020, 287. 119446.

[53] Ferrara G, Benedetto A, Salzano E, et al. CFD analysis of gas explosions vented through relief pipes[J]. Journal of Hazardous Materials, 2006, 137(2): 654‒665.

[54] 杜文锋.链锁反应理论在消防灭火中的应用[J].武警学院学报,1995(4):12‒55.

[55] He Z, Li X, Zhu W, et al. Effect of water on gas explosions: combined Reax FF and MD calculations[J]. Rsc Advances, 2014, 4(66):35048‒35054.

[56] He Z, Li X, Liu L, et al. The intrinsic mechanism of methane oxidation under explosion condition: A combined Reax FF and DFT study[J]. Fuel, 2014, 124(1):85‒90.

[57] Gao J, Wang L, Hu S, et al. The free radical mechanism of electromagnetic field affecting explosion of premixed methane[J]. Combustion and Flame, 2021, 234. 111649.

[58] Luo Z, Li D, Su B, et al. Thermodynamic effects of the generation of H*/OH*/CH2O* on flammable gas explosion[J]. Fuel, 2020, 280:118679.

[59] Colket M, Seery D. Reaction mechanisms for toluene pyrolysis[J]. Symposium on Combust 1994;25(1):883–91.

[60] Wang Q, Yang S, Jiang J, et al. Flame propagation and spectrum characteristics of CH4-air gas mixtures in a vertical pressure relief pipeline[J]. 2022, 317, 123413.

[61] 李艳红, 贾宝山,曾 文,等.受限空间初始压力对瓦斯爆炸反应动力学特性的影响[J].辽宁工程技术大学学报(自然科学版),2011,30(05):697‒701.

[62] 罗振敏. 瓦斯爆炸抑制材料的特性及抑爆作用研究[D]. 西安:西安科技大学,2009.

[63] 李孝斌, 张瑞杰, 崔沥巍, 等.尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析[J].爆炸与冲击,2020,40(3):13‒23.

[64] 陈健,董邯海,刘义,赵东风. 基于CHEMKIN的氢气爆炸特性模拟及影响因素[C]//.第六届CCPS中国过程安全会议论文集.2018:547‒555.

[65] 王中华. 基于OH-PLIF技术的微型燃气轮机环形燃烧室混合气燃烧特性研究[D]. 重庆: 重庆大学,2019.DOI:10.27670/d.cnki.gcqdu.2019.001133.

[66] Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion & Flame, 2005, 140(1/2):34‒45.

[67] Li X, Zhang H, Bai S, et al. Analysis of the effect mechanism of water and CH4 concentration on gas explosion in confined space[J]. Journal of Saudi Chemical Society, 2021,25(11).

[68] Wei L, Su M, Wang K, et al. Suppression effects of ABC powder on explosion characteristics of hybrid C2H4 /polyethylene dust[J]. Fuel, 2022, 310,122159.

[69] Cao X, Lu Y, Jiang J, et al. Experimental study on explosion inhibition by heptafluoride propane and its synergy with inert gas[J]. Journal of Loss Prevention in the Process Industries, 2021, 71(4):104440.

[70] Nie B, Yang L, Ge B, et al. Chemical kinetic characteristics of methane/air mixture explosion and its affecting factors[J]. Journal of Loss Prevention in the Process Industries, 2017, 49:675‒682.

[71] Salzano E, Marra F.S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. J. Hazard. Mater, 2002, 95: 233‒247.

[72] 李艳超. 氢气火焰失稳传播与爆炸压力的耦合影响机制研究[D]. 大连: 大连理工大学,2019.

[73] 金凯强. 密闭管道内预混火焰传播动力学及抑制方法实验研究[D]. 合肥: 中国科学技术大学,2019.

[74] 廖倩玉, 陈志光. 天然气管道掺氢输送安全问题研究现状[J].城市燃气,2021(4):19‒26.

[75] Hidenori M.氢气爆炸特性研究(英文)[J].中国安全生产科学技术,2005(6):3‒9.

[76] 王迎,李勇,王运生. 氢气浓度对氢气燃烧影响的实验研究[J]. 科技视界,2016(13):15‒16.

[77] 刘义. 甲烷、煤尘火焰结构及传播特性的研究[D]. 合肥: 中国科学技术大学, 2006.

[78] Gregory P, Smith D. Gri-Mech at 3.0 [EB/OL]. http://combustion. The berkeley. edu/gri-mech/version30/text30.htmll, 2007.

[79] Conaire M, Curran H J, Simmie J M, et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics, 2004, 36(11):603-622.

[80] 贾宝山, 肖明慧, 尹彬, 等. 甲烷最大爆炸压力的计算与分析[J].煤炭科学技术,2017,45(12):101‒106.

[81] 孔文凡. 天然气管道安全运行危害因素及防范措施[J].化工管理,2020(5):84–85.

[82] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 氢气储存输送系统 第1部分:通用要求:GB/T 34542.1–2017[S]. 2017.

[83] 王金富.制氢装置管道材料的选用[J].石油化工腐蚀与防护,2004(3):19–22.

[84] 蒋庆梅, 张小强. 氢气与天然气长输管道线路设计ASME标准对比分析[J].压力容器,2015,32(08):44–49+25.

[85] Haeseldonckx D, D'Haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure-ScienceDirect[J]. International Journal of Hydrogen Energy, 2007, 32(10–11):1381–1386.

[86] 李孝斌. 矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D]. 西安: 西安科技大学,2010.

[87] 严灼. 空腔和细水雾协同抑制受限空间瓦斯爆炸传播研究[D]. 淮南: 安徽理工大学,2020.

[88] 刘梦茹. 超细水雾与多孔介质协同抑制瓦斯爆炸特性研究[D]. 焦作: 河南理工大学,2019.

[89] 曹兴岩. 超细水雾抑制甲烷—空气爆炸机理研究[D]. 大连: 大连理工大学,2017.

[90] 刘晅亚. 水雾作用下甲烷/空气层流预混火焰燃烧特性研究[D]. 合肥: 中国科学技术大学,2006.

[91] 王壮. 七氟丙烷/二氧化碳混合气体协同超细水雾抑制甲烷爆炸实验与模拟[D]. 常州: 常州大学,2021.

[92] 蒲龙.七氟丙烷灭火系统特点及原理探讨[J].石化技术,2019,26(4):318.

[93] 李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究[D]. 大连: 大连理工大学,2018.

[94] 朱熹. 含氟灭火剂抑制瓦斯爆炸实验研究[D]. 西安: 西安科技大学,2017.

[95] 姜程山. 氢气的爆炸极限抑制研究[D]. 济南: 山东建筑大学,2017.

中图分类号:

 X932    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式