- 无标题文档
查看论文信息

论文中文题名:

 铌酸银反铁电陶瓷掺杂改性及储能性能研究    

姓名:

 夏思雨    

学号:

 20211225040    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料与化工    

研究方向:

 功能材料    

第一导师姓名:

 杜慧玲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Study on Doping Modification and Energy Storage Performance of Silver Niobate Antiferroelectric Ceramics    

论文中文关键词:

 反铁电陶瓷 ; 铌酸银 ; 掺杂改性 ; 核壳结构 ; 储能密度    

论文外文关键词:

 Lead-free antiferroelectric ceramics ; Silver niobate ; Doping modification ; Core-shell structure ; Energy storage density    

论文中文摘要:

当前,具有优异储能特性的电介质电容器向着集成化与多功能等方面发展,其相应电介质材料的储能密度也因此被提出了更高的要求。铌酸银(AgNbO3)是当前最有潜力的无铅反铁电材料之一,但因固有的回滞效应与铁电相的存在,导致其储能特性不能满足储能器件的工作要求。本论文通过水热法工艺获得了离子掺杂型AgNbO3基陶瓷材料,并对掺杂后的AgNbO3基陶瓷进行核壳结构的构筑,系统地探究了离子掺杂改性和核壳结构构筑对AgNbO3基陶瓷材料介电性能、阻抗性能以及储能性能的影响。在改善优化AgNbO3陶瓷储能性能的基础上,以促进在电介质电容器方面的应用。

采用水热法制备出粒径大小平均约为260~280 nm左右的AgNbO3基陶瓷粉体颗粒,而针对AgNbO3的A位Ag+离子,采用了异价A位的Y3+进行掺杂取代。相较于原A位的Ag+,Y3+由于更小的离子半径不仅降低了体系的容差因子,还增强了体系的反铁电相稳定性,同时对应的介电测试结果也证实了铁电相-反铁电相在室温下趋于稳定。基于第一性原理计算的Y3+掺杂AgNbO3电子结构的带隙宽度由1.959 eV减小至1.746 eV,这归结于异价的A位掺杂产生了施主能级,导致电子更容易被激发。

针对AgNbO3的B位调控,采用非铁电活性的Ta5+取代了铁电活性的Nb5+,以此降低体系的铁电性,从而提高反铁电稳定性。同时基于密度泛函理论所得的能带结构、态密度与光学介电函数分析了B位Ta5+掺杂对AgNbO3电子结构的影响。结合微结构、介电与铁电测试的结果发现,Ta5+掺杂的AgNbO3不仅晶粒尺寸由3.35 µm减小到2.74 µm,还具有更加稳定的反铁电相。在Ta5+的掺杂量x=0.05时,AgNb0.95Ta0.05O3陶瓷在225 kV/cm的电场下储能密度从1.94 J/cm3提高到了3.67 J/cm3

为了进一步提高AgNbO3的储能性能,在Ta5+掺杂AgNbO3的基础上制备了具有核壳结构的AgNb0.95Ta0.05O3@SiO2陶瓷材料,其中以非晶相的无定型SiO2作为壳,而AgNb0.95Ta0.05O3则是核结构。SiO2作为壳结构,一方面可以抑制晶粒大小的生长,另一方面其独特的壳层结构提高体系的耐击穿特性。具有核壳结构的AgNb0.95Ta0.05O3@5wt.%SiO2陶瓷不但具有较低的介电损耗值,而且实现了3.94 J/cm3的储能密度和72.64 %的储能效率。这项工作为设计具有高储能性能的AgNbO3基无铅反铁电陶瓷材料提供了研究思路与技术参考。

论文外文摘要:

Currently, dielectric capacitors with excellent energy storage characteristics are developing toward integration and multi-function, and the energy storage density of their corresponding dielectric materials is therefore put forward to higher requirements. Silver niobate (AgNbO3) is one of the most potential leadless antiferroelectric materials at present, but due to the inherent hysteresis effect and ferroelectric phase, its energy storage characteristics can not meet the requirements of energy storage devices. In this thesis, ion-doped AgNbO3-based ceramic materials were obtained by a hydrothermal process, and the core-shell structure of the doped AgNbO3-based ceramics was constructed to systematically investigate the effects of ion-doping modification and core-shell structure construction on the dielectric properties, impedance properties, and energy storage properties of AgNbO3-based ceramic materials. On the basis of improving and optimizing the energy storage properties of AgNbO3 ceramics in order to promote the application in dielectric capacitors.

The AgNbO3-based ceramic powder particles with an average particle size of about 260~280 nm were prepared by hydrothermal method, while Y3+ at the heterovalent A-site was used to dope and replace the Ag+ ion of AgNbO3. Compared with the original A-site Ag+, Y3+ not only reduces the tolerance factor of the system due to its smaller ionic radius, but also enhances the stability of the antiferroelectric phase of the system, while the corresponding dielectric test results also confirm that the ferroelectric-antiferroelectric phase tends to be stable at room temperature. The band gap width of the Y3+-doped AgNbO3 electronic structure calculated based on the firs principle is reduced from 1.959 eV to 1.746 eV, which is attributed to the fact that the heterovalent A-site doping generates the sender energy level, resulting in easier excitation of the electrons.

For the B-site modulation of AgNbO3, the non-ferroelectric active Ta5+ was used to replace the ferroelectric active Nb5+ in order to reduce the ferroelectricity of the system and thus improve the antiferroelectric stability. The effect of B-site Ta5+ doping on the electronic structure of AgNbO3 was also analyzed based on the energy band structure, density of states and optical permittivity function obtained from density generalized theory. Combining the results of microstructure, dielectric and ferroelectric tests, it is found that the grain size of Ta5+-doped AgNbO3 is not only reduced from 3.35 µm to 2.74 µm, but also has a more stable antiferroelectric phase. The energy storage density of AgNb0.95Ta0.05O3 ceramics increased from 1.94 J/cm3 to 3.67 J/cm3 under an electric field of 225 kV/cm at a Ta5+ doping amount of x=0.05.

In order to further improve the energy storage performance of AgNbO3, AgNb0.95Ta0.05O3@SiO2 ceramic materials with core-shell structure were prepared on the basis of Ta5+ doping AgNbO3, in which amorphous SiO2 was used as shell, and AgNb0.95Ta0.05O3 was used as nuclear structure. SiO2 as shell structure, on the one hand, can inhibit the growth of grain size, on the other hand, its unique shell structure can improve the breakdown resistance of the system. The AgNb0.95Ta0.05O3@5wt.%SiO2 ceramics with core-shell structure not only have low dielectric loss value, but also achieve 3.94 J/cm3 energy storage density and 72.64 % energy storage efficiency. This work provides a research idea and technical reference for the design of AgNbO3-based lead-free antiferroelectric ceramics with high energy storage performance.

中图分类号:

 TQ174.1    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式