- 无标题文档
查看论文信息

论文中文题名:

 超声激励含油煤体热响应行为分析与瓦斯解吸特性研究    

姓名:

 雒晗曦    

学号:

 21220226173    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 0857    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 严敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Thermal Response Behavior Analysis and Gas Desorption Characterization of Ultrasonically Stimulated Oil-bearing Coal    

论文中文关键词:

 超声技术 ; 含油煤体热响应 ; 孔隙度 ; 官能团 ; 解吸特征    

论文外文关键词:

 Ultrasonic technology ; Thermal response of oil-bearing coals ; Porosity ; Functional groups ; Desorption characteristics    

论文中文摘要:

煤层瓦斯预抽是防治矿井瓦斯灾害,保障煤矿安全生产的有效方法之一,当前国内外高效预抽煤层气的技术主要有水力压裂、水力割缝、注气、物理场激励等,其中超声激励技术由于其应用范围广、能耗低、不产生污染等优点受到广泛关注。超声波的热效应会大大降低煤层气的吸附束缚力,促进煤体内瓦斯解吸,而原油的含量及其在含油煤体中的分布规律会影响煤体的温升规律,进而影响含油煤体瓦斯解吸特性。为探究超声激励含油煤体的温度分布、温升规律等热响应特征,明晰其对含油煤体解吸特性的影响规律及机理,本文采用理论分析和实验室试验相结合的方法,分析超声激励下含油煤体孔隙结构及官能团演化规律,揭示超声热效应对含油煤体瓦斯解吸特性的影响规律及其机理。

超声产生的热效应造成煤体本身温度升高,是影响含油煤体基本特性及瓦斯吸附解吸规律的关键,因此,本文首先分析了超声激励前后含油煤体的平均温度、温升速率等热响应特征参数变化规律。利用红外热成像技术对含油煤体表面温度进行监测,发现煤体含油量越高,超声激励相同时间后煤体表面高温区面积越大,最终表面最高温度越高。超声激励60 min后,10%含油量煤体俯视端面最高温度由 16℃增长到41℃,是未激励前煤样的2.5 倍多。

为探究超声激励含油煤体热响应特征对煤体孔隙结构和官能团的影响,开展了核磁共振及傅里叶红外光谱分析,测量超声激励前后含油煤体孔隙度、原油分布规律、红外光谱曲线的演化规律。实验表明,超声激励产生的热量能够促使含油煤体的含氧官能团、羟基、脂肪烃含量降低,与此同时,含油煤体形成热损伤使煤体孔隙连通,总孔隙度提高,总孔隙度提高最大的实验煤样为含油量占比5%的含油煤体,超声激励后总孔隙度由12.83%增加到15.98%,增加了24.53%。煤中可动油/束缚油比值明显的上升。

为探究超声激励对含油煤体瓦斯解吸特性的影响规律及机理,采用高压瓦斯吸附仪和流量计测定超声激励前后含油煤体瓦斯解吸变化规律,结合测定的煤体孔隙结构及官能团演化规律,综合分析了超声激励下含油煤体热响应特征对瓦斯解吸特性的影响规律及其作用机理。研究发现:超声激励前后含油煤体的瓦斯累积解吸量与时间呈幂函数关系,5%含油量煤体超声激励后瓦斯解吸效果相对较好,超声激励相同时间后,其甲烷解吸量高,累积解吸量为20.73 mL·g-1,较0%含油量煤体增加了58.39%。

本文研究结果表明超声激励含油煤体产生的热响应特征可促使含油煤体孔隙贯通,降低煤体内主要官能团含量,减少瓦斯吸附位点,促进瓦斯气体在含油煤体中的扩散,从而有利于提高瓦斯气体抽采效率,研究结果可为超声技术应用于煤油气共存煤层提高瓦斯安全抽采率提供理论基础。

论文外文摘要:

Coalbed methane pre-pumping is one of the effective methods to prevent and control mine methane disaster and ensure the safe production of coal mines, and the ultrasonic excitation technology has received wide attention due to its advantages of wide application range, low energy consumption and no pollution. The thermal effect of ultrasound will greatly reduce the adsorption binding force of coalbed methane and promote the desorption of gas in the coal body, while the content of crude oil and its distribution pattern in the oil-bearing coal body will affect the temperature rise pattern of the coal body, which in turn affects the desorption characteristics of oil-bearing coal body gas. In order to investigate the thermal response characteristics such as temperature distribution and temperature rise pattern of the oil-bearing coal body under ultrasonic excitation, and to clarify its influence on the desorption characteristics of the oil-bearing coal body and its mechanism, this paper adopts a combination of theoretical analysis and experimental method to analyze the pore structure of the coal body and the evolution law of functional groups under ultrasonic excitation, and to reveal the influence of ultrasonic excitation on the gas desorption characteristics of the oil-bearing coal body and its mechanism.

The thermal effect produced by ultrasound is the key factor affecting the oil-bearing coal body, therefore, this paper firstly analyzes the thermal response characteristics such as average temperature and temperature rise rate of the oil-bearing coal body after ultrasound excitation. Using infrared thermal imaging technology to monitor the surface of the oil-bearing coal body, it was found that the higher the oil content, the larger the area of the high temperature zone on the surface of the coal body after ultrasonic excitation for the same time, and the higher the final temperature. After 60 min of ultrasonic excitation, the maximum temperature of the top surface of 10% oil-containing coal increased from 16℃ to 41℃, which was more than 2.5 times of the original coal sample.

In order to investigate the effects of thermal response characteristics of ultrasonically excited oil-containing coal bodies on their pore structure and functional groups, Fourier infrared spectroscopy was carried out to measure the changes in the infrared spectral curves of oil-containing coal bodies before and after ultrasonic excitation. The experimental results showed that after ultrasonic excitation, the oxygenated functional groups, hydroxyl groups and aliphatic hydrocarbons content of the oil-bearing coals were reduced; the changes in the porosity and crude oil distribution pattern of the oil-bearing coals before and after ultrasonic excitation were obtained from the T2 relaxation curves. The experimental results show that the thermal damage caused by ultrasonic excitation of the oil-bearing coal body leads to the pore penetration and the total porosity increases, and the total porosity of 5% oil-bearing coal body increases from 12.83% to 15.98%, which is an increase of 24.53% after the ultrasonic excitation. The movable oil/bound oil ratio in the coal increased significantly.

Ultrasonic excitation can increase the temperature of oil-bearing coal body, thus affecting the gas desorption characteristics of oil-bearing gas-bearing coal body. Using high-pressure gas adsorption meter and flowmeter to determine the change of gas desorption law of oil-bearing coal body before and after ultrasonic excitation, combined with the pore structure and functional group evolution law in the early stage, we comprehensively analyze the influence of thermal response characteristics of oil-bearing coal body on the gas desorption characteristics and the mechanism under ultrasonic excitation. It was found that the gas desorption amount of oil-containing coal body before and after ultrasonic excitation showed a power function growth type relationship with time, and the gas desorption effect of 5% oil-containing coal body after ultrasonic excitation was relatively the best, after ultrasonic excitation for the same period of time, its methane desorption was high, and the cumulative desorption amount was 20.73 mL-g-1, which was an increase of 58.39%.

All of the above show that the thermal response characteristics generated by ultrasonic excitation of oil-bearing coal body, prompting the oil-bearing coal body pore penetration,  and the results of the study can be used for the ultrasonic technology applied to coal-oil-gas symbiotic coal seams, to improve the efficiency of safe gas extraction to provide a theoretical basis.

参考文献:

[1] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报[EB/OL]. 中国政府网, 2024-5-21.

[2] 中矿北京煤炭产业景气指数研究课题组, 郭建利. 2023-2024年中国煤炭产业经济形势研究报告[J]. 中国煤炭, 2024,50(3):12-20.

[3] 张遵国, 赵丹, 张春华, 等. 不同温度下软煤等温吸附/解吸特性[J]. 辽宁工程技术大学学报(自然科学版), 2021,40(06):510-517.

[4] 董光顺, 朱超凡, 厉家宗, 等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟[J]. 煤田地质与勘探, 2022:1-13.

[5] Sun Y, Zhai C, Ma H, et al. Changes of Coal Molecular and Pore Structure under Ultrasonic Stimulation[J]. Energy & Fuels, 2021,35(12):9847-9859.

[6] 吴文华, 翟薇, 王建元, 等. 超声场中液体材料的空化和声流动力学研究进展[J]. 中国科学:技术科学, 2023,53(1):2-27.

[7] 张强, 孙昱东, 施宏虹, 等. 超声波技术及其在应用技术领域的机理研究[J]. 广东化工, 2013,40(13):90-91.

[8] Hossein G M, Behnam K, Cyrus G. Application of Ultrasound Wave for Stimulation of Asphaltene Damaged Reservoir Rocks: An Experimental Study[J]. Scientia Iranica, 2018,25(6):3391-3400.

[9] Wang Z, Yin C. State-of-the-art on ultrasonic oil production technique for EOR in China[J]. Ultrasonics - Sonochemistry, 2017,38:553-559

[10] 王瑞飞, 孙卫, 尤小健, 等. 超声波对油层作用效应的实验研究[J]. 石油实验地质, 2006,28(2):191-195.

[11] Venkitaraman, Adinathan, Roberts, et al. Ultrasonic Removal of Near-Wellbore Damage Caused by Fines and Mud Solids[J]. SPE Drilling & Completion, 1995,10(03):1-13.

[12] 穆林, 范惠珍, 宁显宗. 黄土层内的声波传播衰减[J]. 应用声学, 1995(1):19-22.

[13] Zhai C, Yu G, Qin L, et al. Effects of moisture content on fracturing and heating processes during ultrasonication[J]. Journal of loss prevention in the process industries, 2018,55:243-252.

[14] 张伟博, 刘伟, 李谦, 等. 超声波辅助增材制造温度场数值分析[J]. 焊接技术, 2023,52(12):1-5.

[15] 强元宝. 聚合物超声塑化瞬态生热机理分子动力学仿真与实验研究[D]. 中南大学, 2022.

[16] 吴诗仁, 温彤, 雷帆. 超声振动作用下的聚合物塑化机理研究[J]. 塑料工业, 2012,40(10):66-69.

[17] 袁月. 空化云中声传播特性及热效应研究[D]. 清华大学, 2021.

[18] 吴慧友. 超声空化效应及空泡对声传播影响的理论研究[D]. 湖南师范大学物理电子学, 2017.

[19] 丛健, 高蓬辉, 张东海, 等. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020,71(11):5117-5128.

[20] 孙学敏. 超声和直流电作用下Sn/Cu体系的溶解及润湿行为研究[D]. 兰州理工大学, 2021.

[21] 刘赟. 超声波作用下焊点液-固界面行为的研究[D]. 兰州理工大学, 2020.

[22] 段平安. 超声振动对压铸镁合金TIG焊缝气孔的影响研究[D]. 重庆大学材料科学与工程, 2017.

[23] 王云刚, 杨廷廷, 王琼洋, 等. 煤样中超声波传播特性研究[J]. 中国安全科学学报, 2017,27(12):68-73.

[24] 时素果, 王国玉. 不同流体介质的空化热力学效应[J]. 船舶力学, 2021,25(03):23-37.

[25] 应崇福, 张守玉, 沈建中, 等. 超声波在固体中传播和散射的研究[J]. 中国科学院院刊, 1990(1):1-15.

[26] 杨金美, 张光明, 王伟. 超声波强化活性污泥活性的试验研究[J]. 给水排水, 2006(01):37-40.

[27] 吴俊. 突出煤和非突出煤的孔隙性研究[J]. 煤炭工程师, 1987(05):1-6.

[28] Buss E. Gravimetric measurement of binary gas adsorption equilibria of methane-carbon dioxide mixtures on activated carbon[J]. Gas separation & purification, 1995(3):1.

[29] Melnichenko Y B, He L, Sakurovs R, et al. Accessibility of pores in coal to methane and carbon dioxide[J]. Fuel, 2012,91(1):200-208.

[30] 黄若彤. 平煤十矿煤孔隙结构对吸附解吸特性影响[D]. 中国矿业大学, 2020.

[31] 王翠霞, 李树刚. 煤体孔隙结构分形特征对瓦斯解吸规律的影响研究[J]. 西安科技大学学报, 2016,36(3):308-314.

[32] 祝捷, 何法, 徐立辉, 等. 煤的孔隙结构与其吸附解吸变形的相关性[J]. 煤炭技术, 2018,37(6):145-147.

[33] 戚灵灵, 周晓庆, 彭信山, 等. 基于低温氮吸附和压汞法的焦煤孔隙结构研究[J]. 煤矿安全, 2022,53(7):1-6.

[34] 聂百胜, 何学秋, 王恩元, 等. 功率声波影响煤层甲烷储运的初步探讨[J]. 煤田地质与勘探, 2004(6):23-26.

[35] 于永江, 张春会, 王来贵. 超声波干扰提高煤层气抽放率的机理[J]. 辽宁工程技术大学学报(自然科学版), 2008,27(6):805-808.

[36] 田洪波, 蒋曙光, 李玥, 等. 功率声波激励下无烟煤孔隙变化及裂隙发育研究[J]. 煤矿安全, 2017,48(8):9-12.

[37] Liu P, Liu A, Liu S, et al. Experimental evaluation of ultrasound treatment induced pore structure and gas desorption behavior alterations of coal[J]. Fuel, 2022,307:121855.

[38] 于国卿, 翟成, 秦雷, 等. 超声波功率对煤体孔隙影响规律研究[J]. 中国矿业大学学报, 2018,47(2):264-270.

[39] 马会腾, 翟成, 徐吉钊, 等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探, 2019,47(4):38-44.

[40] 宋超, 姜永东, 王苏健, 等. 超声波作用下煤体微观结构的试验研究[J]. 煤炭科学技术, 2019,47(5):139-144.

[41] Liu P, Liu A, Zhong F, et al. Pore/fracture structure and gas permeability alterations induced by ultrasound treatment in coal and its application to enhanced coalbed methane recovery[J]. Journal of petroleum science & engineering, 2021,205:108862.

[42] Sun Y, Zhai C, Ma H, et al. Changes of Coal Molecular and Pore Structure under Ultrasonic Stimulation[J]. Energy & fuels, 2021,35(12):9847-9859.

[43] 曾社教, 马东民, 王鹏刚. 温度变化对煤层气解吸效果的影响[J]. 西安科技大学学报, 2009,29(4):449-453.

[44] 蔡婷婷, 赵东. 封闭体系中煤体升温解吸的热力学特性研究[J]. 地下空间与工程学报, 2018,14(3):697-704.

[45] Zhu C, Ren J, Wan J, et al. Methane adsorption on coals with different coal rank under elevated temperature and pressure[J]. Fuel (Guildford), 2019,254:115686.

[46] Wang K, Ren H, Wang Z, et al. Temperature-pressure coupling effect on gas desorption characteristics in coal during low-variable temperature process[J]. Journal of Petroleum Science and Engineering, 2022,211:110104.

[47] 刘纪坤, 王翠霞. 含瓦斯煤解吸过程煤体温度场变化红外测量研究[J]. 中国安全科学学报, 2013,23(9):107-111.

[48] 降文萍. 基于等温吸附实验的温度对煤层气含量影响研究[J]. 中国煤层气, 2014,11(5):3-6.

[49] 马东民, 蔺亚兵, 张遂安. 煤层气升温解吸特征分析与应用[J]. 中国煤层气, 2011,8(3):11-15.

[50] Tao Y, Wu Y, Han Y, et al. Insight into mass transfer during ultrasound-enhanced adsorption/desorption of blueberry anthocyanins on macroporous resins by numerical simulation considering ultrasonic influence on resin properties[J]. Chemical engineering journal (Lausanne, Switzerland : 1996), 2020,380:122530.

[51] 邵长金, 沈本善, 严炽培. 超声热效应对提高多孔介质渗透率的作用[J]. 石油大学学报(自然科学版), 1993(2):17-19.

[52] 姜永东, 鲜学福, 易俊, 等. 声震法促进煤中甲烷气解吸规律的实验及机理[J]. 煤炭学报, 2008(6):675-680.

[53] Hamdaoui O, Naffrechoux E. An investigation of the mechanisms of ultrasonically enhanced desorption[J]. AIChE journal, 2007,53(2):363-373.

[54] 卢义玉, 丁红, 葛兆龙, 等. 空化水射流热效应影响煤体渗透率试验研究[J]. 岩土力学, 2014,35(5):1247-1254.

[55] 易俊, 姜永东, 鲜学福, 等. 超声热效应促进煤层瓦斯解吸扩散数值模拟[J]. 重庆建筑大学学报, 2008(4):99-104.

[56] 吴迪, 徐军, 肖晓春, 等. 超声热效应下型煤中气体解吸规律试验研究[J]. 中国安全生产科学技术, 2015,11(10):5-10.

[57] 赵芳, 李栋, 陈振乾. 超声波作用下污泥内水分渗透率及有效扩散系数的分形研究[J]. 中国科技论文, 2013,8(8):816-819.

[58] Khanghahi-Bala B, Habibagahi G, Ghabezloo S, et al. Heat generation by ultrasound wave propagation in porous media with low permeability: Theoretical framework and coupled numerical modeling[J]. Computers and geotechnics, 2020,124:103607.

[59] 张春会, 李其廉, 于永江, 等. 功率超声致煤层瓦斯升温机理[J]. 辽宁工程技术大学学报(自然科学版), 2009,28(4):525-528.

[60] 易俊, 姜永东, 鲜学福, 等. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. 岩土力学, 2009,30(10):2945-2949.

[61] 姜永东, 熊令, 阳兴洋, 等. 声场促进煤中甲烷解吸的机理研究[J]. 煤炭学报, 2010,35(10):1649-1653.

[62] 阳兴洋. 声震法促进煤层气解吸扩散流动的机理研究[D]. 重庆大学, 2011.

[63] 赵丽娟. 超声波作用下的煤层气吸附一解吸规律实验[J]. 天然气工业, 2016,36(2):21-25.

[64] Li X, Zhang J, Wu C, et al. Experimental Research on the Effect of Ultrasonic Waves on the Adsorption, Desorption, and Seepage Characteristics of Shale Gas[J]. ACS Omega, 2021,6(26):17002-17018.

[65] 姜永东, 宋晓, 刘浩, 等. 大功率声波作用下煤层气吸附特性及其模型[J]. 煤炭学报, 2014,39(S1):152-157.

[66] 姜永东, 宋晓, 崔悦震, 等. 声场作用下煤中甲烷解吸扩散的特性[J]. 煤炭学报, 2015,40(3):623-628.

[67] Xin D, Jing H, Xiaochun X. Experimental study on ultrasonic irradiation for enhancing coalbed methane recovery[J]. Scientific reports, 2022,12(1):7768.

[68] 孙仁远, 纪云开, 林李, 等. 超声处理对煤层气解吸效果的影响[J]. 实验力学, 2015,30(1):94-100.

[69] Li X, Zhang J, Li R, et al. Numerical Simulation Research on Improvement Effect of Ultrasonic Waves on Seepage Characteristics of Coalbed Methane Reservoir[J]. Energies (Basel), 2021,14(15):4605.

[70] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021,46(5):1365-1377.

[71] Clayton J L, Rice D D, Michael G E. Oil-generating coals of the San Juan Basin, New Mexico and Colorado, U.S.A.[J]. Organic Geochemistry, 1991,17(6):735-742.

[72] 杨海平, 陈汉平, 鞠付栋, 等. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报, 2008(8):40-45.

[73] 刘志军. 温度作用下油页岩孔隙结构及渗透特征演化规律研究[D]. 太原理工大学, 2018.

[74] 刘增琪. 过热蒸汽作用后油页岩孔隙结构及渗透特性演化规律研究[D]. 太原理工大学, 2021.

[75] 赵静, 刘增琪, 康志勤, 等. 原位开采状态下油页岩渗透特性演化规律研究[J]. 岩石力学与工程学报, 2021,40(5):892-901.

[76] 林姗. 微波热解油页岩孔隙-裂隙演化规律实验研究[D]. 辽宁工程技术大学, 2022.

[77] 王林生, 叶义平, 覃建华, 等. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 石油与天然气地质, 2022,43(01):149-160.

[78] 黄笑乐, 杨甫, 韩磊, 等. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟[J]. 化工学报, 2022,73(11):5078-5087.

[79] Wang Z, Jiang P, Yang F, et al. Study on Pore Structure and Fractal Characteristics of Tar-Rich Coal during Pyrolysis by Mercury Intrusion Porosimetry (MIP)[J]. Geofluids, 2022,2022:1-11.

[80] 李翔. 不同加热方式下油页岩孔裂隙结构及渗流路径演化规律的研究[D]. 太原理工大学, 2019.

[81] 刘颖凯. 废弃石油井周围煤层内油层气扩散渗流规律研究[D]. 西安科技大学, 2019.

[82] 申艳军, 王旭, 赵春虎, 等. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探, 2021,49(3):33-41.

[83] 申艳军, 王旭, 师庆民, 等. 榆神府矿区富油煤煤相及孔隙结构特征试验研究[J]. 煤矿安全, 2021,52(10):30-37.

[84] 季淮君. 可溶有机质对煤层瓦斯储运特性影响机理研究[D]. 中国矿业大学, 2015.

[85] 季淮君, 李增华, 彭英健, 等. 煤的溶剂萃取物成分及对煤吸附甲烷特性影响[J]. 煤炭学报, 2015,40(4):856-862.

[86] 柏静儒, 潘朔, 林卫生, 等. 可溶小分子对油页岩孔隙结构变化的影响研究[J]. 高校化学工程学报, 2016,30(1):56-64.

[87] 彭英健, 李增华, 季淮君, 等. 煤中可溶有机质对瓦斯吸附与解吸特性的影响[J]. 煤炭学报, 2012,37(09):1472-1476.

[88] 王飞, 张代钧, 李小鹏, 等. 煤及其溶剂萃取产物的氮气吸附行为[J]. 燃料化学学报, 2003,31(5):395-399.

[89] 张代钧, 王飞, 李小鹏, 等. 溶剂萃取对烟煤孔隙结构和粒度的影响[J]. 燃料化学学报, 2004,32(1):18-22.

[90] 降文萍. 溶剂萃取前后煤吸附甲烷特征对比及机理研究[J]. 煤炭科学技术, 2013,41(03):114-119.

[91] 孙家继. 煤中可溶有机质对煤与瓦斯突出危险的影响研究[D]. 中国矿业大学, 2017.

[92] 王春林. 黄陵矿区含油煤样物理吸氧量变化规律研究[J]. 内蒙古煤炭经济, 2020(9):28-30.

[93] 薛文海, 杜美利, 刘忠诚, 等. 萃取方式对黄陵煤分子结构特征影响[J]. 洁净煤技术, 2022,28(7):96-102.

[94] 胡松青, 李琳, 陈玲, 等. 功率超声作用下溶液温度变化的数学模拟[J]. 华南理工大学学报(自然科学版), 2007,35(4):58-61.

[95] Kadyirov A, Karaeva J, Barskaya E, et al. Features of rheological behavior of crude oil after ultrasonic treatment[J]. Brazilian Journal of Chemical Engineering, 2023,4(1):15.

[96] 毛柏杨, 刘松玉, 刘志彬. 柴油污染粉土水油分布的核磁共振试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020,53(2):122-128.

[97] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022:1-29.

[98] 王旭锋, 牛志军, 张磊, 等. 超声振动在矿山煤岩致裂中的研究进展与展望[J]. 煤炭科学技术, 2024,52(01):232-243.

[99] 胡林杰, 冯增朝, 周动, 等. 注热强化煤层气抽采的试验研究及工业应用[J]. 煤炭科学技术, 2022,50(12):194-205.

[100] 郭恒. 功率超声波技术在低透气性煤层增透试验中的应用[J]. 能源与环保, 2021,43(8):40-44.

中图分类号:

 TD712    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式